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1. Introduction. In this paper we shall extend results obtained in [5] to the
W*-algebra setting.

Let si be a C*-algebra and let si+ denote the set of positive elements in si. Given a
fixed element A in si, the Lyapunov transformation LA corresponding to A is the
mapping of si into itself which sends X to AX+XA*. We are interested in characterizing
those B in si for which LB(si+) = LA(si+).

Loewy in [6] and [7] examined the case when si is the algebra of all nxn complex
matrices, and in [5] the case when si = L(H), for any Hilbert space H, was treated. As in
[5], [6] and [7] we shall concentrate on non-singular Lyapunov transformations, and
throughout this paper LA and LB will always be assumed to be invertible. Proof of the
following may be found in [4].

PROPOSITION 1.1. Let A belong to the W*-algebra si. Then LA has a bounded inverse if
and only if the spectrum of A does not intersect the imaginary axis.

Let si = L(H) for some Hilbert space H. Then the main result of [5] is that the
following are equivalent:

(i) LA(ji+) = LB(si+),
(ii) B = (al + ia2A)(a3A + iaA) \ where af are real scalars with a1a3 + a 2 a 4 = l .
In this paper we will show that a similar result holds when si is any W*-algebra, and

the scalars a, are replaced by appropriate central elements of si. Before examining the
general W*-algebra, we will show that exactly the same equivalence holds for irreducible
C*-algebras.

2. The irreducible C*-case. Let si be any C*-algebra, and let U denote the
universal representation of si, with H denoting the Hilbert space on which U acts. It is
known that the second dual U{si)** of U(si) is a W*-algebra, and as such is isomorphic
to the weak closure U(si) of U(si) in L(H). A proof of this may be found in [8].
However, for our purposes it is sufficient to notice that the map $ which implements this
isomorphism is obtained as follows.

For F in U(si)** and / in U(si)* we know that f=ux,y for some x, y in H.
(<oxy(X) = (Xx, y).) Hence the map (x, y)—>F(f) = F(a)xy) defines a sesquilinear form on
H, and so by the Riesz representation of such forms, there is a unique bounded linear
operator TF such that F(wJcy) = (TFx, y). That TF lies in U(si) is established via the
double commutant theorem.

It follows easily from this that the positive cone in U(si)** is precisely the second
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dual cone of U(si)+, and that *([/(X))= U(X) for all X in si. (Here * denotes the
canonical map into the second dual.)

Furthermore, routine calculations with the Arens' products show that

and so

(The bar indicates the natural extension of LmA) to U(si).) Having established this
notation, the next lemma follows easily.

LEMMA 2.1. Suppose A and B belong to the C*-algebra si and that U is the universal
representation of si. Then if LA(s4+) = LB(si+) we also have

Proof. Clearly by the preceding remarks

L~u(A)(U(si)+) =

if and only if

LuXA)(U(si)**+) = LuXB)(U(sf)**+).

Now suppose that F e U(si)**+, Ge U(si)** and LUXA)(G) = LUXB)(F). Then Ll*(A)(G) =
Ll%}(F) and so G(L£(A)(/)) = F(L£(B)(/)), for any / in U{si)*. Thus if cox( = cox,x) is any
positive functional in U(s4)*,

Finally since LA(si+) = LB(si+), we see that Lu(B)Lu\A) maps U(sl)+ onto U(si)+, and so
^*(B)^*7A)(WJC) is a l s o a positive functional. Thus F(L*(B)L*7A)(wx))^0 and so G lies in
U(si)**+, as required.

PROPOSITION 2.2 Let si be a C* -algebra, and let IT be any *-representation of si. Suppose
thatLA(si+) = LB(si+). Then

Proof. If I/is the universal representation of sd, we can apply Lemma 2.1 to conclude
that Lu<A)(U(si)+) = LuMJUjsiy). Furthermore, given any ^representation IT, we can
find a W*-isomorphism a of TT(A) onto U(A)Q, where Q is some projection in the centre
of U(si), such that a(ir(X))= U(X)Q for all X in si. Now if LU(A)Q denotes the
"cut-down" map of LU(A) to the algebra U(si)Q (i.e. the map which sends XQ to
(U(A)X + XU(A)*)Q, for all X in U{sl)), we see that Lu(A)Q(U(si)+Q) =
Lu(B)o(U(s4)+Q)- Finally, since_LJlIA) = a^Lv^QCt and Lw(B) = a~1Lu(B)Qa, we con-
clude that Lir(A)(7r(^)+) = Lir(B)(
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COROLLARY 2.3. Let si be a unital C*-algebra which has a faithful irreducible
*-representation. Then the following are equivalent:

(i) LA(sd+) = LB(si+),
(ii) B = (a1 + ia2A)(a3A + ia4)

 l for some real scalars at with ata3 + a2a4 = 1.

Proof. Let TT be any faithful irreducible "^representation of si and let Hw denote the
Hilbert space on which it acts. Then if LA(si+) = LB(s4+), it follows from Proposition 2.2
that L,r(A)(7r(^)+) = Lir(B)(7r(^)+) i.e. Lw(A)(L(tf J + ) = Lir(B)(L(HJ+) (since TT is irreduci-
ble). Thus, by Theorem 3.2 of [5], we can find real scalars at such that axa3 + a2a4 = 1 and

ir(B) = (ax + ia2ir(A))(a37r(A) + ia4)~\

Now (ii) follows since TT is faithful.
Conversely, if B satisfies (ii), then by the same theorem quoted above

and, since L;JA)Lir(B) maps ir(si) onto itself, (i) follows, again since v is faithful.

3. The W*-case. In this section si will denote a W*-algebra with centre Z. fi will
denote the maximal ideal space of Z. For any w in H let J(<o) denote the smallest
norm-closed two sided ideal in si which contains w. s4(<o) will denote the quotient
C*-algebra s4IJ(a>), and A(&>) will denote the image of A in sd((o).

It has been shown in [2] that

||A|| = sup{||A(o))||:a.€n} (1)

and that the mapping w —* ||A(&>)|| is continuous. Also

Sp(A)=U{Sp(A(w)):<uen}. (2)

(Sp(-) denotes the spectrum. A proof may be found in [4].)
Before proving the main result, we need a bound for the scalars.

LEMMA 3.1. Let A, Bin si implement the Lyapunov transformations LA and LB. Suppose
that for each w in il there are real scalars a^a)) such that a1(<o)a3{w) + a2(w)a4{(o) = 1 and

B(OJ) = [a^o) + ia2(w)A(<o)][a3(<o)A(a>) + ia^w)]'1.

Then the a* (to) are uniformly bounded by some number K, which depends only on A
and B.

Proof. First notice that since A(w) and B(w) commute, we can find a maximal
abelian subalgebra C(w) of si(w) in which both lie. Also Sp(A(o>)) and Sp(B(w)) remain
unaltered by passing to C(<o).

For any multiplicative linear functional <\> on C(w), let a = 4>(A(w)) and b = <f>(B(<a)).
Write a = xx + ix2 and b = yt + iy2(xh yt e R). Clearly

a^w) + ia2(<o)a = b(a3(o))a + «a4(a))) (3)
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and so
[a^w) + ia2(ct))a][a3(a>)a - ia4(w)] = b \a3(<o)a + ia4(w)\2,

from which we see that
a!(w)a3(w)xi + a2(a))a4(&))x1 = yx \a3(<o)a + ia4(w)\2,

which reduces to
X1 = y1|a3(<w)a + ia4(a))|2. (4)

From here it is a routine matter to show that

|fl3(«)l*(k|. |yiir1/2, (5)

M " ) | « ( W . ly,!"1)1'^(|x,|. | y i | ) - 1 / 2 |x2|. (6)
Using (3) and (4) we obtain

ir1/2, (7)
ti|.|y.ir1/2M. (8)

Now in the formulae (5)-(8), where |xf| appears without inversion, we may replace it
with the spectral radius of A(w) and so by ||A(w)||, without disturbing the inequalities.
Finally (1) shows that we may also substitute ||A||. Similarly |yj| (but not, of course, lyxl"1)
may be replaced by ||JB||, and in (7) and (8), \b\ may be replaced by ||fi||.

It remains to find upper bounds for IXJI"1 and |yi|-1. Since these represent the real
parts of points in the spectra of A(o>) and B(«), Proposition 1.1 together with (2) shows
that Ix^ and |yj| are bounded below by some positive number 8 (which depends only on A
and B). Thus we may substitute S'1 for \xi\~1 and lyj"1 in (5) . . . (8), and maintain the
inequalities. In this way we can find a uniform bound for the scalars aj(w).

We are now in a position to prove our main result.

THEOREM 3.2. Let A and B belong to the W*-algebra si. Then the following are
equivalent:

(i) LA(si+) = LB(si+),
(ii) B = (Z, + JAZ2)(AZ3 + iZA)~\

where Z{ are self-adjoint elements of the centre of si satisfying ZiZ3 + Z2Z4 = I.

Proof, (i) =£> (ii). Clearly LA and LB map each ideal J(w) into itself and so induce the
Lyapunov transformations LAM and LBM on each si(cj). Thus we see that if (i) holds,
then LAM(s4(o))+) = LBM(si(cj)+) for each <a in (I. Also it follows from Proposition 1.1
and (2) that these induced Lyapunov transformations are non-singular.

Now in [3] Halpern has shown that each si(<o) is a primitive C*-algebra. Thus each
si(w) has a faithful irreducible ^representation. Corollary 2.3 then shows that we can find
real scalars a^o)) with a1(a))a3(<a) + a2(<i>)a4(<o) = 1 such that

B(<a) = [ax(w) + ia2((o)A((o)][a3((jt))A(<i)) + ia4(co)]

https://doi.org/10.1017/S0017089500003517 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089500003517


RANGES OF LYAPUNOV TRANSFORMATIONS 133

Lemma 3.1 shows that we can also find a constant K, independent of a>, such that
|aj(&>)|«£.K for i = 1 , . . . ,4, and w in ft.

We now consider the set

2 = {(w, a, ft, c, d):B((o) = [a + ibA(oj)][cA(o)) + idT1; ac + bd = l and a,b,c,d bounded
byK}.

Then 2 is a non-empty subset of ft x [ -K, K]4 whose projection onto the first coordinate
is ft.

Also 2 is closed. For suppose ((oh ah bh q, dt) is a net in 2 which converges to
(to, a, b, c, d) in ft x [ - K, K]. Then

- (a + ibA)(cA + id

i.e. (OJ, a, b, c, d) lies in 2. Thus 2 is a non-empty compact Hausdorff space.
Let Pi denote the projection onto the ith coordinate. Then pt is a continuous map of

2 onto ft and, since ft is extremally disconnected, we may appeal to [1] to find a
continuous selection for px. That is, we can find a continuous function g mapping ft into 2
such that p1°g(o)) = w for all a> in ft. (In [1] Gleason shows that in the category of all
compact Hausdorff spaces and all continuous maps, the protective objects are precisely
the extremally disconnected spaces.)

Thus each 2^_x = pi°g(i = 2,..., 5) defines a continuous bounded real-valued function
on ft, and so defines a self-adjoint element of Z. Clearly, it follows from our choice of 2
that B(b)) = [Z1 + iAZ2][AZ3+iZ4]~l(to) and (Z1Z3 + Z2Z4)(a>) = 1, for all <o in ft. Thus
B = (Zj + iAZ2)(AZ3 + iZA)~l with Z1Z3 + Z2Z4 = 7 as required.

(ii) >̂ (i). Suppose A and B are related as in (ii). Then A(eo) and B(&») are related as
in (ii) of Corollary 2.3, and so LAM(M((o)+ = LBM(s4(a))+) for all o> in ft. Thus if H is in
si+ and K = L~^LB{,H) we have K(,o)) = L^MLBM{H{o>))^Q for all w in ft; i.e. K>0 .
Similarly L i a L A ( ^ + ) c ^ + and (i) follows.

Since a C*-algebra may have no centre at all, there can be no direct generalization of
Theorem 3.2 in that direction. Nonetheless we can prove the following result.

COROLLARY 3.3. Let A and B belong to the C*-algebra si, and suppose that LA(s&+) =
LB(s&+). Then if ir is any *-representation of si we can find self-adjoint elements Zf in the
centre of ir(A) such that

TT(B) = {Zx + i7r(A)Z2)(ir(A)Z3 + iZ4)~\

Proof. This follows easily from Proposition 2.2 and Theorem 3.2.
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