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Abstract

Polynomial identities satisfied by the generators of the Lie groups O(ri) and
{/(«) are rederived. Using these identities the reduced matrix elements of the
Lie groups U(n) and O(n) are evaluated as rational functions of the IR
labels occurring in the canonical chains

U{ri) => U(n -1) ... => £/(l) and 0{n) = O(n - 1 ) ... => 0(2).

This method does not require an explicit realization of the Lie algebras and
their representations using bosons. Finally, trace formulae encountered
previously by several authors for finite dimensional irreducible represen-
tations are shown to hold on arbitrary representations admitting an
infinitesimal character.

1. Introduction

The infinitesimal generators of semi-simple Lie groups are known [5, 6, 11, 13] to
satisfy various polynomial identities in some specific irreducible representations.
Identities of this form date back to the work of Lehrer-Ilamed [11] who showed
that n2 elements chosen from the enveloping algebra of any Lie algebra must
satisfy n2 identities which, in some cases, could be written in the form of a single
polynomial identity of degree n for an n x n matrix. Since the work of Ilamed such
polynomial identities have been encountered by several authors [5, 6, 13] for the
Lie groups GL(ri) and its subgroups Sp(n) and O(n).

The subject of the characteristic identities is closely related to the problem of
obtaining a full set of invariants for a semi-simple Lie algebra. The full power of
the characteristic identities was first recognized by Bracken and Green [5-7] who
presented a systematic way of obtaining a full set of invariants for the Lie algebras
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402 M. D. Gould [2]

of the general linear group and the orthogonal and symplectic subgroups. It was
further shown how the eigenvalues of these invariants, on a given irreducible
representation, may be expressed as a rational function of the IR labels. This
work has since been generalized to arbitrary semi-simple Lie algebras [2, 4, 9, 17].

The methods of the characteristic identity have also been applied [8], in con-
junction with the boson calculus, to the state labelling problems O(n)<= U(n) and
U(m)<= Sp(2m).

In this paper we consider the characteristic identities satisfied by the generators
of O(n) and U(n) and how they may be used to give some useful information
concerning the subgroup embeddings O(n)<= O(n +1) and £/(«)<= U(n+1).

We begin in Section 2 by assembling the generators of the Lie group GL{n) into
a matrix a and then derive its characteristic identity. In Section 3 we show how we
may obtain the eigenvalues, on an arbitrary maximal weight state, of the diagonal
entries of any polynomial in the GL(n) matrix a. We use these results to give an
independent verification of Green's trace formula for arbitrary weights.

In Section 4 we look at the subgroup embedding GL(n)<= GL(n+ 1). In particular
we consider certain GL{n) vector and contragredient vector operators which may
be constructed within the enveloping algebra of GL(n+1). By contracting between
the indices of a vector operator and a contragredient vector operator we obtain
an interesting set of invariants. Invariants of this kind have already been applied
to the state labelling problems [8] and in this section we obtain an explicit expression
for these invariants in terms of the IR labels of GL(n) and GL(n + l). It is also
noted that the n x n matrix of GL(n) is embedded, in a natural canonical way, in
the (n + l )x(«+l) matrix of GL(n + l). The («+l,n + l) components of poly-
nomials in the GL(n+l) matrix are always GL(ri) invariants. We also show how
these invariants may be expressed as a rational function of the IR labels of GL(n)
and those of GL(n + l).

In Section 5 we apply some of our previous results to the evaluation of the
reduced matrix elements of the generators of the unitary groups.

Finally, in Sections (6-8), we consider the extension of our previous results to
the orthogonal subgroup of GL(n). Unfortunately the orthogonal group requires
an independent treatment due to the fact that the O(ri) generators with the metric
gy = Sy are not in Cartan form. Hence an appropriate change of basis trans-
formation has to be applied in order to proceed in analogy with U(n).

2. The GL(n) characteristic identity

Throughout this paper F denotes a field of characteristic zero (which we usually
take to be the real or complex field) and gl(n, F) denotes the Lie algebra with basis

{djlij = !,...,«}
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[3] Unitary and orthogonal groups 403

and Lie products
[4^] = 8*a<-8?4 (1)

The gl(n,F) invariants ar, defined by (repeated affixes i,j,k,..., are understood to
be summed over from 1 to n) ax = a\, a2 = a^a{, a3 = a*0^0$ etc., form a full
set of invariants for the Lie algebra. The centre of the enveloping algebra is there-
fore

F[a1,(r2,...,an\

where F[xvx2, ...,xn] denotes the polynomial algebra in indeterminates xv ...,xn

over the underlying field F.
We choose as a Cartan subalgebra (C.S.A.) of gl(n, F) the vector space spanned

by the diagonal generators a},i—l,...,n.
If V is a finite dimensional irreducible representation ofgl(n,F) it is well known,

from the second theorem of Cartan, that there exists a unique weight vector v0

(up to scalar multiples) whose weight is greatest under the natural lexicographical
ordering induced on n-tuples. Such a vector v0 is defined by the conditions

a<»o = Vo» (2)

ajj;o = O for j>i.

We call v0 a maximal weight vector of gl(n,F) and we call its weight (\v..., An)
the highest weight of V (also referred to as the IR label of the representation).

The generators of GL{n) may be assembled into a matrix a whose (i,j) entry is
the generator a\,

a\ a\

. a? a\
a =

We define powers of the matrix a recursively by the formula

(am)) = ajUa7"-1)? = (a"1-1)^?-

In this way we may define polynomials in the matrix a. It can be shown by induction
that if p(x) is a polynomial over the field Fthat we obtain the commutation relations

Kpiaf) = h*p(a)t - h\p{a)*. (3)

Green [5] discovered that, on an irreducible representation of gl(n,F) with
highest weight X, the matrix a satisfies the polynomial identity

n ( a _A r - w + r) = 0. (4)
r- l
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In an effort to keep this paper as self-contained as possible we shall now present
a simple proof of the identity (4).

Suppose V is a finite dimensional irreducible representation of gl(n, F) with
highest weight X and highest weight vector v0. It is convenient to introduce a set
of polynomials

n
/>»•(*) = H ( x - \ k - n + k ) , r = l , . . . , « .

fc=

By a simple recursion argument, using the commutation relations (3), we may
verify the following result.

PROPOSITION 1. Suppose h(x) is a polynomial over the field F. Then
(i) h{a))vQ = 0 for i<j.

(ii) h(a)i
iv0 = aiv0, <xfeF.

(iii) If pr(x) divides h(x) then h(a))v0 = 0 for i,j>r.
As a result of part (iii) of this proposition we have p^d)) v0 = 0 for i,j = 1,...,«

and the identity (4) holds on the highest weight vector v0. From this it is an easy
matter to prove that the identity is satisfied on all of V. To this end let us denote
by Annp^x) the set

{ve Fsuch thutp^v = 0; i,j = 1, ...,n}.

Clearly Ann/^x) is a sub-representation of V. Thus, by irreducibility, Armp^x)
is either zero or all of V. Since ^eAnn/j^x), Ann/^Oc) must be all of Fand the
identity (4) is proved.

We note here that the proof just presented holds for arbitrary standard cyclic
representations (that is representations generated by a maximal weight vector)
and in particular infinite dimensional irreducible representations possessing a
maximal weight vector.

Following Green [5] we may define an adjoint a of the matrix a by setting

We then define powers of the matrix a by the formula

In this case we consider a set of polynomials

r

Qr\x) = l l (x +Ar—r+1), r= l , . . . , n ,

and we may verify the following result.
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PROPOSITION 2. Let v0 be a maximal weight vector of gl(n, F) with weight X and
suppose p(x) is a polynomial over F. Then

(ii) p(dyiVo = ^vo,^eF.
(iii) If qr(x) divides p(x) then p{a)\ vQ = 0 for /, j
From this result we may prove that the identity

n

r- l

is satisfied on an irreducible representation with highest weight X = (Ax,..., An).
We call equation (5) the gl(n, F) adjoint identity.

It is important to note that identities of the types (4) and (5) are not restricted
to representations generated by a maximal weight vector. Recent work by O'Brien,
Carey and Cant [16] shows that the matrix a satisfies a polynomial identity
p(a) = 0 where p(x) is a monic polynomial of degree n whose coefficients lie in the
centre of the enveloping algebra. From this work we see that identities of the types
(4) and (5) hold on any representation of gl(n, F) which admits an infinitesimal
character x (that is any representation on which the fundamental invariants ar

take constant values x(ffr)eF)- F r o m a well-known theorem of Harish Chandra
[10] we know that any character x is equal to the character x\ of an irreducible
representation V(X) of gl{n, F) with highest weight A. On any such representation
the identities (4) and (5) hold.

Throughout the remainder of this paper we shall write the characteristic identity
in the form

n («-«,)-o,

where the operators ô  are invariants or the Lie algebra whose eigenvalues on a
representation admitting an infinitesimal character x\ are given by

0̂ = \.+n-r.

The operators a, lie in an algebraic extension of the enveloping algebra of gl(n, F)
and are related to the fundamental invariants ar by equations of the form

r- l r-l

(See Green [7] for a more general expression.)
From now on we refer to the operators a, as the characteristic roots of gl(n,F).
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From the characteristic identities satisfied by the matrices a and a we may
construct a set of projection operators

/r= t I I - — f , (7)
k=l,k-&- \ °T~afc/

which satisfy
» . . . »

and the orthogonality conditions

frfk ~ Kkfk> frfk = Kkfk-

More generally, it p(x) is any polynomial over F, we may write (see Green [7])

(9)

r=l

By means of this formula rather general functions of the matrix a may be
defined. In particular we may define an inverse of the matrix p(a) by setting

5 / r (10)
r=X

From the characteristic identity it is easily checked that the matrix p~\a) satisfies
the usual properties of an inverse matrix,

3. Casimir invariants

From the commutation relations (3) we see that traces of arbitrary polynomials
in the matrix a, in particular the

are invariants of the Lie algebra.
It is our aim in this section to evaluate the eigenvalues of such invariants when

acting on representations admitting a character \\-
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From equations (9) we may write

n

s
fc-1

trp(d) =
k-l

It therefore suffices to evaluate the eigenvalues of the invariants tr/fe and tr/fc.
Recently Green [7] (see also Edwards [2]) has obtained a formula relating the

eigenvalues of these invariants, when acting on a finite dimensional irreducible
representation, to the components of the highest weight. However, the method
employed by Green relies heavily on the finite dimensionality and irreducibility
of the representations concerned. We present here a more general approach which
shows that Green's trace formula extends to arbitrary representations admitting
an infinitesimal character.

We shall in fact prove more than what is needed here. From Propositions 1
and 2, part (ii) we see that if p(x) is a polynomial then the operators p{a)\ and
p(a)\ take constant values on a maximal weight vector. We shall determine the
eigenvalues of these operators when acting on arbitrary maximal weight states of
gl(n, F). In view of equation (9) this may be done if we can evaluate the eigen-
values of the (fk)

r
r and (fk)

r
r when acting on a maximal weight vector.

Throughout the remainder of this section we let v0 denote a maximal weight
vector of arbitrary weight /A = (jx^ ...,/*„)•

We begin by introducing a set of operators

n

(ID
n

= n ia -«()&•

From definition it is clear that pid(k) - Pi(k) ifj<i.
Now let pij(k) and Pi(k) denote the eigenvalues of the operators Pi/k) and

Pi(k) respectively when acting on the maximal weight vector v0. Then using
Proposition 1, part (i) together with the commutation relations (3), it is easily
verified that the p^k) satisfy the difference equation

where the roots a, take constant values fir+n-r. Similarly when i<j-\ the
satisfy the difference equation

(<xk - a j pi+1J(k) -
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and when i=j—\ we obtain

From Proposition 1, part (iii) it is clear that pt(k) = 0 for k^i. Similarly when
i^j we have pij(k) = 0 for k>j. This set of conditions together with the extra
boundary condition

n - l

enables us to solve these difference equations uniquely.
In particular the pUr(k) are easily computed for k^r and we obtain the formula

) I K t ) (12)
l<k I>fc

Now from definition the eigenvalues of the operators (X)* are related to the
Pij.(k) by the formula

Substituting formula (12) into this expression yields the formula

Of course, when lor, we have, from Proposition 1,

By a similar procedure we may also verify the result

(14)

10, k<r.

By summing equations (13) and (14) over k we obtain the result

0Lk~0il

which is the required generalization of Green's formula to arbitrary weights p.
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[9] Unitary and orthogonal groups 409

4. Spectral resolution

In this section we apply the characteristic identities of the Lie groups GlXn)
and GL{n +1) to give some useful information concerning the subgroup embedding
GL(n)<^GL(n + l). We first require some preliminary remarks concerning vector
operators.

We define a gl(n, F) vector operator as a collection of n operators i/ff which
satisfy the conditions

(15)

We denote such a vector operator by tfi and we refer to the operators iff* as the
components of ifi.

Similarly, we define a gl(n, F) contragredient vector operator (f> as an operator
with n components <f>t which satisfy

It is known [5] that a vector operator ip may be resolved into a sum of vector
operators <p[r],

r - 1

where each i/j[r] is a vector operator which increases the eigenvalue of the label
A, by one unit leaving the other Xk unchanged, that is,

Hence, in terms of our roots a.k, we have

Similarly a contragredient vector operator <f> may be resolved into a sum of
operators <j>[r] which decrease the \ by one unit;

Since each component t/j[r] (respectively <£[/•]) is a vector (respectively contra-
gredient vector) operator it is clear that any linear combination of such operators
is also a vector (respectively contragredient vector) operator.

Following Green [5, 7] the ^[r] and (j>[r] may be constructed by application of
the projection operators .£ and^.,
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From the characteristic identities it then follows that, if p(x) is any polynomial,
then

P(a)<pir]=p(ccr)if)[r].

In particular we have

(20)

Finally, we note that this orthogonality relation implies that the vector operators
<J/[r] form a linearly independent set. For suppose

n

s
r=l

= 0,

where the yr are invariant multiples of the identity matrix a0. Then applying the
projection fk to the left of this equation gives

ykm=o,
which in turn implies each yk is zero.

We now consider gl(n+ \,F) and its associated characteristic identity.
We denote the gl(n + l,F) matrix by b, that is

b =

an+l an+\

We note that the first n rows and columns of the matrix b give us the matrix a
considered earlier. The first n entries of the last column constitute a gl{n, F) vector
operator while the first n entries of the last row constitute a contragredient vector
operator. The remaining entry a%+\ is a gl(n, F) invariant.

Using the commutation relations (3) for gl(n + l,F) we may verify that if p(x)
is any polynomial over the underlying field F then the first n entries of the last
column of the matrix p(b) (the p(b)n+1) constitute a gl(n, F) vector operator while
the p(b)?+1 constitute a contragredient vector operator. The (« + l,« + l) entry
P(b)%Xi ' s always a gl(n, F) invariant and it is one of our aims in this section to
determine these invariants as rational functions of the roots appearing in the
gl(n, F) and gl(n + \,F) identities.

We write the gl(n +1, F) characteristic identity in the form

r=l
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[11] Unitary and orthogonal groups 411

where the operators Br are invariants of the Lie algebra which take constant values
^ - j - n + l - r when acting on an irreducible representation with highest weight
(Aj, A2, ...,An+1). They are related to the fundamental invariants ak = tr(bk) by
equations analogous to the equations (6) for gl(n,F). Since the gl(n + \,F) roots
Br are gl(n + l,F) invariants they are also invariants of gl{n,F) and we must have
[Br, ak] = 0. Although the gl(n, F) roots a, are gl(n, F) invariants they are not
invariants of gl(n +1, F). However, in our previous notation, the a^+1 and the
a£+1 may be resolved into shift vectors

r=l r-1

From equations (17) and (18) we readily obtain

K><+i] = # f while [«r,a?+1] = -<t>[r]i.

Finally, we have

As for gl(n,F) we may construct the gl{n + \,F) projection operators

gfc= 11 1-5 5— >
J=l,Mfc\ Pl~Pk I

which satisfy the orthogonality conditions

Furthermore, if p{x) is any polynomial over the underlying field, we may write

n+l

Pib)= Zptfjgt,
(21)

n+l

P(B)= 8

From the g/(n + 1,F) identity we have

Taking the (/,«+1) entry of this matrix equation we have

n+l

Xat(gkyn+1 = Bk(gk)'n+1.

Rearranging this expression, we obtain
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Similarly, we may write

fo)n+M+1 = (gJfHPk-ayt, i = 1,...,».

For simplicity we shall denote the gl(n,F) invariant (gk)H\ by ek.
(21) we have

71+1

n/'^^wj'i ^ x1 n( R \ s

[12]

(23)

From equation

(24)

So in order to evaluate the invariants p(b)lX\ as a rational function of the fift and
a, it suffices to evaluate the ek.

From equation (10) we may invert (22) and (23) by writing

n

r=l

n
(Sk)f = Seft(j3fc —Or—l)~1^['']i,

r=l

where we have used

(j3ft—c^)"1 ^r[r] = i(i[r] (j3fc — c^ —1)-1

and

However, from equation (21), we have

n+1
gigdUi = Sn+i = 0 for i = 1,...,«.

Hence summing equation (25) over k from 1 to n +1 we obtain

n /n+1 \

From the independence of the t/i[r] this immediately implies that

n+1

k=l k k '

This set of equations together with the condition

n+1 /n+1 \

Ai=l \fc=l n I

uniquely determines the ek. These equations are readily solved
methods for example) and yield the solution

n+1 n
Bjc = \\ (pk — Pp) 11 (pk — Otj — 1).

(25)

(26)

(27)

(using matrix

(28)
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[13] Unitary and orthogonal groups 413

Substituting this expression into equation (24) allows us to evaluate invariants of
the form p(b)%\\ for any polynomial p(x).

The remainder of this section is devoted to the evaluation of the invariants
<f>[r]tifi[r'P and <p[rf <f>V\- We begin by inverting equation (25) to get 0[r]{ in the
form p(J>)i

n+1 for a suitably defined polynomial p(x). We may then evaluate our
invariants by a simple application of the gl(n+l,F) characteristic identity.

Let us first consider the solutions ylk to the equations

n+l

and

: 0. (29)

Then, for each r=\,...,n, we have (n + l) equations in (« + l) unknowns
yrk (k = 1,...,«+1). Again these equations may be solved and yield the solution

where

ft-« r - i ) ft K-a,)"1. (30)

Now from equation (25) we may write

n+l n n+l
S(gfc)*n+1y,*-20[/lc2yrt«*O8*-^-l)-1.
k-l 1-1 k-1

Rearranging this expression using equation (29) we readily obtain

k-l

The invariants yT appearing in this equation have an interesting interpretation.
From the orthogonality of the projections fr and equation (19) we have

Hence, multiplying equation (31) by af+1 and summing over / from 1 to n we obtain

4>[r\m = Yn (32)

where we have used the result

n+l n+l
2 a?+1fe)n+i(j8fc-<*r-1)"1 = 2 ek = 1,

k-l k-l

which is verifiable with the help of the gl(n + \,F) characteristic identity and
equation (29).
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In a similar way, by considering the operators (gft)^+1 and (fj?4

also verify that
n

where
n+l n

We may then invert (33) by writing

71+1

Using this result and the orthogonality of the projections fr we may
that

where
n-i-T n

Finally, we consider the operators <ji[r] y~l<f>[r]. From equation (31),

n+l

Summing this equation over r using equation (26) we may write

n 71 +i

r—1 ft—1

However, from the work of Green [7] (see the Appendix) we have

n+l

fc-i

From this result and the orthogonality relation (20) we obtain

Similarly we show that

Hence if p(x) is a polynomial over the field F we may write

n

r - l

n

r-l r

[14]

•\ we may

(33)

then verify

(34)

(35)

we have

(36)

(37)
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[15] Unitary and orthogonal groups 415

Such resolutions are useful and may be regarded as a generalization of the
spectral resolution of a non-degenerate numerical matrix. Of particular interest
are the invariants yr and yr because they are closely related to the reduced matrix
elements of the generators ajj+1 and a£+1.

5. Reduced matrix elements of U(n)

The generators a\ of the Lie group U(n) satisfy the commutation relations

and moreover satisfy the Hermiticity property

(<#* = a\. (38)

All of our previous results obtained for GL(n) go through unchanged to U(n) [7].
From equation (38) we see that the £/(«) invariants o> are Hermitian operators

so we deduce that the U(n) roots a, may likewise be regarded as Hermitian.
By a simple induction argument we may readily verify that if p(x) is any poly-

nomial over the underlying field F then

Suppose now we look at the subgroup embedding U(n)<= U(n + l). Following
our previous notation let tplrf and <f>[r]i be the operators defined by

We then have

tf[r] = <f>[r].

So from now on we write ^[r] in place of <f>[r].
We now note that the generators a] where i and ; are restricted to values l,...,m

(for some positive integer m less than n) form the generators of the unitary sub-
group U(m) of C/(n). We see therefore that U(n) admits the canonical chain
[1,15] of subgroups

U(n)=> U(n-1)= ... = U(2)^ C/(l). (39)

The irreducible representations of the groups U(m), Km^n, may be charac-
terized by partitions (Alm, A^. . . , A™™) where the Afm are integers satisfying

Alm ̂  \ m ^ . . . ^ Amm ̂  0.
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The partitions of two groups U{m + \) and U(rn) in the chain (39) are related by
the inequalities

Km+l> Km> ^ 2 m + l > \ m ^ - ^ Knm^ \nn+lm+l-

The set of partitions for the canonical chain (39) is most conveniently arranged
into a Gelfand pattern [3] (see also Loebl [12]).

It is our aim in this section to obtain the reduced matrix elements of the U(n)
generators.

Maintaining the canonical subgroup decomposition in evidence at all stages
we proceed recursively from U{m) to U(m +1) where only the operators <4+1 and
af+1 (/<m +1) need be considered, all other generators being known by hypothesis
from the U(m) calculation. The matrix of a™+\ of course is diagonal with eigenvalue

m+l

1=1

As before, we let ifi denote the U(m) vector operator with components ^ =
Then ^ is a contragredient vector operator with components \}J\ = af+1.

From equations (36) and (37) we have

'm+V

where the U(m) invariants yr and yT are expressible in terms of the U(m +
roots pk and the U(m) roots ĉ  as in equations (30) and (35).

Rearranging these expressions we may write

where Sr and 8r are given by

(40)

(41)

fi- at} fi (ov- «,-1)"1,

m+l

8r=(-i)nno3p-«r- i)

By taking the trace of equations (40) and (41) we obtain

(42)

(43)
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Note that by substituting for yT and Sr we obtain

417

which is Green's trace formula.
We now claim that the 8r (r = 1, ...,n) are the squares of the reduced matrix

elements of the a^+1 while the Sr are the squares of the reduced matrix elements
of the af+1. To prove this result we follow the notation of Louck and Biedenharn
[14].

A
Suppressing our U(m + l) labels we let (m) denote a Gelfand basis state

contained in a representation of U{m) with highest weight A where (m) denotes a
Gelfand pattern for the subgroup U(m— 1). We may then denote a maximal U(m)

state by the pattern . \ or, in shorthand notation, [A>. We shall find it

convenient to introduce the weight Ar with 1 in the rth position and zeros else-
where,

Ar= [0, ...,0,1,0, ...,0] (1 in position r).

We then have

A
(A) (A)

A 10 A + A r \ / A + A r 10 A \

0*) / \ (A) ''(A)/'
where the term outside the summation is the square of the reduced matrix element
of the vector operator ip (the a£,+1). The terms

/ A 10 A + A r \
\ ( A ) ; i 0*) /

are Clebsch-Gordan coefficients corresponding to a tensor operator with IR label
[10] (a vector operator) with components given by the index /.

Since ^Mt^fr"]* is a U(m) invariant, its eigenvalue is independent of the
parameters of the U(m — 1) subgroup. So we may write

A
(A)

A
(A)

where we have summed over all vectors in the representation space of U(m) with
highest weight A and then divided through by the dimension D[X] of the
representation.
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Hence (44) may be written

A
(A)

A
(A)

A+Ar\/A+Ar/ A . 10 A+Ar\ /A+
A W / 0*) A 0*)

10 A
(45)

From the orthogonality relations satisfied by Clebsch-Gordan coefficients (see
Louck and Biedenharn [14] and Loebl [12]) we have

/ A+Ar 10 A A 10 A+As

00
Substituting this relation into (45) gives the result

A

(A)

A

(A)

However, we also have (see Edwards [2])

= = Z)[A+Ar]

Hence we may write

Comparing this expression with equation (43) we see that the invariants SJ are
our reduced matrix elements.

In a similar way we may show that the S* are the reduced matrix elements of
the generators af+1. Since these invariants have been evaluated as a function of
the U(m + l) roots and U(m) roots this enables us to evaluate all of the reduced
matrix elements.

Finally, we note that the operators $[r] and fr[r] defined by

are Wigner operators [14]. Hence from equation (36) we see that coupling together
the Wigner operator $[r] with its adjoint ft[r] gives us the U(ni) projectors/..
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6. Extension to O(n)

We now consider the extension of our previous results to the orthogonal sub-
group of {/(«). By introducing a symmetric metric gy we may take our O(ri)
generators to be

where a* are the generators of U(n). No loss of generality is in fact incurred by
taking g^ = 8{i. The advantage of this choice of metric is that we obtain a simple
canonical subgroup embedding O(n)<^ O(n + l).

So throughout the remainder of this paper we write our generators in the form

<x\ = a)-a\ = -a.\. (46)

We then obtain the commutation relations

[«*, «,*] = 8* ccf - 8< <xf - 8* a\ + 8{ «*. (47)

As for U{n) we introduce the 0{n) matrix a whose (i,j) entry is the generator <x\
Similarly we introduce its adjoint a defined by

We then define powers of the matrix a recursively by the formula

which then enables us to define arbitrary polynomials in the matrix <x. In a similar
way we may define polynomials in the matrix 6c.

It is easily shown, if p(x) is any polynomial over the underlying field F, that we
obtain the commutation relations

We take as a Cartan sub-algebra for the Lie algebra of O(n) the vector space
spanned by the operators

A,.--lag"1, r=\,...,h,
where

\n, n even,

\{n-\), wodd.

It has been shown by Green and Bracken [5, 6] that the matrix a. satisfies a
polynomial identity of the form

n(a-a,) = 0.
r - l
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On a finite dimensional irreducible representation with highest weight (Ax, ...,Aft)
the operators a, take constant values given by

—1—r,

with

O(n = 2h +1).

The matrix a satisfies the identity

ft ( a - « , ) = <>,
r=-l

where the a,, are related to the a, by

0^ = an + 1_r.

We now wish to proceed in analogy with GL(n) but unfortunately the entries
of the matrix a are not root space elements since our generators are not in Cartan
form. We overcome this by applying a change of basis transformation to the
matrix a. This is effected by introducing an appropriate numerical matrix M so
that the matrix M~la.M has entries consisting of O(n) generators in their root
space forms.

For O(n = 2h) we take M to be the unitary matrix with entries defined by

all other entries being zero, that is

1 0 0 1 \

- i 0 0 i

0 1 1 0

0 - / i 0

• ; ••. o .•• ; ;
0 0 ... 1 / ... 0 0

0 0 ... -i i ... 0 0
t t
h h+l
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For O(n = 2h+l) we add an extra row and column to give an additional non-
zero entry M%+1 = 1.

The inverse matrix M"1 then has entries defined by

( M - % = -jL = - ( M - % + i - (i = 1,.... A),

all other entries being zero except in the case when n = 2h +1 is odd where we have
an additional non-zero entry

(j|f-i)*+i=l.

Throughout the remainder of this paper we let a denote the matrix

a = M~1<xM, ^ = (M-1)*«JiJ/«. (49)

We define polynomials in the matrix a as before. By repeated application of (49)
we may show that

(50)

From this we see that the matrices a and a satisfy the same characteristic identity
(that is the characteristic identities remain unchanged by a change of basis).

We define the adjoint a of a by

The adjoint a of a is related to the adjoint a of a by

where

More generally if p(x) is any polynomial over the field JF we have

Hence the matrices a and a also satisfy the same identity.
We now evaluate the commutators [aj.of]. We have

[a*, a*] =

Using the commutation relations (47) the right-hand side becomes

8? a\ - S* ay - (M ~%
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Now M^Mk
q is the inner product between the/th and ^th columns of the matrix M.

Hence we have

Similarly

Also, from (49), we have

Thus we obtain the commutation relations

[a),a%] = ^ f l J - S J a y - ^ + ^ a J + W + S j+Wfl^^ . (51)

More generally, using (48) and (50), we obtain

[a),p(a)P] = &.p(a)q- h{p{ay. - K^-iP^l*1"' + ^ + 1 - J > « + i - i - (52)

We now note that the diagonal entries of the matrix a are given by

ar
r = h r ,

with

«*+J = 0 for O(n = 2A+1).

From this and the commutation relations (51) we see that, for i<j^h, ajjjilf
and aj are both positive roots of weight ei — e3-. Similarly the a"^!} and a\ are
negative roots of weight e^ — e^ For i,j= \,...,h the entries fl^+i-j are positive
roots of weight e^e^ while the a^+1~3 are negative roots of weight — (et+fy).

Finally, for O(n = 2h + l) we have the additional positive roots a\+1 and
a£+l_i (' = 1, •••, h) of weight ei and negative roots a£+1 and a^\~i of weight —e^

It is easily checked that these roots agree with those obtained by Wong [18]
(except that his C.S.A. is minus ours). The advantage of writing the root space
elements in this form is that we maintain the simplicity of our commutation
relations and furthermore the analogy with U(n) is clearer.

Note also that the positive roots appear above the diagonal of the matrix a
while the negative roots appear below the diagonal. Our analogy with U(n) is now
complete and we may proceed as before.
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Now let v0 be an O(n) maximal weight vector of arbitrary weight A. Introducing
a set of polynomials

II(
fc-r

k=l

where we define A, for r> h by

K+i-r=l~K> r-\,...,h,

we may verify propositions (1) and (2) as before. From this it is then easily shown
that Green's identities for 0{n) hold on arbitrary representations generated by a
maximal weight vector.

As for U{ri) we may construct a set of projectors

/r=I

/,=n(J^|),
which satisfy

frfk= °rkfk> frfk~ °rkfk
and

r- l r - l

Then, if p(x) is any polynomial over the field F, we may write

n
p(a) =

r=l

P{d) =
r - l

7. Casimir invariants for O(/i)

As for U(n) we obtain a full set of invariants for 0{n) by taking traces in the
polynomials of the matrix a. We proceed in analogy with U(ri) to verify Green's
trace formula for the orthogonal groups for arbitrary weights.

Let v0 be a maximal O(n) weight vector of weight A = (\v ..., AA). We consider
now the operators p^k) and pitfik) defined as in equation (11) with the 0{n) roots
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taking values given by

—1—r,

with

As before, we let piik) and pi JJc) be the respective eigenvalues of these operators
when acting on the maximal weight vector v0. It is easily verified that the p^k)
satisfy the difference equation

(0,
Pi(r) = (a, - ad Pi+iir) - 2 Pi+1(k) +

k P
k>r

r>h,

-r)> r<h-

The Pij(r) for i<j—l satisfy

O, r>h.

and when i = j— 1 we obtain

0,

k>r

r>h,

r<h-
Proceeding as before we obtain the following formulae:

O(n = 2h)

(/,)H=<
0, k>r,

0,

(n = 2h+l)

' /
111
Kk\

, - a, - 1 + §,,ft+1 - Bln+1_r
-rj

\
)vo>
/
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Summing these equations over k from 1 to n we obtain the formulae

, «-2A, "

When n = 2h + l and r = h +1 we obtain

tr/A+1 = (
J*»+i' a A + 1 — a,

where we have used a A + 1 -a , -1 = a , , ^ - aA+1 for « odd and /# A + 1. This shows
that Green's trace formulae for O(n) extend to arbitrary weights.

8. Reduced matrix elements for O(n)

With respect to our O(n) generators a) we define an O(n) vector operator as an
operator with n components 0* which satisfy

[flJ,tf*] = 8y*0*-S«;+1_<0»+w (53)

Similarly we define an O(n) contragredient vector operator with components ^
which transform according to

[4^=-8i^r-'LH. (54)
With respect to our old generators a* this is equivalent to choosing components
$ and ̂  which satisfy

(53')

(54')

If ^ is a vector operator with components ̂  satisfying (53') we may transform if
into a vector operator ip with components ipi satisfying (53) by applying the
matrix M~\

Their components are therefore related by

with
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Similarly if ^ is a contragredient vector operator transforming according to (54')
then

transforms according to (54). This shows the relation between vector operators
in both choices of basis for the Lie algebra of 0{n).

Following the same notation as before, an O(n) vector operator if) may be
resolved into a sum of vector operators <p[r],

r-1

where each i/r[r] satisfies

( r= 1, ...,h),
with

for n

where X = (Xv Ag,..., Aft) is the labelling operator for O(ri).
These shift components may be constructed by application of the projectors

/ r and/ r ,

Similarly if 0 is a contragredient vector operator we may resolve <f> into compo-
nents <f>[r] which satisfy

<f>[n+\-r](Xk+8kr) (r = 1,...,/;),
with

for « =

The shift components <f>[r] of <f> may also be constructed by application of the
ft and/,,

Now let OL) be the O(n + l) generators defined by (46). We denote the O(n + l)
matrix whose (i,j) entry is the generator aj by j8. As for [/(«)<= U(n +1), the O(n)
matrix a is canonically embedded in the O(« + l) matrix /3. The first n entries of
the last column of the matrix /J (that is the a^+1) constitute an O(n) vector operator
while the first n entries of the last row (that is the a£+1) gives us an O(n) contra-
gredient vector operator. However, the generators are not in Cartan form. If we
put the generators of O(n+1) into Cartan form we lose the canonical embedding
of the O(n) matrix inside the O(n+1) matrix when n is odd.
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We overcome this by putting the generators of O(n +1) into their weight space
forms with respect to the Cartan subalgebra of O(n). This leads us to consider the
matrix M defined by

0

0

J f f -
M

0 0 0

where M is the transformation matrix introduced earlier.
We now consider the O(n +1) matrix defined by

Then the O(ri) matrix a — M'
matrix b,

b =

b = M-t

is canonically embedded in the O(n + l)

The entries bf+1, bl
n+1 are given by

Hence the b\+1 constitute an O(n) vector operator transforming according to (53).
Similarly the b?+1 constitute an 0{ri) contragredient vector operator transforming
according to (54).

Let us denote the O(ri) vector operator with components 6^+1 by ip. Now we
note that the O(n) generators aj satisfy the Hermiticity property

Since the matrices M and M are unitary it is easily checked that the maj
and b also satisfy :

s a
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More generally if p(x) is any polynomial over the field F then we have

(p(a)?y = p(a)l
k, (p(b)?y = p(bfk.

From this we have, in particular, (^+i)f = *"+1- So we let ^f denote the contra-
gredient vector operator with components

We write our O(n+1) identity in the form

n+l

r=l

and denote the O(n+1) projectors by

Sr 11 \ n o )>
P-l,V*r\Pr — Pp'

Sr 11

where jSr =
Proceeding as for U(ri) we may apply the O(n+l) characteristic identity to

give
n

r=l

where
ep = {£p)n+V

Rearranging these expressions we obtain

r=l

r=l

where

'Jr "" ^n+l-r = 1 for T = 1, ..., A,

with
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From these expressions we obtain the results

n+l n

n+l
</-tMi<AMi = y, = ( - i ) n n

p-1

Similarly, by applying the O(n+1) adjoint identity, we obtain
n+l n

= ( # ^ 1 = n ffS^
i # p

n+l

Finally, we have

(55)
^ ] y r -

1 - A t M = / r -

which gives the spectral resolutions

P(a)=
r= l

r-1

Rearranging equations (55) allows us to write

where

n+l
n + l

Taking the trace of the above formulae we obtain

tr/r = yr87\

As for t/(n) the 8r and Sr are the squares of the reduced matrix elements of </r
and tpf respectively. Note that the reduced matrix elements of i/< remain unchanged
by a basis transformation. Hence 8r and Sr are the reduced matrix elements of
the a*,+1 and <xf+1 respectively.
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Proceeding recursively via the canonical chain

0(#i) = 0 ( « - l ) =...=> 0(2),

we see that we have in fact obtained the reduced matrix elements of all our O(n)
generators.

For future reference we write down some of our previous formulae for the
cases n odd and n even separately.

0(n = 2h)

In this case we have t}r = 1 and ar—a( = a,—ar.

n+\

Yr = y n + 1 _ = ( - 1)» n (PP - ov - 1) II ( a , - a*)"1,
l (

Br = Sn+1_r = ( - 1)» n 08p - ar) n (« r - ^ ~ 1 - Sl.n+1-r)"1.

Note that substituting for yT and Sr from these expressions we obtain

t r / = ^

where we have used

Or-^p = ^p - Or" 1 - Vft+1 f 0 r " = 2/z-

But we know

and hence we get

which is Green's trace formula.

In this case we have r\r = 1 - Sr ft+1 and
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from which we obtain, for r ^ A + 1 ,

n+l

"*" P - l P l+r

n+1

~* p - 1 P itH-

In this case we obtain

* t - 5-1 rT/ar~al~1 + SW+l~SJ.n+l-r\
XTJr Vr°r ' ' U 1 _, -, 1

as required.
Finally, when r = h +1, we have

n+l
VA+I = VA+I = ^ft+i = °h+i = II (fip — h) II (A —a,-1)"1

p_l I#A+1
which gives

Appendix

Let gk denote the gl(n+ l,F) projector

n+l / h — B \

gk- n (* pj>).
We prove here that

431

9

A proof of this result based on more general considerations can be found in
Green [7]. However, for the sake of completeness, we present a proof here which
relies explicitly on the gl(n, F) commutation relations. This method also extends
to 0{n).

Throughout we shall let (j3p — a)"1 denote the matrix

n

r = l P

where fr is the gl{n,F) projector as defined by equation (7).
From equation (22) we have

where

Now

or
\ Q y1 ^s o^ p — |fl^ 1 9 1 1

(56)

(57)
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On the other hand, evaluating the commutator [af+1, (gk)i+1] using (56) we obtain

where we have used

Substituting this into (57) gives

and the result follows from (56).
In view of equation (21) it is immediate that

n+l
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