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0. Introduction. Mathematicians have studied the diophantine equation of the title
ever since the days of Fermat, Leibniz and Euler. In this paper, we review the history of
this problem, present several new classes of values of d for which the equation has only
trivial solutions, and find a nontrivial solution for d = 85 (a case Euler missed). With
these results, the question of whether

X
4 + dx2y2 + y4 = z2; (x,y) = l, x,y>0 (1)

has nontrivial solutions is now answered for all d, 0 < d < 100.

1. History. A solution {x, y, z} of (1) with x, y, z >0 is said to be trivial either if
xy =0, or if d = n2 — 2 and x = y = 1. In about 1637 (see Dickson's History [1, p. 615])
Fermat gave his celebrated proof-by-descent that, for d = 0, equation (1) has only trivial
solutions; his proof appeared, oddly enough, as a marginal note in his copy of Bachet's
1621 edition of Diophantus' Arithmetica. Leibniz proved in 1678 [1, p. 617] that u4 — v4 is
never a square (except for u = 0 or 1), from which it follows that (1) has only trivial
solutions if d = 6.

In a paper [2; 1, p. 635] published years after his death, Euler proved that, for d = 14,
(1) has only trivial solutions, and gave a number of methods for generating nontrivial
solutions of (1) for 47 different values of d between 2 and 100. His most elegant result was
that if

u2 - kv2 = 4,
then

x = v, y = 2r, and z = v2 ± 2ur2

is a solution to (1), for d = Xr2 ± u.
As an example, take A = 31; since 30402 - 31(546)2 = 4, we have u = 3040, V = 546,

r = 10 and d = 60. Thus, x = 546, v = 20 and z = 309884. If g = (x, y), then g2 divides z;
this yields the solution

2734 + 60 . 2732 . 102 + 104 = 774712,

with (x, y) = 1.
The next major results on the problem were due to H. C. Pocklington [3] who

proved a number of theorems, including the following:

THEOREM 1. Equation (1) has only trivial solutions if d satisfies any of the following
sets of conditions:

(a) d odd, d^l {mod 8) and d + 2 is a power of a prime;
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(b) d = 2N + 2, N = l (mod 8), N is divisible only by primes = 3 (mod 8) or only by
primes = 7 (mod 8), and N + 2 is a power of a prime;

(c) d = 8N + 2, N = 1 (mod 4), N is divisible only by primes = 3 (mod 4), and 2N + 1 is
a power of a prime.

More recently, Sinha [4] proved that (1) has only trivial solutions for d = 2(2P + 1),
where P = 1 or P is a Mersenne prime, and Zhang [5] proved that (1) has only trivial
solutions if d = 3 (mod 8), d — 2 is a prime, and d + 2 = pq, where p = 3 and q = l
(mod 8) are primes.

Collecting these results reveals the current status of the problem for 0 s d ^ 100.
(a) There are no nontrivial solutions of (1) for d = 0, 1, 3 - 7 , 9 - 1 1 , 14, 15, 18-22,

25, 28 - 30, 35, 45, 51, 59, 65, 69, 74, 75, 81 and 91. (Pocklington is responsible for all of
these except for 0 (Fermat), 1 (R. Adrain [1, p. 636]), 6 (Leibniz), 14 (Euler), 30 (Sinha)
and 75 (Zhang).)

(b) There are nontrivial solutions of (1) for d = 2, 8, 12, 13, 16, 17, 23, 24, 26, 27, 31,
33, 36, 39, 41, 42, 44, 48, 49, 52, 55-57, 60, 61, 63, 64, 66-68, 71, 73, 77-79, 83, 84, 86,
87, 89, 90, 92, 94-96, 99 and 100 (all due to Euler).

(c) The status of d = 32, 34, 37, 39, 40, 43, 46, 47, 50, 53, 54, 58, 62, 70, 72, 76, 80,
82, 85, 88, 93, 97 and 98 is unknown.

In this paper, we show that for all d listed in (c) above, (1) has only trivial solutions,
except for d = 85, which has a nontrivial solution. Some of the proofs are based on ideas
that are due to Pocklington [3]; we even found the nontrivial solution in the curious case
d = 85 by pursuing Pocklington's method to, and past, an apparent dead end. The other
proofs use results on concordant forms.

3. Applications of concordant forms. Two quadratic forms are called concordant if
they can be made squares for the same nonzero values of their variables, simultaneously,
and discordant otherwise. Thus, 32 + 42 = 52 and 32 + 7-42=ll2, so that r2 + s2 and
r2 + Is2 are concordant. We use this idea to obtain several new cases for which (1) has
only trivial solutions.

THEOREM 2. The equation x4 + dx2y2 + y4 = z2 has only trivial solutions for d = 34,
46, 50, 54, 58, 62, 70, 82 and 98.

Proof. Ifx4 + (4n + 2)x2y2 + y4 = z2, (2)
then

since

identically, it follows that r2 + s2 and r2 + (n + l)s2 are concordant forms. By a result of
Brooks and Watson [1, p. 475], r2 + s2 and r2 +As2 are concordant only for 41 values of
A between 1 and 100 and discordant for the other 59. Hence, (2) has no nontrivial
solutions if n + 1 is one of these 59 values, in particular for n + 1 = 9, 12, 13, 14, 15, 16,
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18, 21 and 25. The latter nine values of n + 1 yield the nine values of d = An + 2 in the
statement of the theorem, for which (2) has therefore only trivial solutions.

4. Pocklington's method. In [3], Pocklington used some elementary methods to
show that (1) has only trivial solutions in certain cases. He transformed (1) to one of the
equations

(x2±y2)2 + (d + 2)x2y2 = z2 (3)

which led to a consideration of certain simultaneous quadratic equations. He then showed
that, in certain cases, these quadratic equations have no solution, either by congruential
impossibilities or by descent. We use Pocklington's method to obtain the following
theorem:

THEOREM 3. The equation x4 + dx2y2 + y4 = z2 has no nontrivial solutions in each of
the following cases:

(A) d = Sk + 7 =p —2 = q+2,p and q primes {new case: 39).
(B) d = 2p +2 = 6q — 2, p = q = 5 (mod 8) primes (new case: 76).
(C) d = 16(3k + 2) = 6p + 2 = 2q-2, p = q + 4 = 5 (mod 8) primes (new cases:

32, 80).
(D) d = 2p + 2 = 6q - 2, p = 19 (mod 24) and q = l (mod 8) primes (new case: 40).
(E) d=pq + 2 = rs - 2 ; p=s=5, q = l, r = 3 (mod8) primes; and either (p/r) =

- 1 or (q/r) = 1, where (/) is the familiar Legendre symbol (new cases: 37, 93).
(F) d = 43, 47, 53, 72, 88, or 97.
The proof requires the following lemmas, whose proofs are in Pocklington's

paper [3].

LEMMA 1. Let x2 + Ny2 = z2, with (x, Ny) = 1 or (z, Ny) = 1. Then there exist integers
k, m, u and v such that (ku, mv) = 1 and such that:

(a) if Ny is odd, then km = N, 2x = ku2 — mv2, y = uv and 2z = ku2 + mv2;
(b) if Ny and y are even, then km = N, x = ku2 — mv2, y = 2uv, and z = ku2 + mv2.

LEMMA 2. If' xy = uv, then there exist a, /3, y, and d such that x = afi, y = yd, u — ay,
v = /3<5. Moreover, if (x, y) = (u, v) = 1, then a, fi, y, and 6 are pairwise relatively prime.

Proof of Theorem 3. We shall give the details of parts A and E and the special case
d = 47. The other cases are similar, and proofs are available on demand.

Proof of A. Let d = 1 (mod 8), d = p — 2 = q + 2, where p and q are primes. Then
we may write (1) as

(x2 + y2)2 + q(xyf = z2. (4)

Assume that (x, y) = l, x and y nonzero and x2 + y2 minimal. Note that if q divides
x2 + y2, it follows that q also divides z, so that q divides x or y. Either way, it follows that
(x, y, z) is greater than 1. Hence, (q, x2 + y2) = 1. There are two cases to consider:
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Case 1. If xy is odd, then by Lemma 1, there exist integers k, m, u and v with
(ku, mv) = 1 and

2(JC2 + y2) = ku2 — mv2, xy = uv and km = q. (5)

Now as (x, y) = (u, v) = 1, by Lemma 2, there exist a, /?, y and 6 relatively prime in
pairs, such that x = afi, y = yd, u = ay and v = fid. Substitution into (5) leads to the
equation

a\ky2 - 2/32) = <52(2y2 + m£2). (6)

Putg = (ky2 - 2/32, 2y2 + mf32); asgdivides2(&y2 - 2/S2) - /t(2y2 + m/?2) (=(m* + 4)(-/32))
and similarly g divides (mA; + 4)y2, it follows that g divides mk + 4 = q +4=p, since
(72. £2) = (y, 0) = 1. Hence, g = 1 or g =p.

Using (6) and the fact that (a-2, 62) = 1, we have that

with the same sign in both equations (in view of (6)). Now mk = q = d — 2 = 5 (mod 8)
andp = 1 (mod 8).

If m and k are positive, then m/32 + 2y2 = a2 = 1 (mod 8) which is impossible, unless
m = 1 and y is even. But then A:y2 — 2/32 is even, which is also impossible, since yd2 must
be odd (as (y, 6) = 1).

If m and & are negative, then the negative signs are chosen in (7), so that

2f}2 - fcy2 = gd2 = 1 (mod 8).

But then k negative implies that k = — 1 or k = — <?; as /J and y are odd, it follows that

2f}2-ky2 = 3or7 (mod 8),

a contradiction. Hence, xy cannot be odd.

Case 2. If xy is even, then, say, y is even; the lemmas guarantee integers k, m, u, v,
a, fi, y, 6 with

x2 + y2 = ku2 — mv2, xy = 2uv, km = q;

x = aryS, .y = 2yd, u = ay, v = fiy, a and /J odd;

a, P, y and 5 pairwise relatively prime, (u, v) = l;

hence,

or2(A:y2 - ft*) = 62(mp2 + 4y2). (8)

As before, if g = (ky2 — fi2, mfi2 + Ay2), then it follows that g divides mk + 4=p, so that
g = 1 or g = p. Hence

ky2-p2=±gd
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where both signs are the same as the sign of m. There are several subcases to consider.
(a) If m = 1 and k = q, then 1 + 4y2 = /32 + 4y2 = ga2 = 1 (mod 8), so that y is even.

Thus, 8 is odd and so

— I = qy2 — p2 = g82 = g (mod 4), a contradiction.

(b) If m = q and k = 1 then 5 + 4y2 = qfi2 + Ay2 = ga2 = g = l (mod 8), so y is odd;
thus, g82 = ky2 — fi2 = 0 (mod 8), so 8 is even. Eliminating /? leads to the equation
(mk + A)y2 — py2 = g(a2 + 482). There are two possibilities:

(i) If g = p then we have

y2=or2 + ^ 2 ,
2-62 82- ( 1 0 )

hence, there exist r and s with a = r2 + s2, 8 = rs and j8 = r2 — s2. Thus, from (10) we see
that

in which r2 + s2= a< afi =x <x2<x2 + y2 (as y>0), contrary to the minimality of
x2 + y2.

(ii) If g = 1, then (9) leads to

= a2,

where 8 is even. Hence, there exist s and i of opposite parity with

y = s2 + t2, 6 = 2st, P = s2-t2.

Thus, 2y = (s- i)2 + (s + if and (11) leads to

4y2 + q($2 = ({s - if + (s + tff + q((s - t)(s + t)f = a2,

in which (s — t)(s + t) is odd; but no such solution can exist, as we showed in Case 1.
Hence, m = q, k = 1 is impossible.

(c) and (d). The proof if m = — 1 and k = —q is similar to the one for m = q and
k = l; the proof if m = — q and k = — 1 is similar to the one for m = 1 and k = q; we omit
the tedious details.

Thus (x2 + y2)2 + q(xyf = z2 is impossible in nonzero integers x and y, if q and p are
primes such that p — 4 = q = 5 (mod 8). This proves part A of Theorem 3.

Proof of E. Suppose that x4 + dx2y2 + y4 = z2 with (x, y, z) = 1, x2 + y2 minimal and
d=pq + 2 = rs -2, where p=s = 5, q=l, r = 3 (mod8) are primes such that either
(p/r) = —1 or (q/r) = 1. Then d = 5 (mod 8) implies that x and y have opposite parity;
assume y is even. As in the proof of Part A, applying the lemmas leads to the equations

K '
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where km = pq = rs — 4, g is a divisor of rs, x = oc$, y = 2y<5, a and /? are odd, and a, /3,
y, and 6 are relatively prime in pairs. Moreover, the signs chosen in (12) are the same as
the sign of m. There are eight possibilities for A: and m; we now give the details for k and
m positive, the negative cases being analogous.

(a) k = pq, m = 1. Then 4y2 + /?2 = ga2, so that g is a sum of two relatively prime
squares; hence, g = 1 or g = s. But then, eliminating j8 leads to the equation rsy2 =
gla2 + d2), so that either r or rs is a sum of two relatively prime squares, which is
impossible.

(b) k=p, m = q. Then we have

pyi-f = gd2. (13)

Hence, -fi2 = g62 (mod/;), so that (g/p) = (-l/p) = 1 (as/? = 5 (mod8)). Also,

4y2 + ^ 2 = gar2, (14)

so that 7 = q = qP2 = ga2 = g (mod 4); thus, g = 3 (mod 4). This means that g = r or
g = re, so that (13) becomes

py2^p2 (mod r);

hence, (p/r) = 1. Finally, (14) becomes

hence, (<?/r) = (—1/r) = —1. But we assumed that either (p/r) = - 1 or (q/r) = 1, so that
this case is impossible.

(c) k = q, m = p. Then we have
2 / * 2 52

If y is even, then 6 is odd, so that —l = —l32 = g=ga2=pP2=p = l (mod4), which is
impossible. Hence, y is odd; but this implies that gd2 = 7y2 — /J2 = 6 (mod 8), which is
impossible, since g is odd and d2 = 0 or 1 (mod 4).

(d) k = 1, m =pq. Then we have

so that g =pqP2 = 3 (mod 4), and so g = r or g = rs. From (16) we have that 4y2 = ga2

(modpq), so that (g/p) = (g/q) = 1. Now by assumption, either (p/r) = — 1 or (q/r) = 1;
in either case, if g = r, then either (g/p) = -l or (g/q) = -l, a contradiction. Hence,
g = rs. Eliminating /3 and y in turn from (16) leads to the equations

y2=a2+pq82,

a
2 = p2 + 482.

Hence there exist m and n such that a = m2 + n2, 8 = mn and /3 = m2 — rc2, which implies
that

(m2 + n2)2 + pq(mn)2 = y2.
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Thus, we have a solution to (1) with d =pq + 2; however,

m2 + n2 = a < aB = x < x2 < x2 + y2,

contrary to the minimality of *2 + _y2. Hence, case (d) is impossible, and this completes
the proof of Part E.

5. The case d = 47. The case d = 47 is different enough to warrant separate
treatment.

Let x4 + 47x2y2 + y4 = z2 with (x, y, z) = 1. Then we may write

assume that xy is positive, minimal and x =£_y.
First, suppose that (x2 — y2,1) = 1. There are two cases to consider.

Case 1. xy is odd. By Lemma 1, there exist u and v such that 2(*2 — y2) = ku2 — mv2

and xy = uv, where km = 49 and (ku, mv) = 1. As before, there exist a, 6, y, 8, odd and
pairwise relatively prime, such that x = a6, y = y8, u = ay, v = 68, and so

a\262 - ky2) = <52(2y2 - mB2).

As in previous cases, this leads to the equations

2y2 - mB2 = ±ga2

2B2-ky2=±g82 ( 1 8 )

where g = (2B2 — ky2, 2y2 — mB2). A judicious choice of linear combinations shows that g
is a divisor of mk - 4 = 45.

(a) If m = 1 and k = 49, then eliminating 6 in (18) reveals that

-45y 2 =±g(6 2 + 2ar2);

hence the - sign is used. Thus B2 - 2y2 = ga2, so that g = 7 (mod 8), i.e. g = 15. This
implies that B2 = 2y2 (mod 3), which is impossible, since (B, y) = 1.

(b) If m = -1 and k = -49, the + sign must be used, so that 2y2 + 62 = ga2. Hence,
g = 3 (mod 8), so g = 3. But then eliminating B yields 15y2 = 82 — 4a2, which is impossible
(mod 4) with y and 8 odd.

If m = 49 and k = \, we find that the story in case (a) repeats itself; similarly, if
m = —49 and k = —l, the story in case (b) repeats itself. Finally, m=k = ±l is
impossible, as (x2 — y2, 7) = 1.

We conclude that if (x2 - y2,1) = 1, then xy is even.

Case 2. xy is even. Without loss of generality, let y be even. As before, this leads to
the existence of k, m, u, v, a, 8, y and 8 such that

x2 - y2 = ku2 - mv2, xy = 2uv, km = 49, (ku, mv)=l;
x = aB, y = 2y<5, u = ay, v = 68; a and 8 odd

a, 6, y, 8 pairwise relatively prime.
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This eventually results in the equations

4y2-mfi2=±ga2, K '

where g is a divisor of 45. Again there are four cases {m — k = ±l is impossible, as
(x2-y2,7) = l).

(a) m = —49, k = — 1. Then the + sign is used, and so

y2 + P2 = gd2, and Ay2 + 49/?2 = go2.

If y is odd, then gd2 = 2 (mod 4), which is impossible, so y is even; hence, g = 1 (mod 8).
Also, g is a sum of two relatively prime squares, so g = 1. Thus,

y
2 + p2=d2

) and 4y2 + 49/32 = a2.

Hence, there exist s and t of opposite parity such that f5 = s2 — t2 and y = 2s£. If we set
q=s — t and r = s + t, it follows that P = qr, y = (r2 — q2)/2, where q and r are both odd.
Thus,

4y2 + 49/S2 = (r2 - q2)2 + 49(rqf = a2,

and rq = p* < afi=x<xy (as y is even and xy is positive). This contradicts the minimality
of xy in the solution of (17).

(b) m = — 1, A: = —49 is similar to case (a).
(c) m = 49, jfc = 1. Eliminating p* in (19) reveals that the — sign is used, and we see

that
Y2-P2 = gd2,

49fi2 - 4y2 = ga2.

If y is even, this leads to contradictions modulo 4, so that y is odd; as g is a factor of 45, it
follows that 6 is even. Hence,

g=gor2 = 4 9 - 4 = 5 (mod8).

Thus, g = 5 or g = 45. If g = 5, eliminating y implies that 9/32 = a2 + 4d2, which is
impossible modulo 3, since (a, d) = 1; hence, g — 45. This yields the equations

P2 = a2 + 4d2,

Y2 = P2 + 45<52.

Hence there exist r and s of opposite parity such that ft = r2 + s2, d = rs and a = r2 - s2. If
we eliminate p*, we discover that

y
2=a2 + 49S2 = (r2 - s2)2 + 49(rs)2,

where rs = 6 < 2yd = v ^xy , contradicting the minimality of xy in (17).
(d) m = \, k = 49 is similar to case (c).
Hence, if (x2 - y2)2 + 49(xy)2 = z2, then (x2 - y2, 7) = 7. Writing z = Iw, we see that

H>2. (20)
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As before, we assume xy minimal and positive. There are two possibilities, considering
the parity of xy.

Case 3. If xy is even with, say, y even, then x—y and x +y are both odd, so that
(x, y) = 1 implies (x — y, x + y) = 1. Thus, one of x — y and x + y is divisible by 7, but not
both. Hence, there exist u and v, both odd, such that x+y=7u and x — y = v, with
(7M, v) = 1 (the case x— y = 7u, x+y = v is almost identical). Thus, x2 — y2 = 7uv,
4xy = 49M2 - v2 and

w2 = (uv)2 + ((49M2 - v2)/4)2, (21)

where xy = (49M2 — v2)/4 is even. Moreover, (w, uv, xy) = 1, so there exist r and 5 of
opposite parity such that

(49u2-v2)/4 = 2rs=xy,

Uv = r2-s2 = (x2-y2)/7. ( 2 2 )

Hence, there exist a, /?, 7 and <5, relatively primary in pairs, such that x = afi, y = 2yd,
r = ay, s = fid, and a and (S are odd. If we substitute these expressions into (22), we find
that l(a2y2 - j8262) = a2fl2 - 4y282, which implies that

As before, this leads to the equations

with g a divisor of 45. If 6 is even, the above equations are impossible mod 4, so 8 is odd.
Thus, g = g/32 = 7a2 + 482 = 3 (mod 8). Hence, g = 3; but then the second equation
becomes a2 = 3y2 (mod 7), which is impossible, as (or, y) = 1 and (3/7) = — 1. Hence, xy is
not even.

Case 4. If xy is odd, then (x, y) = 1 implies that x + y and x—y are even, exactly one
of them is divisible by 4, and exactly one of them is divisible by 7. Thus there are two
possibilities:

(a) x + y = 14M, X — y = 4v with (7M, 2V) = 1;
(b) x + y = 28M, x - y = 2v with (14M, U) = 1.

As the resolution of these two cases is similar, we shall only present the details of (a).
If x + y = 14M and x-y = 4v with (7M, 2V) = 1, then x = 7M + 2v, y = 7M - 2 v ,

xy = 49M2 — 4v2, x2 — y2 = 56MU; hence

w2 = ((x2 - y2)/7)2 + (xy)2 = (8MU)2 + (49M2 - 4v2)2.

Now ((x2 — y2)/7, xy) = 1, so it follows that (8uv, 49M2 - 4u2) = 1, and so there exist r and
5 of opposite parity with (r, s) = 1 such that

49M2 - 4v2 = r2 - s2, 8uv=2rs, and w = r2 + s2. (23)

Looking modulo 4 reveals that s is even, so that there exist a, fi, y and 6, relatively prime
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in pairs with a and P odd, such that

r = aP, s = 4yd, u = ay, v = pd.

Working as before, we substitute into (23) and obtain the equation

(49or2 + 16<52)y2 = {a2 + 482)p2

which leads to the equations
49ar2+16<52 = g/32

(24)

where g is a factor of 45.
Clearly, g must be a sum of two relatively prime squares, and g = 1 (mod 8) because

a and /? are odd; hence, g = 1 and we have that

49a2 + 1662 = ft2, and a2 + 4d2 = y2.

Hence there exist m and n of opposite parity such that (m, n) = 1 and

a = m2 — n2, 6 = mn and y = m2 + n2.
This yields

49(m2 - n2)2 + I6(mn)2 = fi2. (25)

As m and n are of opposite parity, we may write m — n = a and m + n — b, where a and b
are odd. Hence, m2 — n2 = ab and mn = (a2 — b2)/4, and so (25) becomes

(a2 - b2)2 + 49(abf = p2, (26)

with a and b odd. It cannot be the case that (a2 - b2,l) = \, by Case 1, so
(a2 — b2, 7) = 7, and ab is odd, which is the current case. However,

ab = m2 — n2 = a < aP = x < .ry;

if xy = afe, then /? = 1 and the only solution of (26) is ab = xy = 0, a2 — fo2 = 1 or — 1.
Otherwise, ab <xy, which contradicts the minimality of xy.

Hence, x4 + 41x2y2 + y4 = z2 has no nontrivial solutions.

6. The curious case d = 85. The discovery of a nontrivial solution to (1) for d = 85
is a novelty—a case that Euler missed. We found the solution in a very natural way,
simply by using Pocklington's method for d = 85. One of the subcases did not provide any
contradictions, so we undertook a brief search; here is what happened.

If x* + 85x2y2 + y4 = z2, then we wrote

(*2 + y2)2 + 83(*>02 = z2
; (27)

using Pocklington's techniques led to the equations

x = aP, y= 2yd, z = ka2y2 + mp2y2, ky2 - p2 = ±gd2, 4y2 + mp2 = ±ga2,

km = 83, a, P, y, S relatively prime in pairs; ga, p odd; and g = 1, 3, 29 or 87.

Three subcases (k = 1, —1 and 83) led to contradictions; the fourth subcase did not.
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If k = — 83 and m = — 1, the possibility that y could be odd implied that g = 29;
eliminating or and y, respectively, led to the equations

p2 + 3d2 = y2,
(28)

29)32 + Ad2 = a2.

A brief calculator search revealed the nontrivial solutions

a = 99, 0 = 13, y = 62, 6 = 35

to (28). This yields the solution

x = ap = 99 . 13 = 1287

y = 2y6 = 2 . 62 . 35 = 4340

z = (ay)2 + 83(/?<5)2 = (99 . 62)2 + 83(13 . 35)2 = 54858119

to (27); indeed,
12874 + 85 . 1287243402 + 43404 = 3009413220218161 = 548581192.

7. Conclusion. There is not enough evidence to make the conjecture that for all d,
Pocklington's method will always yield either (a) a proof that (1) has no nontrivial
solutions, or (b) a nontrivial solution to (1). It is tempting to do so, however.
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