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The classical Cox–Voinov theory of contact line motion provides a relation between
the macroscopically observable contact angle, and the microscopic wetting angle as a
function of contact-line velocity. Here, we investigate how viscoelasticity, specifically
the normal stress effect, modifies the wetting dynamics. Using the thin film equation
for the second-order fluid, it is found that the normal stress effect is dominant at small
scales yet can significantly affect macroscopic motion. We show that the effect can be
incorporated in the Cox–Voinov theory through an apparent microscopic angle, which
differs from the true microscopic angle. The theory is applied to the classical problems of
drop spreading and dip coating, which shows how normal stress facilitates (inhibits) the
motion of advancing (receding) contact lines. For rapid advancing motion, the apparent
microscopic angle can tend to zero, in which case the dynamics is described by a regime
that was already anticipated in Boudaoud (Eur. Phys. J. E, vol. 22, 2007, pp. 107–109).
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1. Introduction

The motion of a contact line governs a variety of phenomena, such as drops moving on
surfaces, drop spreading and coating applications. This problem has been widely explored
for Newtonian fluids over the last decades (de Gennes, Brochard-Wyart & Quéré 2004;
Bonn et al. 2009; Snoeijer & Andreotti 2013). Within the hydrodynamic framework of
wetting, the macroscopic flow is often described using the Cox–Voinov theory (Voinov
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Figure 1. Moving contact lines for viscoelastic liquids encountered in drop spreading (a) and dip coating (b).
At a large scale, the flow is characterised by a macroscopic apparent contact angle θapp,o, seen at an outer scale
�o. (c) Microscopic view of the interface. (ci) The highest shear rates are encountered close to the contact line
(slip length scale λ), where polymers become highly stretched. This gives rise to large normal stresses that
‘bend’ the interface to angles below the equilibrium contact angle θe. In this paper we introduce θapp,i as the
resulting apparent microscopic angle. (cii) In a scale-free region λ� x � �o, the interface slope follows the
Voinov solution reflecting the visco-capillary balance; θapp,i serves as the apparent inner boundary condition
at small scale. (ciii) At large scales, the slope is given by the apparent outer angle θapp,o.

1976; Cox 1986), which connects the macroscopic contact angle to the microscopic angle.
The relation between these angles is intricate, since the balance of the viscous shear forces
(viscosity η) and capillary forces (surface tension γ ) leads to a ‘bending’ of the interface in
a region near the contact line. Macroscopically, the result can be expressed as a relation for
the apparent outer (macroscopic) angle θapp,o, defined in figure 1(a,b) for droplet spreading
and dip coating, respectively. An explicit treatment of the problem is often given using
the thin film (lubrication) framework, see e.g. Eggers & Fontelos (2015), which leads to
a dependence of the macroscopic angle on the contact-line speed U through the form
(Voinov 1976; Cox 1986)

θ3
app,o = θ3

e ± 9Ca ln(�o/�i), Ca = ηU
γ
. (1.1)

Here, θe is the (microscopic) equilibrium angle, and Ca the capillary number. The ‘±’
depends on whether the contact line is advancing (+) or receding (−). The formula
contains an inner length scale �i, necessary to regularise the moving contact-line
singularity (Huh & Scriven 1971), as well as an outer length scale �o that reflects the
macroscopic geometry of the problem (e.g. the radius of a spreading drop). The strict
validity of (1.1) is restricted to small contact angles and small capillary numbers, due to
assumptions underlying the analysis (Voinov 1976; Cox 1986; Eggers & Fontelos 2015).
Yet, it has been successfully applied to a large class of problems (Snoeijer & Andreotti
2013).
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Viscoelastic wetting

Many applications like the deposition of pesticides on plant leaves or ink-jet
printing involve polymer solutions. Such fluids exhibit non-Newtonian rheology such as
shear-thinning viscosity and viscoelasticity, which can affect the contact-line dynamics,
as has been demonstrated through several experimental studies (Seevaratnam et al. 2007;
Wang et al. 2007; Wei, Garoff & Walker 2009a; Wei et al. 2009b; Han & Kim 2013;
Kim & Rothstein 2015). For the canonical problem of liquid spreading on a substrate,
it was found that non-Newtonian drops spreading on completely wetting surfaces still
followed the long-time power-law dynamics R ∼ tn, where R(t) is the drop radius, and
the exponent n is slightly smaller than the Cox–Voinov–Tanner law n = 1/10 (Rafaï,
Bonn & Boudaoud 2004). This comparatively weak effect could be attributed to both a
shear-thinning viscosity and the consequence of normal stress effects. During the very
early stages of drop spreading, ensuing after a droplet is gently brought into contact with
a substrate, the spreading exhibits much larger exponents, with n = 1/2 for low-viscosity
Newtonian drops (Biance, Clanet & Quéré 2004). Interestingly, the addition of polymers
has no measurable effect on this rapid spreading (Bouillant et al. 2022; Yada et al. 2023).
Similarly, during drop impact, the initial spreading phase is nearly unaffected by the
presence of polymers (Bartolo et al. 2007; Gorin et al. 2022; Sen, Lohse & Jalaal 2022).

By contrast, the retraction of a droplet, e.g. after an impact, is strongly influenced by
the presence of polymers (Bergeron et al. 2000). The typical retraction velocity was found
to decrease with the (first) normal stress coefficient ψ , following a scaling U ∼ 1/

√
ψ

(Bartolo et al. 2007). This result can be interpreted from the balance between the normal
stress near the contact line ∼ ψ(U/�)2 and the Laplace pressure γ h′′ ∼ γ θ2

e /�, giving a
typical velocity

Uψ = θe

√
γ �

ψ
, (1.2)

where � is to be interpreted as a microscopic cutoff length (Bartolo et al. 2007), very
much like �i in (1.1). The best fit of experimental data gave � to be of the order of tens
of microns (Bartolo et al. 2007), which is larger than the expected nanometric length
used in Newtonian fluids. Alternatively, this result can be obtained from a balance of the
capillary force γ (cos θ − cos θe) ∼ γ θ2

e /2 and viscoelastic force ψU2/� induced by the
extra tension along the streamlines (Bartolo et al. 2007). The addition of polymers also
changes the drop shedding behind a sliding droplet (Xu et al. 2018).

In fact, polymers have been observed to be strongly stretched at a contact line (during
retraction) (Smith & Bertola 2010) and stretched and depleted at the contact line (during
spreading) (Shin, Bong & Kim 2016) and are sometimes left on the surface after
the retraction (Zang et al. 2013). This could be induced by either non-hydrodynamic
polymer–surface interactions (Guyard et al. 2021), or shear-induced migration (Han &
Kim 2013; Shin & Kim 2015). However, it has remained a challenge to disentangle the
possible roles of all these mechanisms, which in part is due to the lack of a hydrodynamic
framework for viscoelastic wetting.

The aim of the present study is to explore systematically the influence of the viscoelastic
normal stress on the motion of contact lines. There have been several studies dedicated
to quantifying normal stress effects in wetting flows. Numerical schemes have been
developed using the phase-field method and polymer rheological models like Oldroyd-B
or Giesekus (Yue & Feng 2012; Wang, Minh & Amberg 2015; Wang, Do-Quang &
Amberg 2017), and results using these were found to be consistent with prior experimental
observations (Wei et al. 2009b; Han & Kim 2013) in that the viscoelastic stresses, confined
to a small region near the contact line, had only a mild effect on the contact-line motion
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of spreading drops. Boudaoud (2007) introduced a phenomenological thin-film model
that includes normal stress effects. Solving the resulting equation in the specific case of
complete wetting, the advancing contact angle is found to follow

θ3
app,o = 9Ca ln

(
�o

�VE

)
, �VE = ψU

2η
. (1.3)

This expression can be seen as a form of the Cox–Voinov law (1.1), with θe = 0 and
the microscopic regularising length provided by a viscoelastic length �VE. The latter
corresponds to the product between the contact-line velocity U and the typical relaxation
time of the liquid ψ/η. However, it has remained unclear whether this theory can actually
be derived from any tensorial constitutive relation, and how these results carry over to
partial wetting conditions, for which the equilibrium contact angle θe must play a role.
Also, as the equation derived by Boudaoud (2007) (given as (1.3)) does not admit any
solutions with partial wetting conditions, it cannot be applied to receding contact lines –
which is crucial to understanding the observed strong effects of normal stresses on the
retraction velocity (Bartolo et al. 2007).

In this paper, we study how normal stress affects both advancing and receding
contact-line motion of partially wetting fluids. Through our analysis, we demonstrate
the strong effect of the viscoelastic normal stress on receding contact lines which was
previously observed in the experiments of Bartolo et al. (2007). Our paper is based on an
expansion of the stress to second order in the shear rate, an approximation which exhibits
a normal stress effect. The so-called second-order fluid is appropriate for modelling slow
and steady flows in the weak viscoelasticity limit (Tanner 2000; Morozov & Spagnolie
2015; De Corato, Greco & Maffettone 2016). This constitutive relation was recently given
a long-wave expansion (Datt, Kansal & Snoeijer 2022), yielding a thin-film equation
that can be used to describe contact-line motion in the presence of normal stress. The
approach resembles somewhat the analysis by Han & Kim (2014), who used corner
solutions of the second-order fluid to estimate how normal stress affects the pressure
inside the liquid. However, the thin-film description by Datt et al. (2022) results from
a systematic long-wave expansion (naturally involving the gradient of pressure, rather
than the pressure), and has the additional benefit of being applicable beyond the no-slip
condition to relieve the moving contact-line singularity. We focus on the case of partial
wetting using a Navier-slip condition as a microscopic regularisation, so that the slip length
λs appears as the inner scale. The central result of this paper consists of the modified form
of the Cox–Voinov law

θ3
app,o = θ3

e − 3
4
ψU2θe

γ λs
± 9Ca ln

(
�o

λs

)
, (1.4)

which now exhibits an explicit dependence on the normal stress coefficient ψ .
A dependence of the Cox–Voinov relation on ∼ U2 was also suggested by Kim &
Rothstein (2015), but in that study the sign was proposed to be different for advancing (+)
and receding (−) motions. Here, we find that the normal stress always leads to a smaller
macroscopic contact angle. Comparing the first two terms on the right-hand side of (1.4),
we identify a dimensionless normal stress parameter

N = ψU2

γ λsθ2
e
. (1.5)

This dimensionless number N ∼ (U/Uψ)2 can be seen as the viscoelastic equivalent of the
capillary number, comparing the contact-line speed with the intrinsic velocity Uψ defined
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in (1.2). Indeed, as we will show, the derivation of (1.4) requires N � 1 in a way similar
to Ca � 1. The physical picture emerging from the viscoelastic Cox–Voinov theory is
sketched in figure 1(c). The modification with respect to the Newtonian case appears only
at small scales, where the bending of the interface due to normal stress dominates over the
viscous bending. The form of the contact angle law (1.4) can then be interpreted in terms
of an apparent microscopic angle θapp,i, as shown in figure 1(c), of the form

θ3
app,i = θ3

e (1 − 3
4 N). (1.6)

This angle decreases with viscoelasticity, both for advancing and receding contact lines,
as the viscoelastic normal stress parameter depends on U2. We recall that (1.4) is derived
under the assumption of weak viscoelasticity, i.e. N � 1. Importantly, however, when
N � 1, another regime of strong viscoelasticity can emerge. As a result, the complete
wetting solution of (1.3) (Boudaoud 2007) is recovered, even when the substrate is partially
wetting. Section 2 provides the detailed derivations of these results. Subsequently, § 3
explores the consequences of viscoelasticity for drop spreading, drop retraction and dip
coating. Finally, the paper closes with a discussion in § 4.

2. Modified Cox–Voinov law

2.1. Second-order fluid thin-film equation
We investigate a moving three-phase contact line, by considering a liquid film on a rigid
surface. We choose a reference frame in which the contact line is at a fixed position x = 0
and the solid surface is moving at a speed U. We treat the problem with the lubrication
approximation, which assumes relatively small angles. To include the effect of normal
stress differences, we use the simplest viscoelastic fluid model containing normal stresses,
i.e. the second-order fluid model (Tanner 2000). This model offers a good description of
the polymer solution rheology for steady flows in the weakly viscoelastic limit.

The lubrication equation for steady contact-line motion with Navier-slip boundary
condition has been derived recently for the second-order fluid (Datt et al. 2022). Denoting
the interface profile as h(x) (see figure 1), the lubrication equation reads

γ h′′′ = − 3ηU
h(h + 3λs)

− 3
4

(
ψ

(
U

h + 3λs

)2
)′
, (2.1)

where λs is the Navier-slip length. The introduction of a molecular mechanism, here the
slip length, is necessary to regularise the well-known moving contact-line singularity
(Huh & Scriven 1971; Bonn et al. 2009; Snoeijer & Andreotti 2013). Setting ψ = 0, we
recover the standard Newtonian lubrication equation (Duffy & Wilson 1997; Oron, Davis
& Bankoff 1997). The extra viscoelastic term in (2.1) is of the form of the gradient of
normal stress, which is quadratic in shear rate. A very similar lubrication equation was
obtained previously in Boudaoud (2007), using scaling estimates for the components of
the stress tensor. The resulting equation differs from (2.1) in two ways: slip is ignored and
the prefactor in front of the viscoelastic term is not correct. We emphasise here that the
second-order fluid thin-film equation is asymptotically equivalent to the Oldroyd-B model
for weakly viscoelastic steady flows (see the Appendix in Datt et al. 2022), ensuring the
validity of (2.1). Importantly, the viscoelastic term scales as 1/h3 whereas the viscous term
scales as 1/h2. Hence, we anticipate the normal stress to be negligible in the large h limit
with respect to the viscous term. The viscoelastic term is subdominant in the region far
from the contact line, where viscous shear and capillary forces balance (see region (cii)
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in figure 1). A consequence is that the structure of the Cox–Voinov law still holds with
normal stress, and normal stress effects are important only at small scales.

We thus focus on the inner region near the contact line, in which the typical film
thickness scale is λs. We therefore rescale h and x as

X = xθe

3λs
, H(X) = h

3λs
, λ = λs

θe
, δ = 3ηU

γ θ3
e

= 3Ca
θ3

e
, (2.2a–d)

where the lateral scale has been rescaled by 3λs/θe to enforce slopes of order 1 and to
scale out the equilibrium angle. We also introduced a rescaled slip length λ and capillary
number δ following Eggers (2005). The lubrication equation then becomes

H′′′ = −δ
(

1
H2 + H

− �VE

3λ
H′

(H + 1)3

)
, (2.3)

where viscoelastic effects are quantified by the dimensionless ratio �VE/λ.
Equation (2.3) holds both for advancing (δ > 0) and receding (δ < 0) contact lines. In

this section, we focus on advancing contact lines, for which the boundary conditions are
(Eggers 2005)

H(0) = 0, H′(0) = 1, H′′(∞) = 0, (2.4a–c)

fixing the position of the contact line and the equilibrium angle condition, respectively. The
third condition H′′(∞) = 0, which can only be imposed for advancing contact lines (Duffy
& Wilson 1997), matches any outer solution that has an asymptotically small curvature
toward the contact line.

We perform direct numerical integration of the system (2.3) and (2.4a–c), by using
the continuation code AUTO-07P (Doedel et al. 2007). Typical profiles H(X) are shown
in figure 2(a) for δ = 10−2 and changing the ratio �VE/λ to vary the strength of normal
stresses. The normal stress effects tend to lower the slope of the interface profile, although
each of the profiles exhibits the same microscopic contact angle H′(0) = 1 (see figure 2b).
Asymptotically, in the large-X limit, the interface slopes cubed all follow the same
behaviour, as

H′3 � a + 3δ ln (eX), (2.5)

and differ by a vertical offset position denoted a, which depends on �VE/λ, as shown in
figure 2(c). This asymptotic behaviour relates to the Voinov solution, which is classically
found in moving contact-line problems, reflecting the visco-capillary balance (see region
(cii) in figure 1). We introduce in (2.5) a factor e = exp(1) inside the logarithm for
convenience, so that the Newtonian solution corresponds to a = 1 (as shown below).
Hence, as anticipated, the normal stress effect does not modify the large-scale asymptotic
behaviour of the inner solution, but induces a non-trivial offset in the Voinov solution. In
the next two subsections, we determine the offset a by using asymptotic expansions, in the
weak and strong viscoelastic limits.

2.2. Weak viscoelasticity: apparent microscopic angle
The standard approach to determining the interface profile near the contact line analytically
is via a perturbation expansion of (2.3) in the small parameter δ (Hocking 1983; Eggers
2005)

H(X) = H0(X)+ δH1(X)+ O(δ2). (2.6)

Here, supposing weak viscoelasticity, we assume explicitly the ratio �VE/λ to be of order
∼ 1. The zeroth-order solution satisfies H′′′

0 = 0, which from the boundary conditions
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Figure 2. Advancing contact line. (a) Interface profile H(X) obtained from numerical integration of (2.3) and
(2.4a–c), with reduced capillary number δ = 10−2. The inset shows a zoom near the contact line, illustrating
that all profiles have the same microscopic contact angle. (b) Cube of the interface slope H′(X) as function
of distance from the contact line. Different colours correspond to varying normal stress effect quantified by
�VE/λ. (c) The parameter a, obtained from fitting (2.5) to the large-X limit of H′(X), is plotted as a function
of �VE/λ. The dots indicate the cases of (a) and (b) using the same colour code. For a > 0, the parameter
a = (θapp,i/θe)

3 can be interpreted in terms of the apparent microscopic contact angle, and is well described
by (2.10) (red dashed line). A regime of ‘apparent complete wetting’ emerges when a < 0, captured by (2.21)
(green dashed line).

(2.4a–c) gives H0 = X. At the first order in δ, the interface profile follows

H′′′
1 = − 1

X2 + X
+ �VE

3λ
1

(1 + X)3
, (2.7)

with boundary conditions H′
1(0) = 0 and H′′

1 (∞) = 0. Integration of (2.7) then gives

H′
1 = −X ln X + (1 + X) ln (1 + X)+ �VE

6λ

(
1

1 + X
− 1

)
� ln X + 1 − �VE

6λ
, (2.8)

where the last step represents the X → ∞ asymptotic behaviour. Combined with the
zeroth-order solution, the large-X asymptotic behaviour of the interface slope in the
small-δ limit is

H′ � 1 + δ

(
ln X + 1 − �VE

6λ

)
+ O(δ2). (2.9)

Raising this result to the third power and comparing with (2.5), we obtain the sought-after
offset constant

a = 1 − 1
2
δ�VE

λ
. (2.10)

Compared with the Newtonian case where a = 1, the interface slope indeed decreases due
to the presence of normal stress effects. The dimensional form of (2.5) reads

h′3 = (θapp,i)
3 + 9Ca ln

(
exθe

3λs

)
. (2.11)

Here, we introduce the apparent microscopic angle θapp,i (see figure 1), that depends on
the normal stress parameter N as

(θapp,i)
3 = aθ3

e = θ3
e

(
1 − 3

4
N
)
, (2.12)
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where we used �VE/λ = 3N/(2δ). We identify (2.11) as a modified Cox–Voinov solution
where the equilibrium Young contact angle θe has been modified to an apparent
microscopic angle θapp,i (see (2.12)). This result corresponds to (1.4) in § 1.

The numerical data agree very well with this prediction for small-to-intermediate values
of �VE/λ (see red dashed lines in figure 2c). However, a significant deviation is observed
at large �VE/λ, which coincides with a < 0 (grey zone in figure 2c). To understand the
breakdown of (2.10), we recall that the underlying perturbation expansion assumed both
H′ and �VE/λ to remain of order unity, which is clearly violated at large �VE/λ. Instead,
one observes the formation of a flat film region where H′ � 0 in the large viscoelastic
limit (see figure 2a,b), indicating the onset of a new regime. The transition between the
two regimes occurs when the apparent microscopic angle goes to zero θapp,i → 0, which
occurs when

θ3
e ∼ ψU2θe

γ λs
=⇒ �VE

λ
∼ 1
δ
. (2.13)

This estimate is consistent with figure 2(c), where δ = 10−2, for which the perturbation
expansion (2.10) breaks down around �VE/λ ∼ 1/δ ∼ 102. The next section is dedicated
to a description of the new regime at large �VE/λ, named strong viscoelasticity.

2.3. Strong viscoelasticity: (apparent) complete wetting
We interpret the behaviour at large �VE/λ as a regime of ‘apparent complete wetting’.
Indeed, the purple and brown solutions in figure 2(b) exhibit an extended flat zone with
H′ ≈ 0, resembling a situation of the complete wetting condition, even though H′(0) = 1.
In the flat film region, the film curvature is very small, such that the capillary term is
subdominant. Hence, the governing balance of (2.1) involves the viscous and viscoelastic
terms, from which one identifies �VE as the natural lateral length scale. Physically, this
implies that the information of the partial wetting nature of the problem, encoded in θe, is
lost across the flat film as it only modifies the profiles at a length scale ∼ λ (see figure 2b),
but this is ‘screened’ by the flat wetting film on a length scale �VE.

We proceed in the asymptotic analysis using �VE as the relevant length on the flat film
region. We assume, and validate a posteriori, that we can drop the slip length λs from
(2.1), in the large �VE/λ limit. Hence, we introduce the rescaling

ξ = x
�VE

, H = h
�VE(3Ca)1/3

, (2.14a,b)

for which (2.1) becomes

H′′′ = − 1
H2 + H′

H3 . (2.15)

Here, we dropped the slip terms, which is consistent as long as �VE/λ� δ−1/3, which
is indeed satisfied in the strong viscoelastic limit. We notice that (2.15) resembles the
thin-film equation with a disjoining pressure (see p. 398 in Eggers & Fontelos 2015),
which is used to model contact lines in complete wetting. Within this analogy, the effective
‘disjoining pressure’ is −3ψU2/(4h2), similar to the standard van der Waals disjoining
pressure −A/(6πh3), where A is the Hamaker constant. We employ boundary conditions

H(−∞) = 0, H′(−∞) = 0, H′′(+∞) = 0, (2.16a–c)

where the first two conditions correspond to the formation of the film, replacing the partial
wetting condition at ξ = 0. Similarly to § 2.2, since viscoelasticity only acts at small scales,
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Viscoelastic wetting

the large distance asymptotic behaviour is given by the Voinov solution (see (2.5)), which
using the new scales reads

H′3 � 3 ln
(
ξ

ξ0

)
. (2.17)

The offset a has been replaced by an unknown constant ξ0, which remains to be found.
The system (2.15) and (2.16a–c) is exactly the problem analysed in Boudaoud (2007) up

to a trivial rescaling, which we now understand to emerge as the limit of large �VE/λ. In
the flat film region, the curvature is nearly zero and the capillary term drops out, such that
the dominant balance involves the viscous stress and normal stress. Towards the flat film,
(2.15) reduces to

H′ � H, (2.18)

to leading order. The viscous-viscoelastic solution takes the form of an exponentially
growing solution H � eξ , with a prefactor that can be set to unity, owing to the
translational invariance of (2.15) and (2.16a–c). A more refined analysis of the asymptotic
behaviour of H in the ξ → −∞ limit leads to the asymptotic expression (Boudaoud 2007)

H � eξ + c+ e
2
3 e−3ξ/2 + c− e− 2

3 e−3ξ/2
, (2.19)

where c± are constants; using the boundary condition for ξ → −∞ leads to c+ = 0. We
solve (2.15) numerically, using (2.19) as an initial condition, where c− is treated as a
shooting parameter to ensure H′′(ξ → ∞) = 0. Fitting the numerically obtained slope
H′(ξ) in the large-ξ limit, typically ξ = 108, with the Voinov solution (Bender & Orszag
1999; Eggers & Fontelos 2015), we find a universal value of ξ0 ≈ 1.16 (see Snoeijer &
Eggers (2010) for details of the numerical calculation).

In dimensional units, the contact-line solution at large x gives

h′3 = 9Ca ln
(

x
�VEξ0

)
. (2.20)

This has the same form as the Cox–Voinov solution for complete wetting, i.e. when θe = 0,
where �VE now offers the regularisation length, replacing the microscopic scale. This was
also demonstrated in Boudaoud (2007), but we now provide the prefactor. In terms of the
constant a, as defined by (2.5), we find

a = 3δ ln
(

3λ
e�VEξ0

)
, (2.21)

which agrees well with the numerical solution at large �VE/λ (figure 2(c), green dashed
line). It justifies a posteriori that the equilibrium angle θe does not play a role in this
regime.

3. Applications

We now apply the viscoelastic contact-line theory from the previous section to two
paradigmatic wetting problems, namely drop spreading and dip coating. Classically, the
interface profile in these problems can be described using matched asymptotics, where
the Voinov contact-line solution corresponds to the inner solution, matched to an outer
solution at macroscopic scale. In this section, we briefly recall the outer solutions of the
two problems, which are unaltered by viscoelasticity, and discuss the matching to the newly
derived viscoelastic inner solutions.
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In applications such as drop spreading, the contact-line velocity U is not a control
parameter. Instead, the contact-line velocity is determined through the matching
procedure. Using the Cox–Voinov framework, an intrinsic velocity scale U∗ naturally
arises by comparing the viscous and capillary terms as

U∗ = γ θ3
e

η
, (3.1)

which we will use as a rescaling velocity below. In these scaled units, we will see the
appearance of a new dimensionless parameter

N0 =
(

U∗

Uψ

)2

= ψγ θ4
e

η2λs
. (3.2)

This parameter governs the relative importance of viscosity and normal stress in the
context of partially wetting flows. Alternatively, N0 can be interpreted as a scaled normal
stress coefficient, made dimensionless only with material parameters.

3.1. Drop spreading and retraction
We study the spreading (and retraction) of a drop, of volume Ω , over a solid surface
(figure 3). We consider drops smaller than the capillary length so that gravity can be
ignored. The outer solution of the interface profile is obtained away from the contact line,
where viscous and viscoelastic forces are not dominant. Therefore, at a given time, the
shape adopted by the drop is close to the equilibrium shape of a static drop h0(r) as

h0(r) = 2Ω
πr2

[
1 −

( r
R

)2
]
, (3.3)

where the drop meets the solid at the apparent angle θapp,o = −h′
0(r = R), which reads

θapp,o = 4Ω
πR3 . (3.4)

As discussed before, close to the contact line (to be precise, the outer asymptotics of
the inner region), the slope of an advancing contact-line solution exhibits a logarithmic
dependence with the distance. Hence, the static equilibrium profile (3.3) cannot be
matched directly to the Cox–Voinov theory. To resolve this issue, Hocking (1983) showed
that the first-order correction to the outer solution in capillary number, defined as ηṘ/γ ,
where Ṙ is the radius rate of change, takes the asymptotic form

h′3(x) = θ3
app,o + 9

ηṘ
γ

ln
( x

Rb

)
, (3.5)

for x = R − r � R (see figure 3a), and where b = 1/(2e2). This solution is to be matched
to the newly derived viscoelastic inner solutions (2.11) and (2.20).

3.1.1. Spreading with weak viscoelasticity: partial wetting
For the partial wetting case, the drop spreads until the contact angle reaches the
equilibrium contact angle θe, or equivalently an equilibrium radius Re = (4Ω/(πθe))

1/3.
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tU∗/Re tU∗/Re
Figure 3. Drop spreading (a) and retraction (b,c). The schematic indicates the case where the initial drop is
drawn in black and the equilibrium shape in grey. The drop contact radius rescaled by the equilibrium contact
radius is plotted as a function of dimensionless time for various N0, corresponding to numerical solutions of
(3.9), where c1 = 107. The black dashed lines show the Newtonian solution for N0 = 0, and the grey dotted
line displays the viscoelastic retraction velocity, corresponding to (3.12) evaluated at the initial time. (c) The
initial retraction velocity scaled by U∗ as a function of N0, computed from (3.8) using Rinitial/Re = 1.5 (as in
panel (b)). The orange line in large N0 regime corresponds to the U ∼ ψ−1/2 scaling as expected from (3.12).
(a) Spreading: contact radius. (b) Retraction: contact radius. (c) Initial retraction velocity.

For small capillary number, we can match the logarithmic dependencies of the outer
solution (3.5) to the modified Cox–Voinov solution (2.11), which gives

(θapp,o)
3 = (θapp,i)

3 + 9
ηṘ
γ

ln
(

Rθe

6eλs

)
. (3.6)

As usual, the matching procedure connects the microscopic angle to the macroscopic
angle, but now the microscopic angle contains viscoelastic effects. Inserting θapp,o from
the static solution (3.4) and θapp,i from (2.12), we obtain an ordinary differential equation
(ODE) for the drop radius R(t), as

(θapp,o)
3 =

(
4Ω
πR3

)3

= θ3
e − 3

4
ψṘ2θe

γ λs
+ 9

ηṘ
γ

ln
(

Rθe

6eλs

)
. (3.7)

Finally, using dimensionless variables with bar as R̄ = R/Re and t̄ = t/(Re/U∗), we can
rewrite (3.7) as

3
4

N0
˙̄R2 − 9 ln (c1R̄) ˙̄R +

(
1

R̄9
− 1

)
= 0, (3.8)

with c1 = (Reθe)/(6eλs). Here, we recover the explicit dependency on N0, which is the
material parameter that, for a given fluid, quantifies the normal stress effect.

Equation (3.8) is a second-order polynomial equation for ˙̄R, which we first solve to
isolate ˙̄R, leading to

˙̄R = 6 ln(c1R̄)
N0

[
1 −

√
1 − N0

27 ln2 (c1R̄
) ( 1

R̄9
− 1

)]
, (3.9)

and then integrate numerically. We notice that the second-order polynomial equation does
not have a solution in real space for negative discriminant, which imposes a condition
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27 ln2(c1R̄) > N0(1/R̄9 − 1). Hence, in the spreading case, i.e. when R̄(t̄ = 0) < 1, we
cannot find solutions for arbitrarily large values of N0. Mathematically speaking, the
reason is that the apparent macroscopic angle vs U has a maximum value when using
the modified Cox–Voinov law. Therefore, if the outer geometry imposes an apparent
macroscopic angle that is larger than this maximum, no contact-line speed can be found.
The lack of solution is an artefact of the weak viscoelastic solution, which as also
mentioned in the Discussion, is resolved by admitting the strong viscoelastic solution
(2.20).

In figure 3(a) we show a typical solution of (3.9), with R̄(t̄ = 0) = 0.95 as an initial
condition. Qualitatively, the normal stress effects speed up the spreading dynamics,
although the quantitative change is very weak. This corroborates the conclusions of drop
impact with polymer solutions, showing a weak dependence on the addition of polymers
(Bartolo et al. 2007; Gorin et al. 2022; Sen et al. 2022).

3.1.2. Spreading with strong viscoelasticity: (apparent) complete wetting
As shown in § 2.3, the advancing contact-line dynamics at large velocities deviates from
the modified Cox–Voinov law used in the previous subsection. In the drop spreading
problem, if the initial radius is small, or equivalently the apparent angle is much larger
than the equilibrium angle, then the contact-line speed is large and lies within the strongly
viscoelastic regime. In this case, the inner solution for partially wetting substrates becomes
completely independent of the equilibrium angle, and takes the form (2.20). Repeating the
matching procedure with this strongly viscoelastic inner solution, the drop radius follows
from

θ3
app,o = 9

ηṘ
γ

ln
(

Rb
�VEξ0

)
= 9

ηṘ
γ

ln
(

2ηRb
ψṘξ0

)
. (3.10)

This result is identical to that of a completely wetting viscoelastic drop; and it is of the
same form as derived in Boudaoud (2007).

During the spreading, which we initially assumed to be rapid, the contact-line velocity
will decrease in time. For partially wetting drops, this means that, upon approaching the
equilibrium angle, the strongly viscoelastic regime will give way to the weak regime
discussed in the preceding subsection.

For completely wetting surfaces, however, the drop radius follows a scaling law R ∝
t1/10 with logarithmic corrections, which is analogous to the Newtonian dynamics known
as Tanner’s law (Bonn et al. 2009; Eggers & Fontelos 2015). Using R ∝ t1/10 as an ansatz,
the ratio between contact-line speed and drop radius inside the logarithm in (3.10) can be
approximated as Ṙ/R ≈ 1/(10t). Inserting (3.4) into (3.10), and integrating, we obtain a
modified Tanner’s law as

R ≈

⎛
⎜⎜⎝10

9

(
4Ω
π

)3
γ

η ln
(

c2
ηt
ψ

) t

⎞
⎟⎟⎠

1/10

, (3.11)

where c2 = 10/(e2ξ0). We note that the same equation has been derived using scaling
arguments in Rafaï et al. (2004) and Boudaoud (2007), but we now provide a prefactor as
derived for the second-order fluid. Again, the spreading of drops is accelerated by normal
stress effects with respect to the Newtonian dynamics via the logarithmic term in (3.11).
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3.1.3. Drop retraction
If the initial drop radius is above the equilibrium radius, the drop is retracting (see
figure 3b), for instance after an impact on a surface. Even though the contact line is now
receding, the same framework as § 3.1.1 can be used as long as the change in contact
angle is sufficiently small (cf. Eggers (2005) and the discussion on dip coating). By
consequence, (3.8) also governs the retraction dynamics of a partially wetting drop, but
˙̄R is now negative. In the retraction case, the discriminant of the second-order polynomial
equation is always positive such that one can find a solution for any N0. Interestingly,
viscoelastic effects now oppose the motion and slow down the retraction (see figure 3b).
In the large viscoelastic limit, for N0 → ∞, the viscous stress becomes negligible and the
retraction velocity is set by balancing the normal stress and the capillary term of (3.7),
which gives in dimensional form

Ṙ2 = 4γ (θ3
e − θ3

app,o)λs

3ψθe
. (3.12)

The dotted line in figure 3(b) indicates the retraction as estimated using the viscoelastic
receding speed (3.12), with the apparent angle taken from the initial condition. This
provides a very good description of the retraction velocity for large N0 (the contact
line only slowing down upon approaching the equilibrium radius). The initial retraction
velocity is plotted as a function of N0 in figure 3(c). In the small viscoelastic limit,
quantified by small N0, the viscoelastic term of (3.8) is subdominant and the retraction
velocity typically scales with U∗. Conversely, for large viscoelasticity, the retraction
velocity is set by Uψ ∼ 1/

√
ψ , leading to the scaling U/U∗ ∼ N−1/2

0 , observed at large
N0 in figure 3(c). Using the values of relevant parameters from the experiments by Bartolo
et al. (2007), we estimate N0 to be in the range ∼ 103 to 106. The N0 values chosen in
figure 3(a,b) fall within this range.

In the large viscoelastic limit, this retraction velocity scales with the inverse square
root normal stress coefficient, as observed experimentally in Bartolo et al. (2007). These
authors rationalised their experimental findings by using a phenomenological normal
stress thin-film model and derived a retraction velocity of similar form as the one discussed
here, namely Ṙ2 = γ (θ2

e − θ2
app,o)�/(8ψ), where � is a microscopic cutoff length. Up to

a prefactor, in the limit of θapp,o → 0, this phenomenological equation agrees with the
rigorous calculation provided here.

3.2. Forced wetting transition
We now turn to dip coating, sketched in figure 4(a), in which a plate is pulled out of a
liquid bath at a constant speed U. At small speed, the liquid–air interface is modified and
the position of the contact line is shifted upward with respect to the equilibrium position.
Above a critical speed Uc, however, there is no static contact-line solution anymore and a
Landau–Levich liquid film is entrained. This transition is usually called forced dewetting
(Eggers 2005; Snoeijer et al. 2007; Chan, Snoeijer & Eggers 2012; Galvagno et al. 2014).

The question we wish to address is how Uc is affected by viscoelasticity. We restrict
ourselves to the case of small plate angle θp, so that lubrication theory can be described
for both the contact line and the bath. Assuming a stationary state, the interface position
can then be computed from the lubrication equation as

γ h′′′ = 3ηU
h(h + 3λs)

− 3
4

(
ψ

(
U

h + 3λs

)2
)′

+ ρg(h′ − θp). (3.13)
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0

0.01

0.02

U > Uc

U < Uc

U
c/
U
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Figure 4. Forced wetting transition. (a) Schematic of the dip-coating problem. Below the critical speed Uc
(top), the contact line is displaced and the apparent contact angle is θapp,o. Above the critical speed, a
Landau–Levich film of thickness h∞ is entrained. (b) Critical dimensionless speed as function of dimensionless
normal stress coefficient. The dots represent full-scale numerical integration of (3.13), with θp/θe = 1 and
λs/(�γ θe) = 10−4. The dashed line shows the asymptotic matching solution (3.17) based on the modified
Cox–Voinov law.

With respect to (2.1), the sign of the viscous term is flipped as the contact line recedes,
and a gravitational term has been added, ρ and g being the liquid density and gravitational
acceleration, respectively. The sign of the viscoelastic term is unchanged, as it is quadratic
in contact-line speed. The boundary conditions are

h(0) = 0, h′(0) = θe, h′′(∞) = 0, (3.14a–c)

and are identical to those in § 2. In the Newtonian case, solutions only exist up to a critical
velocity. Likewise, we have numerically determined Uc for the viscoelastic case by finding
the maximum velocity for which (3.13) and (3.14a–c) admit a solution. A typical numerical
result is shown as the circles in figure 4(b), where we plot the normalised critical speed
Uc/U∗ as a function of the viscoelastic parameter N0. We thus observe that the normal
stress effect lowers the critical speed of entrainment with respect to the Newtonian case
(N0 = 0). As for the droplet retraction dynamics, any receding contact-line motion is
inhibited by viscoelastic effects, now leading to an earlier entrainment.

Once again, these results can be described quantitatively from the modified
inner solution for receding contact lines. The outer solution is again unaffected by
viscoelasticity: far from the contact-line position, the interface profile is found by
balancing the hydrostatic pressure with the Laplace pressure. This leads to the equation of
a static meniscus, which is entirely characterised by an apparent angle θapp,o (see figure 4a)
and which corresponds to the outer solution of the full-scale problem. The inner solution
close to the contact line, at scales much smaller than the capillary length �γ = √

γ /(ρg),
does not involve gravity. Importantly, and in contrast to the advancing case, the general
solution of the inner problem does not have a vanishing curvature at infinity. Therefore,
the matching procedure is more intricate and analytical progress can be made by invoking
an intermediate zone, for λ� x � �γ , where slip and gravity are neglected, such that
(3.13) reduces to the visco-capillary balance γ h′′′ = 3ηU/h2. The latter equation has
an exact solution (Duffy & Wilson 1997), which has a Voinov asymptotic behaviour
h′3 = −9Ca ln(x/�) at small x and a constant curvature h′′ → cte at large x. As shown
in Eggers (2005), this visco-capillary solution can be matched both to the outer static
meniscus and to the slip region.
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Hence, to understand the normal stress effects on dip coating, which appear only on the
slip scale, the remaining task is to derive the slip-scale viscoelastic receding solution.
Modifying the steps of § 2.2 along the lines of Eggers (2005), but now including the
normal stress term, we find that the large-x asymptotic behaviour of the viscoelastic inner
solution follows

h′3 = (θapp,i)
3 − 9Ca ln

(
exθe

3λ

)
. (3.15)

This result is identical to the advancing counterpart (2.11), with only a change of sign in
the viscous term. Importantly, the only change with respect to the Newtonian case is a
modification of the microscopic angle from θe to the apparent microscopic angle defined
in (2.12). Following Eggers (2005), we find the equation for the critical speed

θ3
app,i = 9

ηUc

γ
ln

(
(ηUc/γ )

1/3�γ θe

181/3π[Ai(smax)]2λsθp

)
, (3.16)

where Ai(smax) = 0.53566 . . . is the global maximum of the Airy function. The Newtonian
result is recovered by replacing the left-hand side by θ3

e . Using the characteristic speed U∗

as a scale, the dimensionless critical velocity Ūc = Uc/U∗ is the solution of

Ūc =
1 − 3

4
N0Ū2

c

9 ln(c3Ū1/3
c )

, (3.17)

where c3 = 1/(181/3π[Ai(smax)]2)(�γ θ
2
e )/(λsθp) ≈ 0.423(�γ θ2

e )/(λsθp). Here again, we
recover the material parameter N0 that quantifies viscoelasticity, as discussed earlier.

Figure 4(b) shows excellent agreement between (3.17), shown as the dashed line, and
the numerical solution. Hence, the decrease of the entrainment velocity with increasing
viscoelasticity can be understood from the decrease of the apparent inner angle θapp,i. In
the limit of large N0, one finds Ū2

c � 4/(3N0), which in dimensional units reads

U2
c � 4γ θ2

e λs

3ψ
. (3.18)

Note the similarity with (3.12) for drop retraction. This result suggests the emergence of
a universal receding velocity for strong normal stress effect, independently of the outer
geometry.

4. Discussion

In this paper we have studied the effect of viscoelastic normal stresses on contact-line
motion. Using the lubrication equation for the second-order fluid, we have derived a
modified form of the classical Cox–Voinov theory: the macroscopic apparent contact
angle (θapp,o) is modified, due to a small-scale ‘apparent inner contact angle’ (θapp,i) that
is lowered due to viscoelasticity both for advancing and receding contact-line motion.
Figure 5(a) shows the force balance for a fluid volume in the inner region close to the
contact line, with the two dominant forces: the capillary force and normal stress. The
contribution of the normal stress on both lateral sides can be calculated by integrating
the stress across the film thickness, and scales as ∼ ψ(U/h)2h = ψU2/h. Hence, the left
side near the contact line is dominant as h → 0, and the global effect of normal stresses
is to pull towards the contact line, regardless of whether the contact line is advancing

985 A17-15

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

29
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.296


M. Kansal, V. Bertin, C. Datt, J. Eggers and J.H. Snoeijer

θe

θe

γ

γ

θe

U U

θapp,o

θapp,i

θapp,o

σxx

σxx ∼ ψ(U/h)2

Newtonian

Newtonian

Weakly viscoelasticViscoelastic

Strongly viscoelastic

(apparent complete wetting)

(b)

(a)

(c)

Figure 5. (a) Force balance on a control volume, highlighted by the blue area, in the inner region near the
contact line, where capillary force γ and the normal stress ψ(U/h)2 are balanced. Macroscopic apparent
contact angle vs speed for receding (b) and advancing (c) contact lines. In the advancing case, we need to
distinguish between weak and strong viscoelastic behaviour. The cross-over between these regimes is indicated
schematically by the black solid line, and occurs around Uψ defined in (1.2).

or receding. This explains why the normal stress facilitates advancing and inhibits receding
motions. The singularity of the viscoelastic force as h → 0 is regularised by the slip length
λs, such that the effective resulting viscoelastic force is ψU2/λs. This viscoelastic force
in the inner region bends the interface and lowers the microscopic angle from θe to θapp,i.
We have worked out quantitatively the effect on drop spreading, drop retraction and dip
coating, and found fundamental differences between advancing and receding contact lines.
To summarise the findings, we turn to the schematics for the macroscopic apparent angle
θapp,o vs speed provided in figure 5(b,c).

For receding contact lines, viscosity and normal stress provide forces that act in the
same direction, both opposing the contact-line motion. Both viscosity and normal stress
give rise to a ‘bending’ of the interface that tends to lower the macroscopic angle, as can be
seen in figure 5(b). As a result, the retraction velocity of a droplet and the critical velocity
for dip coating are lowered with respect to the Newtonian case. The relative importance of
viscous and viscoelastic bending is governed by the parameter N0 defined in (3.2). In the
case of strong viscoelasticity, the second-order fluid model predicts a universal receding
velocity (3.18), which is proportional to Uψ defined in (1.2), that gives both the critical
speed for dip coating and droplet retraction. This prediction is consistent with experiments
by Bartolo et al. (2007), who in fact already introduced Uψ to explain experimental
measurements of droplet retraction after impact. Specifically, they found the retraction
velocity to be proportional to 1/

√
ψ . However, they found that the microscopic length

appearing in Uψ was tens of microns, which is much larger than a nanoscopic slip length.
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Bartolo et al. (2007) remarked that the fitted lengths are comparable to the length of
the fully extended polymer chains. Such large values of cutoff length may be due a
shear-induced migration of the polymers which can lead to depletion layers (apparent
slip lengths) of micrometres (Müller-Mohnssen, Weiss & Tippe 1990; Ma & Graham
2005; Degré et al. 2006; Fang, Hsieh & Larson 2007; Shin et al. 2016). In general,
non-hydrodynamic interaction between polymers and the surface can also contribute to
large slip lengths (Mhetar & Archer 1998; Gupta & Vanapalli 2020). Regardless of the
molecular mechanisms at play, we expect that such effects do not alter the phenomenology
discussed here, including the interpretation in terms of an apparent inner angle θapp,i → 0
due to viscoelasticity. The presented theory provides a benchmark for the influence of
the normal stress on receding contact-line motion, but molecular mechanisms might be
required to provide an effective scale of regularisation.

For advancing contact lines, viscosity and normal stress provide forces that act in
opposite directions: the normal stress actually facilitates contact-line motion. We have
seen that we need to distinguish between weak and strong viscoelasticity. For weak
viscoelasticity, there is a non-monotonic dependency of the macroscopic angle on
contact-line velocity, as indicated by the orange dashed line in figure 5(c). The maximum
arises due to a competition between viscous bending (increasing the angle) and viscoelastic
bending (decreasing the angle). The cross-over to the strongly viscoelastic regime is given
by U ∼ Uψ (see (2.13)), which occurs when the normal stress effect is so strong that it
bends the interface to form a precursor film of typical size �VE. This strongly viscoelastic
regime is indicated by the dashed blue line, and can be interpreted as an ‘apparent
complete wetting’, since the contact-line motion becomes completely insensitive to θe.
The cross-over is schematically indicated by the black solid line. The exact details of
the cross-over from weak to strong viscoelasticity are not universal, but depend on the
material parameter N0 defined in (3.2). For example, the speed at which the maximum
appears in the weakly viscoelastic regime scales as Uψ/

√
N0; when N0 is sufficiently large

the maximum will thus emerge well before it is erased by the apparent complete wetting
regime.

The presented analysis provides concrete predictions for experiments on wetting of
viscoelastic liquids, rooted in a systematic long-wave expansion of the second-order
fluid. Our findings suggest the possibility of a non-monotonic dependence of the contact
angle with advancing velocity, which could potentially lead to instabilities. Such effects
remain to be explored experimentally, but also deserve some further theoretical analysis.
Namely, the calculations are based on the second-order fluid: while this lubrication model
is equivalent to that obtained with Oldroyd-B fluid when viscoelasticity is introduced
perturbatively (Ro & Homsy 1995; Datt et al. 2022), its quantitative validity at strong
viscoelasticity remains to be explored, more so when polymers in moving contact-line
problems have been observed to be strongly stretched (Smith & Bertola 2010; Shin et al.
2016). It would therefore be of interest to study contact-line motion for a variety of
constitutive models.
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