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Collineation groups which are
sharply transitive on an oval

P.B. Kirkpatrick

Iet G be a group of collineations in a projective plane I of
order n . Suppose that one of the point orbits of G is an
oval C of II , and that G acts regularly on this orbit. We
prove that (G fixes a non-incident point-line pair if either =
is even, or n is 0odd and G is abelian, or = # 11, 23, 59

is odd and C is a pseudo-conic. It is then easy to deduce
information about the lengths of the other orbits of G , and

about the structure of G as an abstract group.

1. Introduction

General results on the relations between the (point and line) orbits
of a collineation group in a finite projective plane have been cbtained by,
for example, Dembowski [6], Foulser and Sandler [§], and Piper [16]. These
results depend on the fact that the orbits form a tactical decomposition of
the plane. Parker [15], Hughes [12],and Dembowski [é] proved independently

that the number of point orbits is equal to the number of line orbits.

let NI be a finite projective plane of order n . An oval of Tl is
a set of n+ 1 points in I no three of which are collinear. The
elementary properties of ovals are described in Qvist [17] and Dembowski
[5]. If G 1is a group of collineations of I and one of the point orbits
of G is an oval C of I , then also one of the line orbits of G
consists of the n + 1 tangents of C , and each of the remaining point
(line) orbits either consists entirely of exterior points (chords) or

consists entirely of interior points (non-secants).
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By making further assumptions about the way G acts on the oval C ,
about the geometric structure of C , or sbout the structure of G as an
abstract group, we might hope to obtain more detailed descriptions of the

remaining orbits of G .

Only the identity collineation fixes every point of the oval , that

(%
is the collineation group G (with orbit [ ) acts faithfully on £ we
say that G acts regularly or sharply transitively on C if it is
transitive on the points of C and no non-trivial collineation in G
fixes a point of ¢ . If (G acts regularly on ( then |G| =n+1, and
we shall then call (G, C) a sharply transitive oval. Singer's Theorem
[18] guarantees the existence of sharply transitive ovals in every finite

desarguesian plane, the ovals being conics and the groups cyclic.

An oval is a pseudo-conic in the sense of Ostrom [14] if it is the set

of all absolute points of a polarity of I .
The results proved in this paper will imply the following:

THEOREM. If (G, C) s a sharply transitive oval in a finite
projective plane of order n , then G fixes a non-incident point - line
pair provided that either

(¢) n is even, or

(it) n is odd and G <is abelian, or

(ii1) =n # 11, 23, 59 is odd and C is a pseudo-conic.

2. Assumed results

We shall assume the following theorems from the theory of finite
projective planes and the theory of finite groups.. Dembowski [5] or Hughes

and Piper [13] is suggested as a general reference.

RESULT 1 (Baer [2]). If © is an involutory collineation of a
finite projective plane of order n , then either 6 is an elation and n
is even, or 6 is an homology and #n 1is odd, or the fixed points and

lines of 6 form a subplane of order .

RESULT 2 (Baer [1]). Every polarity of a finite projective plane

has absolute points.

RESULT 3 (Parker [715], Hughes [12], Dembowski [6]1). The number of
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point orbits, of any collineation group of a finite projective plamne, is

equal to the number of its line orbits.

RESULT 4 (Hering [11], Dembowski [5], p. 179). Let T be an
abelian 2-group of collineations of a projective plane of order
n =3 (mod L) .

(a) If |T| >2 and T 1is elementary abelian, then |T| = 4 and

the fixed points and lines of TI' are the vertices and sides of a triangle.

(b) If T is not elementary then [ fixes exactly one point and

exactly one line, and the point does not lie on the line.

RESULT 5 (Hering [11]). If T 1is a 2-group of collineations of a
projective plane of order 7 = 3 (mod 4) then T is cyclic, dihedral,

semi-dihedral, or a generalized quaternion group.

RESULT 6 (Piper [16]). Iet T be an abelian collineation group of
order N in a projective plane of order n , and suppose I has exactly
one point orbit of length N . Then either the fixed substructure of T
is a line and at least three points on the line; or it is a point and at

least three lines through the point; or N = n2 +n+ 1, nz, n2 -1,

e - M, n(n-1), (n-l)2 , Or (n-¢%¥1)2 3y or N=9 and n=14 .

RESULT 7 (see Ha!i [10]). Let G be a finite group. If G is
soluble then G has an elementary abelian characteristic subgroup. If G

is a p-group, for some prime p , then G has a non-trivial centre.

RESULT 8 (see Wielandt [19]). Suppose G 1is a permutation group on
a finite set S5 , and P €5 . Then

G
16l = |6pl-127] »

G

where G is the stabilizer in G of P and P is the orbit of ¢

P
containing P . Also, (G permutes the orbits of any normal subgroup H
of G ; in particular, (G permutes the fixed points of H . Finally, if

G 1is abelian and transitive on S then G 1is sharply transitive on S .

RESULT 9 (see Wielandt [19]). If G is a permutation group on a
finite set S , and if x(g) denotes the number of elements of S fixed
by g € G , then the number ¢ of orbits of & 1is given by:
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I x(g) = tlg| .
ge&G
RESULT 10 (Frobenius' Theorem, see Hall [10], p. 292). The kernel

of any Frobenius group G 1is a normal subgroup of G .

RESULT 11 (Feit and Thompson [7]). Every group of odd order is

soluble.

RESULT 12 (Burnside [4]). If a finite group G has cyclic Sylow

2-subgroups then G has a normal 2-complement.

RESULT 13 (Brauer and Suzuki [3]). If a finite group G has
generalized quaternion Sylow 2-subgroups then G/0(G) has a non-trivial
centre, where O(G) denotes the largest normal subgroup of odd order in
G .

RESULT 14 (see Gorenstein [9], pp. 260-265). Let G be a finite
simple group whose Sylow 2-subgroups are either dihedral or semi-dihedral.

Then G has only one conjugacy class of involutions.

3. Sharply transitive ovals of even order

If (G, C) is a sharply transitive oval in a projective plane I of
even order »n , then G certainly fixes the knot F (point of concurrency
of the n + 1 tangents to C ), since every collineation which maps € to
itself fixes F . Also, no non-trivial element of (¢ fixes a point
X # F , since every line through F is tangent to L and G acts
regularly on the tangents of € . Thus every point orbit of G , apart
from {F} , has length n + 1 ; and G has exactly #” + 1 point orbits.
It follows (Result 3) that G has exactly n + 1 1line orbits.

Since any line orbit of length less than »n + 1 has length at most
3(n+1) , simple counting shows that G must have n line orbits of length

n + 1 and one fixed line. We have proved:

THEOREM 1. If (G, C) 1is a sharply transitive oval in a projective
plane of even order n , then G fixes exactly one point and one line, the
point does not lie on the line, and all other orbits of G have length

n+1.
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4. Abelian sharply transitive ovals of odd order
In this section we prove:

THEOREM 2. Let (G, C) be a sharply tramsitive oval in a projective
plane N of odd order n , and suppose that G is abelian., Then the
involutions of G are homologies, and G fixes the centre and axis of

every involutory homology in G .

Proof. Choose an involution 6 in G . If 6 1is an homology then,

since (6) 9 G , the whole group G must fix the centre and axis of 6 .

Suppose now that 6 is not an homology. Then the fixed points and
lines of 6 form a subplane A of order v (Result 1). Choose any

point @ of C , let R = Qe , let g, » be the tangents at @, R

n

respectively, and let P =g nr . Then GP ={(0) and so IPGI = %(n+l) N

which means that G induces on A an abelian collineation group H of

order %(n+1) .

The group H has at least one point orbit of length h = |H| = %(n+l)
and, since A has order V%', at most two such point orbits. If there is
exactly one, Result 6 implies that the fixed substructure of H consists
either of a line and at least three points on the line, or of a point and
at least three lines through the point. (The other alternatives, namely

various relations between % and V/h , are easily seen to be impossible.)

If the fixed substructure is a line and at least three points on it,
then the line is a non-secant of C and the fixed points are interior to
€ . The fixed points determine at least three distinct chord orbits of
length %(n+l) for G , and these orbits determine at least three distinect
involutions in G . By Result L these involutions generate a group of
order U4 whose fixed points are the vertices of a triangle. The

alternative (dual) case similarly gives rise to a contradiction.

We assume therefore that H has two point orbits of length % , and

let m=vn, so that h = %Ow2+l) and m is the order of A . Piper

(761, p. 331) remarks that simple calculations show that in such a case
there is a subplane of A whose points form a third point orbit for # ,

and that H has only three point orbits. In our situation, this third
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orbit must have length m (= m2+m+l—2h) , which is impossible sincel;é

2

la] = z(m"+1) .

To establish Piper's assertion, let XH be a point orbit of length
less than A . Then IHX| # 1 and Hy fixes every point of e (Result

8). Unless XH is a single point, a set of collinear points, or a

¥ form an invariant subplane Ao of A

(with respect to H ). The first three possibilities are easily ruled out

triangle, the fixed points of H

using the fact that H has two point orbits of length % . Now any line

of AO contains at least one point from the union of the two h-orbits,

and the lines of Ao through the points of a given #h-orbit all belong to
the same line orbit. So AO contains at most two line orbits of H ; in
fact AO can contain only one line orbit, since the orbits have odd length

(aividing %0"2*1) ) and the number of lines in A0 is odd. Thus AO

contains only one point orbit (Result 3); indeed, every invariant proper
subplane contains only one point orbit. It follows that every point Y in
A\AO vhich lies on a line 1 of AO belongs to an h-orbit (HY fixes 1
and so fixes every line of AO ). The possibility that the set of such
points exhausts the two h-orbits is easily excluded by counting. Thus if
k is the order of AO then

(k2+k+1)(m-k) = |#| = %sz

+1) ,
and IHX[ =m -k . Now suppose ¢ € HX and ¢ # 1 ; then, since each

invariant proper subplane (for H ) contains only one point orbit of # ,

¢ fixes no point of A\A0 . So HX acts semi-regularly on the points of
A\Ao , and therefore every invariant proper subplane other than AO

contains at least m - k points. But

(mk) + K2 +k +1>m (= m2+m+1-2h] .

that is H 1leaves only one proper subplane invariant. So H has exactly

three point orbits.
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This completes the proof of Theorem 2. We note that the intersections
with a fixed line, of the chords of C passing through a fixed point not
on that line, forq:a point orbit of length %(n+1)' for G , and that the
remaining points on these chords split into %(n—l) orbits of length
n + 1 , plus the fixed point. A dual assertion can of course be made about

line orbits.

5. Sharply transitive pseudo-conics of odd order

Let (G, C) bve a sharply transitive pseudo-conic {in a projective
plane I of odd order n ), with associated polarity a . Then.every
collineation ¢ in G commutes with o and so o induces a polarity on
the incidence structure .formed by the fixed points and lines of ¢ . If
¢ # 1 this structure cannot be a subplane of II , since ¢ fixes no point
of C and every polarity of a finite projective plane has absolute points

(Result 2). Thus the involutions of G are homologies.

Consider any ¢ in G which has prime order p and more than -one

fixed point, say Y fixes (at least) the points A4 and B . Now AB

cannot be an absolute line, and so C = Aa n B% is not on AB . But V¥
fixes C and therefore, since the fixed points and lines form a closed
substructure which is not a subplane, all further fixed points of Y 1lie
on one only of the lines AB, BC, CA , say on AB . By considering the
action of Y on the points of BC , we deduce that p =2 . It follows
that if a non-trivial collineation in & fixes more than one point, then

its order is a power of 2 .
Now every collineation of prime order in G fixes at least one point,

since (IGI, n2+n+l) =1 . 8o every collineation in G whose order is not

a power of 2 fixes exactly one point.
If x in G has order 4 and Y fixes more than one point,
consider the involution x2 . The centre A and axis g of the homology

x2 are fixed by X , and all further fixed points of x lie on a .
Suppose ¥ fixes a point B on a , and consider the orbits of the group
{x) acting on the points of AB : these are {4}, {B} and further orbits
all of length 4 , so that n - 1
n+1zZ0 (modl) .

0 (mod 4) , contradicting
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We have proved:

LEMMA, If (G, £) <s a sharply transitive pseudo-conic in a
projective plane of odd order; then the involutions of G are homologies,

and every other non-trivial collineation in G fizes exactly one point.
This lemma will be very useful in the proof of our main result:

THEOREM 3. Suppose (G, C) <s a sharply transitive pseudo-conic in
a projective plane 1 of odd order n # 3, 11, 23, 59 . Then G fizxes
exactly one point and exactly one line, and the point does not lie on the

line.

Proof. We note first that it suffices to prove that & fixes exactly
one point, since G then fixes the polar line of this point, and no other
line; and the fixed point does not lie on its polar line since G acts

regularly on C .

Let K be a non-trivial subnormal subgroup of (¢ such that XK is
simple. K always exists, eand K = G if G is simple. The involutions
in K are homologies (Lemma), and they form at most one conjugacy class of
K (Results 5, 7, 12, 13, 14). Furthermore, no two involutory homologies
in ¢ have the same centre (or the same axis) since the action of such an
homology on the oval g is fully determined by the chords through its
centre: it interchanges the two points of g on each such chord. Thus
the centres of the involutory homologies in X form a point orbit of K

whose length equals the number of involutions in KX .

If X has odd order, then XK fixes exactly one point (Results 7, 11,
Lemma), and this point is the unique fixed point of (¢ . We assume there-

fore that X has even order.
Any 52—subgroup (Sylow 2-sybgroup) S of KX has a non-trivial

centre 2(S) . Let a be an involutory homology in 2Z(S) , let A4 be the

centre and a the axis of o . Then K“1 = Ka = CK(a) , the centralizer in
K of a3 also KAQS ,» and we have

k = 2™re .

it |kl =k, |s] =2", |K|=2mr and c=|AK| is the number of
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involutions in K .

Iet ¢ in X have 0dd prime order p , and fixed point F . Any

Sp—§ubgroup P of K which contains ¢ fixes F , since

(n2+n+l, p) =1 . If |K,| were odd, then K would act as a Frobenius

7l

group on the points of FK , that is K would have a proper non-trivial
normal subgroup (Result 10), contradicting the simplicity of K . So IKFI

is even, that is F 1is either the centre or lies on the axis of some

involutory homology in XK . If F 1is a centre then F € AK 3y while if F
is not a centre then ¢ does not commute with any of the involutory
homologies whose axis contains F , and so F 1lies on at least two axes.

In the latter case, the Sg—subgroups of K, each contain exactly one

F
involution: otherwise the axes of two commuting involutions would both
pass through F , which is impossible unless F 1is the centre of the
product of these two involutions. It follows that these Sz—subgroups of

KF have order 2 , since if some Y of order 4 in X fixed F then F

would be the unique fixed point of an Sz-subgroup of X containing V¢ ,
that is F would be the centre of an involutory homology.

If a point X lies on the axes of two involutions B and Yy in X
then (B, y) fixes X and so either (B, Y) is a 2-group and X is
fixed by an involution which commutes with both B and 7Y , that is X is
a centre, or (B, Y} is not a 2-group and X is fixed by some

collineation of odd order in X .
We have established that, for any point Y fixed by an involution in

K , either IKYI =2 or |KY| =2 or IKYI = 23i for some odd 8; >1

coprime to r . Furthermore,
m
k=2 PSy ... Sy s
where sl, cees st are the distinct numbers si so arising; and
sl, cens St are mutually coprime.

ASSUMPTION 1. Let us assume that K contains an element of odd

order which fixes no centre, that is ¢t =21 .
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Denote by ¢. the number of centres on the axis a , and let Fé be

0
a point on a@ such that IKF | = 28, . By Result 12, KF has a normal
1 i
o-complement & . Since no involution in KF commutes with an element of

(2

odd order in KF , N acts semiregularly on the set of all axes through
1

Fi . It follows that there are exactly si axes through F% . But X is

transitive on the set of all axes (of involutions in X ) and on the points
of Ff s, SO we may use simple counting to deduce that the number of points

1

FK . M- .
of ; on a is exactly 2 r , foreach 727 =1,2, ..., t.

To calculate the number b of orbits of X , considered as a
permutation group on the %n(n~l) interior points of C , we apply Result

g, obtaining
%n(n—l) + g(n#3)e + k- ¢ - 1 = bk .
Writing #n + 1 = hk , we have

b= %h(n+c) -h+1.

We return to the consideration of the points on an axis a . The
interior points on a consist of: 00 centres, 2m—lrt points belonging
m—

to orbits Fﬁ , and %(n+l) - CO -2 lrt points belonging to orbits of

length zk . The third set determines (%k)_10[g(n+1)—co—2ﬂhlré] orbits,

so if co # 0 there are this number plus © + 1 orbits consisting of

interior points which lie on at least one axis. Since k|n+1 and

m-1

2" "re = 3k , k must divide 2¢c, . But ¢y + 1 is the number of
involutions in KA , since co is the number of axes through A4 and 4
. m m

is a centre. Also IKAI =2y ,sothat ¢g+1=2r-1, and

ecy < 2™ = k . Thus either k= 2000 or ¢, = 0.

ASSUMPTION 2. Assume that k = 2000 .
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Combining this with results obtained above, we deduce that there are
exactly %h(n-c) - h + 1 orbits of interior points which lie on no axis,

and therefore exactly [%h(n—c)—h+l]k such points. We have now counted

t
all the interior points: ¢ centres, |} k(?si]_l points which lie on at
=1
least two axes (but are not centres), [%(n+l)—co-2m—lrt]c points which

lie on exactly one axis, and [%h(n-c)-h+1]k points which lie on no axis.
Thus
t

sn(n-1) = ¢+ } k(23i)_l + [%(n+1)—c

—Z”Plrt]c + [gh(n-e)-h+1lk ,
1=1

0

from which we deduce the equation

+

n
Q

(%) 1 k(es) ™t + k(1-t) |

1=1

N~ 0%

and thence (since each s, 23 ) the inequality ¢ - 1 2 %k(%; - l] .

If ¢=>3 then ¢ > %k +1 and so (since e¢|lk ) e =k , that is

every element of K is an involution, which is impossible. If ¢ =1
then, by (¥), 1=c¢ + k(2sl)-l which is impossible since ¢ >1, k >0

and s, >0 . So t=2 and c-12 ék » that is ¢ = ik, Ik, %k or
%k . Now ¢ # 4k or %k since k is even and ¢ is odd; and ¢ # %k
since if e = %k then K has & normal 2-complement, contrary to the

simplicity of K .

Thus ¢t =2 and ¢ = %k , that is k = h3132 and so, by (%),

= + -
1 2sl 232 sls2 N

from which we deduce that {sl, 32} ={3,5}, k=60, ¢=15 and

co = 2 . Each of the 15 involutions in K commtes with exactly 2 of

the remaining 14 , and the 15 centres of these involutory homologies can

be partitioned into 5 disjoint sets gi of 3 non-collinear points
which are the centres of the involutory homologies in an elementary abelian

Sz—subgroup (of order 4 ) of K . The 15 centres form a unique point
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orbit O of length 15 for KX , the remaining point orbits having length

6, 10, 30 or 60 . It follows since K is subnormal in (G , that OG‘=-2

and that G permutes the 5 sets gi . Since G =0 and X (being

simple) is generated by its 15 involutions, X 2 G .

The representation of the simple group K as a permutation group on

We={C, ..., gs} is faithful. Let H be the kernel of the

representation of G on W . Since AnK=1, H<QG and K=2G,
every element of H commutes with each of the 15 involutory homologies
in K . It follows readily that H =1 , so that ( 1is isomorphic to a
5 - If G 2555 then the normalizer in G of any Sylow
S-subgroup P of G contains an element ¢ of order 4 ; and ¢ must

subgroup of S

G .
fix the point X fixed by P . But |X'| =6 and so ¢ must fix at
least two points of XG , contradicting our Lemma. Thus @& $ S5 and

therefore |G| = 60 , contradicting # # 59 . We have shown that in all

cases equation (¥#) leads to a contradiction.

Suppose that Assumption 2 is false. Then ¢y = 0 and so each

Sé-subgroup S of K contains only one involution (otherwise, consider a

pair of commuting involutions in S : the centre of one lies on the axis
of the other). If S is cyclic then X has & normal 2-complement and
so, since X is simple of even order, [K| =2 . If S is generalized
quaternion then X/O(X) has a non-trivial centre (Result 13), which is
impossible. There is no other possibility (Result 5), so |K| =2 .

Now suppose that Assumption 1 is false. Then k = 2m1ﬂ , =1 and

K contains exactly one involution. But X is simple, so |K| =2 .
Since either Assumption 1 or Assumption 2 is false, |K| =2 .

If K is a proper subnormal subgroup of some subnormal subgroup L
of G which fixes more than one point, then L consists of involutions
and the identity, that is L is elementary abelian. Since K <L ,
1z
point orbits of L having length 2 or L . Now G does not fix all

4 (Result L), and so L fixes exactly three points, the remaining

three fixed points of L since n # 3 , so either (G fixes exactly one
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point or else G has exactly one point orbit of length 3 . The latter
caese is impossible since the representation of (¢ as a permutation group
on this orbit would have kernel L of order 4 , and the induced group

would be isomorphic to a subgroup of S3 , contradicting n # 11 or 23.

If there is no such L then the centre of the involutory homology in
K 1is the unique fixed point of G . This completes the proof of Theorem
3.

COROLLARY. Suppose (G, C) satisfies the hypotheses of Theorem 3.
Then etither

(1) G contains only one involution, G has two point (line)
orbits of length 3(n+l) , and n - 1 of length n + 1 ; or

(i) n =1 (mod L) , G contains %(n+1) conjugate involutions,
and G has n + 1 point (line) orbits of length i(n+1)
and 3(n-1) of length n+1; or

(1i2) n = 3 (mod 4) , G contains z(n+l) + 1 involutions in
three conjugacy classes, of sizes 1 , %(n+l) and 1(n+1) ,
and G has two point (line) orbits of length #(n+l) , n
of length 2(n+l) and 3(n-1) of length n + 1 .

Proof. If G contains only one involution then the centre of this
homology is a fixed point, any point on its axis lies in an orbit of length

%(n+l) , and every other point in an orbit of length n + 1 .

Suppose 7 = 1 (mod 4) and G contains more than one involution.
Then the centres of these involutions must lie on the fixed line f and
the axes must pass through the fixed point F . Also, no centre lies on an
axis, and no axis is a chord of C . But the chords of C through F
meet f in the points of an orbit of length %(n+l) , 50 these are the
centres of the involutory homologies in G , and the remaining %(n+1)
points on f are the intersections with f of the axes, and form a single

orbit. The assertions of (7ZZ) now follow readily.

Finally consider the case where n = 3 (mod 4) and G contains more

than one involution. If P is the intersection with the fixed line f of

a chord of C through the fixed point F , then IPGI = 3(n*l) and so

IGPI = 2 and either G contains an involutory (P, f)-homology or P is
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a centre or PF 1is an axis. The third case is impossible since G acts
regularly on C . The second case is also impossible since IPGI is
even, which'implies that if P is centre of an involutory homology then
its axis is also a chord through F . Thus G contains an involutory
(P, f)-homology © and, since 8 is in the kernel of the representation

of G on PG , 0 € Z(G) . The centre of any other involution in G 1lies

on f in an orbit of length %(n+l) . Since the length of every point
orbit other than {F} is at least g(n+l) , there are two orbits of
centres on f , each of length %(n+1) . The assertions of (Z7%) now

follow readily.
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