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Further evidence for the memory state heuristic: Recognition latency

predictions for binary inferences

Marta Castela∗ Edgar Erdfelder†

Abstract

According to the recognition heuristic (RH), for decision domains where recognition is a valid predictor of a choice criterion,

recognition alone is used to make inferences whenever one object is recognized and the other is not, irrespective of further

knowledge. Erdfelder, Küpper-Tetzel, and Mattern (2011) questioned whether the recognition judgment itself affects decisions

or rather the memory strength underlying it. Specifically, they proposed to extend the RH to the memory state heuristic (MSH),

which assumes a third memory state of uncertainty in addition to recognition certainty and rejection certainty. While the

MSH already gathered significant support, one of its basic and more counterintuitive predictions has not been tested so far:

In guessing pairs (none of the objects recognized), the object more slowly judged as unrecognized should be preferred, since

it is more likely to be in a higher memory state. In this paper, we test this prediction along with other recognition latency

predictions of the MSH, thereby adding to the body of research supporting the MSH.
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1 Introduction

The recognition heuristic (RH) is a fast and frugal decision

strategy proposing that, for binary decisions, if one object is

recognized and the other is not, one should infer that the rec-

ognized object scores higher on the criterion under consider-

ation (Goldstein & Gigerenzer, 2002). This simple decision

rule has gained a lot of attention, and a large body of re-

search was dedicated to it (see Gigerenzer & Goldstein, 2011;

Pachur, Todd, Gigerenzer, Schooler, & Goldstein, 2011, for

reviews). However, one key concept of the RH has often

been neglected: recognition. While literally at the core of

the heuristic, only a modest amount of research has focused

on understanding the role of recognition in use of the RH

(e.g., Erdfelder, Küpper-Tetzel, & Mattern, 2011; Pachur &

Hertwig, 2006; Pleskac, 2007; Castela, Kellen, Erdfelder, &

Hilbig, 2014; Castela & Erdfelder, 2017). Notably, Erdfelder

et al. proposed a framework that extends the RH by accom-

modating the role of recognition memory, the memory state

heuristic (MSH). Their framework was later also supported

by Castela et al. (2014) and Castela and Erdfelder (2017)

using formalizations of the MSH in the framework of multi-
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nomial processing tree models (Batchelder & Riefer, 1999;

Erdfelder et al., 2009). In this paper, we primarily aim to

test a crucial and counterintuitive prediction that has not been

directly addressed before and conflicts with the popular no-

tion that processing fluency – or cognitive fluency in general

– boosts preference for a choice option (Schooler & Her-

twig, 2005; Zajonc, 1968). In addition, we provide support

for the MSH through conceptual replications of predictions

previously tested by different researchers (Erdfelder et al.,

2011; Hertwig, Herzog, Schooler, & Reimer, 2008; Hilbig,

Erdfelder, & Pohl, 2011; Schooler & Hertwig, 2005; Pohl,

Erdfelder, Michalkiewicz, Castela, & Hilbig, 2016). In this

way, we aim at closing a gap in previous research on the

MSH and provide converging evidence on the importance

of memory strength (rather than recognition judgments) in

recognition-based decision making.

This paper will be organized as follows: First, we will in-

troduce the RH and discuss how recognition memory has so

far been understood in its context. Second, we will introduce

the MSH and describe the evidence relevant to it. Third, we

will report our two new studies that complement the body

of work on the MSH, each consisting of a re-analysis of

previously published data and a new experiment.

1.1 The Recognition Heuristic

To better understand how recognition memory has been (or

can be) integrated in the RH, it is first essential to describe

more precisely how the heuristic has been proposed. To

simplify that process, we will refer to the most prominent

paradigm associated with the RH as an illustrative example.

This is the city size paradigm, which involves a paired com-
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parison task and a recognition task. In the paired comparison

task, participants must infer which of two cities has a larger

population. In the recognition task, participants are asked to

indicate for each city involved whether they have heard of it

(yes) before the study or not (no). With the data from this

recognition task, all pairs of cities in the comparison task

can be categorized into three types: knowledge cases (both

objects are recognized), recognition cases (one object is rec-

ognized and the other is not), and guessing cases (none of

the objects is recognized). The RH applies only to recogni-

tion cases, for the obvious reason that it cannot discriminate

between objects in the other two types of pairs.

Importantly, Gigerenzer and Goldstein (2011) specified

additional preconditions for use of the RH. First, there should

be a strong correlation between recognition and the decision

criterion. In our example, recognition should be strongly

correlated to the size of a city (which, indeed, it is). Addi-

tionally, further cues should not be readily available. This

means that, for example, when comparing the sizes of Berlin

and Mannheim, the information that Berlin is the capital of

Germany, or that it has an international airport, should not

be presented to the participant simultaneously (whereas, of

course, it could be retrieved from memory). Finally, they

asserted that the RH applies only to natural recognition, that

is, artificially inducing recognition in the laboratory (by, for

example, presenting objects to the participants several times)

should not necessarily lead to use of the RH.

1.2 Recognition memory in the context of the

RH

In the previous section we outlined the basic concepts sur-

rounding the recognition heuristic, but it is still unclear how

the memory processes underlying recognition influence use

of the heuristic. In its original definition, the RH was not

related to recognition memory, but only to recognition judg-

ments. Goldstein and Gigerenzer (2002) assumed that the

RH works on the output of the recognition process, and that

the process itself can be disregarded. In other words, they

assumed the RH operates on yes or no recognition judg-

ments, and whatever underlies that judgment can be ignored

for the purpose of investigating the heuristic. This assump-

tion implies that the frequency with which an object has

been encountered does not affect use of the RH, and only the

final all-or-none process of remembering any encounter or

not will matter. It follows that the RH will treat objects with

different memory strengths equally, as long as they are both

recognized or unrecognized. Erdfelder et al. (2011) chal-

lenged the notion that memory strength should not influence

use of the RH. Specifically, they argued that “Showing that

the RH is an ecologically rational and well-adapted choice

strategy obviously requires a formal theoretical link between

(1) the memory strengths of choice option names — a latent

variable which is affected by environmental frequency and

previous processing — and (2) binary recognition judgments

for choice option names — an empirical variable which is

assumed to affect decision behavior.”

Following from this understanding of a necessary link

between memory strengths and recognition judgments,

Erdfelder et al. (2011) proposed to integrate a model of

recognition memory with the RH theory. To do so, they

relied on one of the most well-supported models of recog-

nition memory available — the two-high-threshold (2HT)

model (Kellen, Klauer, & Bröder, 2013; Snodgrass & Cor-

win, 1988). Importantly, besides being one of the most

successful models of recognition memory, the 2HT model

has the added advantage of being easily combinable with the

RH (Erdfelder et al., 2011).

The 2HT model belongs to the class of multinomial pro-

cessing tree models (Batchelder & Riefer, 1999; Erdfelder et

al., 2009). Like other multinomial processing tree models,

the 2HT model is based on the assumption that observed

categorical responses emerge from a defined set of discrete

states and that the probability of such states being entered

depends on the probability of certain cognitive processes

occurring or not. The basic premise of the 2HT model is

that there are three possible memory states underlying recog-

nition judgments — recognition certainty, uncertainty, and

rejection certainty. The probability of those states being

entered depends on the probability of two thresholds being

exceeded (Figure 1). Specifically, for objects experienced

before, if the memory strength exceeds the first threshold

with probability r , the object will be in the recognition cer-

tainty state and a yes recognition judgment will be given. If,

with complementary probability 1 − r , the memory strength

lies below this threshold, the object will be in the uncertainty

state, and the recognition judgment will depend on a second

process of guessing, resulting in a yes judgment with proba-

bility g and a no judgment with probability 1−g. For objects

not experienced before, if the memory strength lies below

the second threshold with probability d, the object will be in

the rejection certainty state and a no recognition judgment

will be given. With complementary probability 1 − d, the

memory strength lies above this second threshold and the

object will be in the uncertainty state, just like unrecognized

objects experienced before. Again, the recognition judgment

will depend on guessing yes or no with probabilities g and

1 − g, respectively.1

To combine this model with the RH theory, Erdfelder et

al. (2011) suggested a new framework — the memory state

heuristic (MSH). The MSH is a straightforward extension

of the RH, which mainly replaces recognition judgments

by memory strengths. That is, it assumes that memory

strengths, and not recognition judgments per se, affect de-

cision behavior. This simple extension enriches both the

1The model assumes that recognition certainty never arises without

previous experience, and that rejection certainty never arises with such

experience. This is an approximation that seems to work well.
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Figure 1: Graphical representation of the two-high-threshold model. Parameter r denotes the probability of old objects

exceeding the recognition threshold. Parameter d denotes the probability of new objects falling bellow the rejection threshold.

Parameter g denotes the conditional probability of guessing yes in the uncertainty state.

predictions that can be drawn and the explanatory scope of

the heuristic. Whereas the RH has predictions for recogni-

tion pairs (i.e., recognition cases) only, the MSH has predic-

tions for any pair that involves objects in different memory

states. These predictions can be summarized by two simple

premises: (1) if objects are in different memory states, there

should be a preference for the object in a higher state; (2) the

larger the discrepancy between the memory states of objects

in a pair, the higher should be the probability of choosing

the object in a higher state. By implication, the probability

of choosing the object in the higher state should be larger

for pairs of one object in the recognition certainty state and

the other in the rejection certainty state than for pairs where

one of the objects is in the uncertainty state. Based on these

two principles, Erdfelder et al. could both explain previous

results that challenged the RH and also draw and test new pre-

dictions. To do so, they relied on the fact that multinomial

processing tree models like the 2HT model can be inter-

preted as probabilistic serial processing models (Batchelder

& Riefer, 1999; Heck & Erdfelder, 2016). By implication,

the number of cognitive processing stages in a given branch

of the model will influence its total processing time. Specif-

ically, in the case of the 2HT model, whenever an object

reaches the memory state of uncertainty and a second cog-

nitive process — guessing — is required, the response time

distribution should be stochastically larger than when an ob-

ject reaches one of the two certainty memory states (Heck &

Erdfelder, 2016). Following from this interpretation of the

2HT model, a clear prediction can be made: “The larger the

recognition judgment latencies, the more likely it is that the

judgment originates from guessing and the less likely it is

that it originates from memory certainty” (Erdfelder et al.,

2011, p. 13).

The MSH improves on the RH by offering a straightfor-

ward explanation to results that have challenged the latter.

Specifically, the observation that factors beyond recognition

(e.g., speed of recognition, availability of further knowl-

edge) seem to affect the preference for the recognized ob-

jects has suggested that there is no non-compensatory use

of recognition. However, Erdfelder et al. (2011) argued that

those findings can be easily accommodated by the MSH.

For example, the observation that recognized objects that

are recognized faster are preferred over those recognized

more slowly (Hertwig et al., 2008; Marewski, Gaissmaier,

Schooler, Goldstein, & Gigerenzer, 2010; Newell & Fernan-

dez, 2006) has been interpreted as suggesting that retrieval

fluency is also driving the inference. However, the MSH

would predict this preference because objects recognized

faster are more likely to be in the recognition certainty state

than the ones recognized more slowly (Erdfelder et al., 2011).

Another example discussed by Erdfelder et al. (2011) con-

cerns the finding that RH accordance rates (proportion of

times the recognized object is chosen in recognition pairs)

are larger when RH-consistent inferences are correct than

when they are incorrect (Hilbig & Pohl, 2008). While this

observation may suggest that further knowledge is involved

in the inferential process, a different interpretation follows

from the MSH: Recognition pairs originating from recog-

nition and rejection certainty states should lead to correct

inferences more often than the ones associated with at least

one object in the uncertainty state, simply because recogni-

tion validity (i.e., the correlation between recognition and

the criterion) is higher for these pairs.

The fact that the MSH offers an explanation for these

controversial results suggests that it can be an important

extension of the RH. Furthermore, the MSH has found a

considerable amount of other support. First, Erdfelder et al.

(2011) tested seven predictions of the MSH, focused on RH
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accordance rates and decision latencies, both as a function

of recognition and rejection latencies. The first three predic-

tions, which state that RH accordance rates should increase

with decreasing recognition and rejection latencies, and that

their effect is additive, were supported in their study. Addi-

tionally, they tested whether the decision latency in recogni-

tion pairs increases with both the recognition latency of the

recognized object and the rejection latency of the unrecog-

nized object, and that their effect is additive. These further

three predictions were also supported by their data. Finally,

they found support for their seventh prediction, which stated

that response bias manipulations (aimed at selectively affect-

ing the guessing probability) in the recognition test should

affect recognition judgments but not performance in the com-

parison task. Since the RH theory assumes that recognition

judgments per se influence decisions, it would predict that a

bias manipulation will also affect inferences. The MSH, in

turn, predicts the observed result, since memory-states rather

than recognition judgments should influence decisions, that

is, since biasing the guessing probability does not alter the

memory-states distribution, inferences should be left unaf-

fected.

Additionally, Castela et al. (2014) also found support for

the MSH. They tested the predictions of (a) the RH, (b)

knowledge integration accounts, and (c) the MSH regarding

the proportion of RH-use for cases where the recognized

object is said to be only merely recognized versus recog-

nized along with further knowledge. While the RH predicts

there should be no difference, since recognition alone should

drive inferences in recognition pairs, knowledge integration

accounts predict that RH-use should be lower when there

is knowledge, since when there is further information on

which we could base the inferences then we should not rely

only on recognition. Notably, the MSH predicts the op-

posite pattern, since recognized objects for which there is

further knowledge are more likely to have originated from

recognition certainty than objects that are merely recognized.

Reliance on the memory state should therefore be higher for

the former. Through a reanalysis of 16 published data sets,

Castela and collaborators showed that RH use is in fact more

frequent when there is knowledge about the recognized ob-

ject, a result that is predicted by the MSH and at odds with

the other two accounts.

Finally, Castela and Erdfelder (2017) comprehensively

tested the MSH by developing a formal model that incor-

porates its predictions for all possible memory-state combi-

nations. We showed that restricting this model to hold the

core prediction of the MSH, namely, that MSH-use is higher

when the distance between memory-states is highest, leads

to no significant increase in model misfit, thereby suggesting

that such a model is consistent with the data. This is, to

our knowledge, the most thorough and elaborated test of the

MSH so far. Given all these results, it appears that the MSH

is a well-supported framework which should be seriously

considered as an important extension of the RH.

It is at this point clear that there is considerable evidence

supporting the MSH. However, when we want to advocate the

MSH, we must ensure that the support for it does not depend

on the decision domain employed, on testing a limited num-

ber of predictions, on using specific methods of evaluation,

or on referring to a limited set of proxy measures for under-

lying memory states. Probably most importantly, especially

the bold and surprising predictions of the MSH need to be

tested exhaustively, as these predictions most likely allow us

to discriminate between the MSH theory and other theories

of inferential decision making. Therefore, the primary aim

of the present work is to address a previously untested coun-

terintuitive prediction of the MSH regarding choices between

pairs of objects, both of which are unknown to the decision

maker. Moreover, we also aim at conceptually replicating

and extending results previously tested in different decision

contexts or with different measures of MSH use. In this

way, we hope to close existing gaps and provide converging

evidence that solidifies the body of research on the MSH.

The focus of Erdfelder et al. (2011) has been on testing

predictions for recognition pairs, but as explained before,

the MSH also makes predictions for guessing and knowledge

pairs, as long as the objects under comparison are in different

memory states. This will be the focus of our first study. As

for recognition pairs, the predictions follow from the basic

premise of the MSH: If objects are in different memory

states, there should be a preference for the one in a higher

state. Therefore, in this study we will test two predictions:

1. In knowledge pairs there should be a preference for the

object recognized faster (as this one is more likely in

the memory certainty state)

2. In guessing pairs, there should be a preference for the

object recognized more slowly (since this one is more

likely in the uncertainty state, which is the highest pos-

sible state for unrecognized objects).

However, as outlined above, the MSH also predicts that

the preference for the object in a higher state should be

stronger, the higher the discrepancy between the memory

states. While in recognition pairs the maximal memory state

distance can be observed (one object in recognition certainty

and the other in rejection certainty), in both knowledge and

guessing pairs this is assumed never to occur, since (to a

close approximation) objects will either be in the same state

or in adjacent states (recognition certainty and uncertainty

or rejection certainty and uncertainty, respectively). For this

reason, we expect weaker effects of recognition latency dif-

ferences on choice probabilities than those found for recog-

nition cases. Additionally, we will also test whether effects

on choice probabilities are stronger when the differences in

latencies are higher, therefore increasing the probability of

the objects being in adjacent states versus in the same state.
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Note that the MSH prediction regarding knowledge cases

overlaps with what is called the fluency heuristic (Hertwig et

al., 2008; Schooler & Hertwig, 2005). The fluency heuristic

states that, in knowledge cases, the fastest retrieved option

should be chosen. Its premise is that the fluency with which

an object is retrieved from memory (indexed by the latency

of the recognition judgment) can be used as a single cue and

determine inferences. They measured the accordance rate of

the fluency heuristic by computing, for each participant, how

many times the object retrieved faster is chosen in knowledge

pairs (pairs with differences in recognition latency smaller

than 100 ms were excluded),2 and found it to be reliably

higher than the chance probability of .50. Furthermore, they

observed that accordance rates increase with the difference

in latencies between objects. While the fluency heuristic can

accommodate these results, its empirical scope is limited: It

applies only to knowledge pairs, and within those, to pairs

where the fluency difference is larger than 100ms. The MSH,

in contrast, predicts these and other results, including pre-

dictions for guessing and recognition cases. It is, therefore, a

framework with a wider scope and more parsimonious than

a combination of different heuristics for knowledge, recogni-

tion, and guessing cases (Erdfelder et al., 2011). Importantly,

the MSH also predicts that the preference for the faster rec-

ognized object in knowledge cases should be considerably

weaker than the preference for recognized objects in recogni-

tion cases, simply because the memory-state discrepancy for

knowledge pairs can only be small (i.e., recognition certainty

and uncertainty) or even nonexistent (i.e., when both objects

are in the same state). The fluency heuristic, in contrast, is

silent about the predicted effect size for knowledge cases as

compared with recognition cases. Notably, this MSH pre-

diction has already found some support in previous research

(e.g., Hilbig et al., 2011; Marewski & Schooler, 2011; Pohl

et al., 2016; Schwikert & Curran, 2014).

While the predictions for knowledge cases seem plausible

and straightforward, the core prediction for guessing cases

is more surprising and counterintuitive as it conforms to the

expectation of a preference for less fluent objects. To the

best of our knowledge, no framework other than the MSH

makes or can accommodate such a prediction. Therefore, the

most important focus of our first study lies in the novel and

apparently counterintuitive prediction for guessing cases.

In addition to these predictions for knowledge and guess-

ing cases, we focus on a prediction of the MSH for recogni-

tion cases in a second study. Erdfelder et al. (2011) already

showed that larger recognition and rejection latencies are as-

sociated with weaker preferences for the recognized object

in recognition cases. In our second study, we aim to con-

ceptually replicate this result in a more refined way using

a better measure of MSH-use. The proportions of choices

of the recognized objects used by Erdfelder et al. are biased

2The threshold of 100 ms was shown to be sufficient for discriminating

between recognition latencies (Hertwig et al., 2008).

measures of MSH-use because counting the number of times

choices are in line with MSH use does not take into account

what led to that choice. An option might have been chosen

because it was in a higher memory state, or because other

information, which points in the same direction, was used.

For example, when comparing supposed population sizes of

Berlin and Mannheim, a non-european person might chose

Berlin because she recognizes it with certainty and does not

recognize Mannheim, or because she knows Berlin is the

capital of Germany, and therefore likely to be a large city.

For this reason, Hilbig, Erdfelder, and Pohl (2010) devel-

oped a multinomial processing tree model which estimates

RH-use in a more sophisticated way. The r-model (Figure 2)

consists of three trees, which correspond to the three types

of pairs. For knowledge and guessing pairs, the trees have

only a single parameter that accounts for the accuracy for

knowledge and guessing pairs, respectively. For recognition

pairs, on the other hand, the model considers the possibility

that a recognized option is chosen through use of further

knowledge, and provides in this way an unbiased estimate of

RH-use (which corresponds to parameter r in the model; see

Hilbig et al. (2010) for addditional details about the r-model).

By adopting this model to measure MSH use for recogni-

tion cases, we can assess in a more precise way how recog-

nition and rejection latencies are associated with noncom-

pensatory reliance on recognition. Additionally, we can test

whether in the most extreme cases, when the recognition

judgment latencies are very short (so that both objects are

most likely in recognition and rejection certainty states), peo-

ple always rely on memory-states only, or whether even then

the probability of choosing the recognized object is signifi-

cantly smaller than one, suggesting that other processes such

as integration of further knowledge are involved in at least

some of the cases where conditions for relying on memory

strength are optimal.

In general, since Horn, Pachur, and Mata (2015) observed

correlations above .90 between r parameter estimates and

RH accordance rates, we expect similar results for our second

study as previously reported by Erdfelder et al.. However,

the additional possibility to assess the hypothesis r = 1 (i.e.,

perfect reliance on recognition) for objects in memory cer-

tainty states renders use of the r-model particularly attractive

for our current study.

2 Study 1: MSH predictions for

guessing and knowledge cases

We first tested whether choices for guessing and knowledge

cases are in accordance with the MSH prediction that there is

a preference for the object in a higher state. Specifically, as

outlined above, we used recognition and rejection latencies

as proxies for underlying memory states. Therefore, we

predicted that in knowledge pairs there is a preference for
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Figure 2: Graphical representation of the r-model: Parameter r denotes the probability of applying the recognition heuristic

as originally proposed, that is, by ignoring any knowledge beyond recognition. a = recognition validity (probability of the

recognized object representing the correct choice in a recognition case); b = probability of valid knowledge; g = probability of

a correct guess; rec. = recognized; unrec. = unrecognized.

the object with a shorter recognition latency (and therefore

a higher probability of being in a recognition certainty state)

while in guessing pairs there is a preference for the object

with the longest rejection latency (and therefore a higher

probability of being in the uncertainty state).

2.1 Reanalysis of published data

We reanalyzed the data of 14 published data sets from our

lab (Table 1), in order to look for preliminary evidence for

our hypotheses. As shown in Figure 3, we observed that

for all 14 data sets the proportion of choosing the object

recognized faster in knowledge cases was significantly larger

than .5 (smallest t(21) = 2.78, all p < .01). Regarding

guessing cases, in 12 of the 14 data sets the proportion of

choosing the object recognized more slowly was significantly

larger than .5 (smallest significant t(63) = 2.08, p = .02).

For comparison purposes, the accordance rates for the RH

(applying to recognition cases) are also included in Figure

3, showing that choice preferences for recognized objects in

recognition cases are much stronger than choice preferences

in the other two cases.

Clearly, these results are in line with our expectations.

However, the studies included in the reanalysis were not

conducted with our hypotheses in mind. In order to collect

further evidence, we designed a new experiment specifically

tailored to our hypotheses. With this new experiment, we

primarily aimed at optimizing the proportion of knowledge

and guessing cases in order to achieve more powerful tests of

the MSH predictions for these cases. Moreover, we were also

interested in generalizing the results across different decision

domains beyond city-size comparisons.

2.2 Experiment 1

2.2.1 Material and procedure

The paradigm we used resembles the city-size paradigm

outlined in the section The Recognition Heuristic but in-

volves different types of decisions. This paradigm includes

two tasks: (1) a recognition test, where objects are pre-

sented and participants must judge whether they have seen

them before or not; (2) a comparison task, where partici-

pants see pairs of the objects and must infer which scores

higher on a given criterion. Since the objects are paired

exhaustively, the relative proportion of knowledge, recog-

nition, and guessing cases will depend on the proportion

of objects recognized. Therefore, in order to optimize the

proportion of knowledge and guessing cases, it is important

to include in the experiment a condition for which the pro-

portion of recognized objects across participants is larger

than .50 (resulting in many knowledge cases) and a different
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Table 1: Source and description of the 14 reanalyzed data sets.

Data set Origin Materials and criterion N

Michalkiewicz & Erdfelder (2016)

1 Exp 1, first session 100 of 150 largest US cities, size 19200

2 Exp 2, first session 100 of 150 largest US cities, size 24900

3 Exp 3a 25 of 100 most successful celebrities, size 20400

4 Exp 3b 25 of 100 most successful german movies, size 20400

5 Exp 3c 25 of 60 largest islands, size 19200

6 Exp 3d 25 of 100 most successful musicians, size 19200

7 Exp 4a 25 of 100 most successful celebrities, size 26100

8 Exp 4b 25 of 100 most successful celebrities, pictures, size 26100

Michalkiewicz, Arden, & Erdfelder (2016)

9 Exp 1a 25 of 100 most successful celebrities, success 13200

Castela & Erdfelder (2017)

10 Exp 1, first session 80 of 150 largest US cities, size 9360

11 Exp 2, first session 80 of 150 largest US cities, size 7920

Hilbig, Michalkiewicz, Castela, Pohl, & Erdfelder (2015)

12 Exp 1, control group 20 of 61 largest world cities, size 4370

13 Exp 2, control group 20 of 61 largest world cities, size 4180

14 Exp 3, control group 84 of 100 largest world cities, size 2688

condition in which the proportion of recognized objects is

clearly less than .50 (resulting in many guessing cases). A

third condition should involve a recognition rate of about

.50, resulting in (almost) equal frequencies of knowledge

and guessing cases. Moreover, since we also wanted to

generalize our findings across different domains, we made

use of different types of objects and inference criteria in the

three conditions. Specifically, all participants were presented

with objects from three domains: largest world cities (with

over 3 million inhabitants; http://en.wikipedia.org/

wiki/List_of_cities_proper_by_population), most

successful celebrities (100 most successful celebrities

according to the Forbes list of 2015; http://www.

forbes.com) and longest rivers in the world (over 1900

km long; https://en.wikipedia.org/wiki/List_of_

rivers_by_length). According to pre-tests conducted in

our lab, we know that for the domain of world cities normally

50% of the objects are recognized. We included this domain

for purposes of generalization, and also because it is one of

the most often used domain in the study of the RH and should

serve as benchmark. For the domain of celebrities, normally

65% of the objects are recognized. Therefore, this domain

is ideal to test the hypothesis regarding knowledge cases.

Finally, the rivers domain is ideal for testing the hypothesis

regarding guessing cases, since usually only 35% of the ob-

jects are recognized. The experiment included three blocks,

each consisting of the recognition test and the comparison

task for each domain.

The order of blocks was randomized for all participants.

In each block, the recognition test always preceded the com-

parison task. In the recognition test participants saw all 20

objects (randomly selected from each domain, but the same

for all participants) and had to decide whether they have

heard of them before or not. Objects were presented one at a

time, in random order, and a 500 ms interstimulus fixation-

cross followed each response. Response times were recorded

along with the recognition judgments. After each recogni-

tion test, a comparison task followed. In the comparison

task, participants saw 190 pairs, consisting of the exhaustive

pairing of the 20 objects, and had to infer which one scored

higher on the criterion. Each pair was presented at a time, in

random order, and a 500 ms interstimulus fixation-cross fol-

lowed each response. Response times were recorded along

with the responses. For the world cities, the criterion was

city-size; for celebrities, the criterion was how successful

they were3; and for the rivers, the criterion was their length.

3Success, in accordance with the Forbes criteria (http://www.

forbes.com), was defined as entertainment related earnings plus media

visibility
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Figure 3: Proportion of choices of the fastest or slowest rec-

ognized or unrecognized object for knowledge and guessing

cases, respectively, and of the recognized object for recogni-

tion cases, for all 14 reanalyzed datasets. Error bars repre-

sent standard error of the mean.

2.2.2 Participants

To provide an appropriate balance between type-1 and type-2

error rates in χ2 model tests (Erdfelder, 1984; Moshagen &

Erdfelder, 2016), we recruited 75 students (50 women) from

the University of Mannheim aged between 19 and 46 years

(M = 22.00, SD = 5.04). Participation was compensated

monetarily as a function of performance in the comparison

task. Every participant received at least two euros, and they

could earn up to 7.70. They gained one cent for each correct

answer, and lost one cent for each wrong one.

2.2.3 Results

One participant had to be removed from the analysis for all

domains, because he indicated that he did not recognize any

object in any domain. Furthermore, one participant was

removed from the guessing analysis of the cities domain

because he recognized 19 out of the 20 cities, therefore

having no guessing pairs. Finally, two additional participants

were removed from the knowledge analysis of the rivers

domain because they only recognized one river and therefore

had no knowledge pairs. For the remaining participants,

the proportion of recognized items was on average .68 for

celebrities, .58 for the world cities, and .36 for rivers. This

was in line with the pre-tests, although a bit higher than what

we expected for the world cities domain.

Since our hypotheses refer to the preference for the object

recognized faster in knowledge pairs, and the one judged un-

recognized more slowly in guessing pairs, we first calculated

per participant the proportion of times their choices were

in line with those hypotheses (accordance rate). We then

performed one-sample t-tests to assess whether the mean ac-

cordance rates were larger than .50. As can be seen in Table

2, we found support for both hypotheses in all three domains

assessed. For comparison purposes, the accordance rates

for the RH are also included in Table 2, replicating the pre-

vious result that choice preferences for recognized objects

in recognition cases are much stronger than the predicted

choice preferences for knowledge and guessing cases.

In addition to testing for an above chance preference for

the items more likely to be in a higher state, we also wanted

to assess whether this preference would increase with an

increasing difference in recognition latencies (i.e., latencies

of yes judgments) or rejection latencies (i.e., latencies of

no judgments) between objects in a pair (and therefore an

increasingly higher probability of being in adjacent states).

To do so, we ran a multilevel logistic regression4 (level 1:

choices per participant; level 2: participants) with Accor-

dance as a dependent variable. Accordance is essentially

a binary variable which takes the value one if choices are

in line with our hypotheses, and zero when they are not.

Specifically, for knowledge pairs, Accordance will be one

whenever the fastest recognized object is chosen, and zero

otherwise. Conversely, for guessing pairs, Accordance will

be one whenever the slowest unrecognized object is cho-

sen, and zero otherwise. As predictors, we included both

the main effects and the interactions of the RT difference

(difference in recognition or rejection latencies between the

objects in a pair) with Case (knowledge or guessing) and

with Domain (celebrities, cities or rivers). Additionally, the

model includes a random intercept for each participant and

a random slope for the effect of RT difference within each

participant. Our hypothesis would be that RT difference has

a positive effect on Accordance for both cases and in all

domains. We find support for our hypothesis.

As can be seen in Table 3, RT difference has a signif-

icant positive effect on Accordance. Additionally, there

are no differences in Accordance between the domains.5

Moreover, while the effect is present for both knowledge

and guessing cases (Figure 4), we find that it is significantly

stronger for knowledge cases. While this was not directly

predicted, it does not compromise our findings. This will be

addressed in more detail in the Discussion section.

4The model was estimated using the glmer function of the lme4 package

(Bates, Mächler, Bolker, & Walker, 2015) in R (R Core Team, 2015).

5Adding the interaction of Domain and RT difference does not change

the overall pattern of results and the interaction is not significant. Therefore,

we opted to present the results of a model without the interaction, so that we

can observe the main effect of RT difference for all domains and not only

for the reference level of the Domain variable.
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Table 2: Experiment 1. Results of one-sample t-tests testing if the mean of the individual proportion of choices in accordance

with our hypotheses is higher than .50. For knowledge cases, accordance means choosing the fastest recognized object, for

guessing cases accordance means choosing the slowest unrecognized object, and for recognition cases accordance means

choosing the recognized object. ∗ significant at the .05 α level.

Knowledge Cases Guessing Cases Recognition Cases

Accordance t d f p Accordance t d f p Accordance t d f p

World Cities (size) .60 8.28 73 < .001∗ .55 2.85 72 < .01∗ .83 20.6 73 < .001∗

Celebrities (success) .60 7.78 73 < .001∗ .55 2.13 73 .02∗ .85 23.43 73 .001∗

Rivers (length) .67 9.35 71 < .001∗ .54 3.53 73 .001∗ .81 19.88 73 < .001∗

Table 3: Experiment 1. Summary of fixed effects results in multivel logistic regression showing how the difference in laten-

cies between two objects in a pair (RT difference) predicts the accordance. Accordance is defined as choosing the fastest

recognized object in knowledge cases, and the slowest recognized object in guessing cases.

Predictor Coefficient SE z value p

Intercept 0.10 0.04 2.23 .03∗

RT difference 0.24 0.08 3.06 < .01∗

Case (Knowledge vs. Guessing) 0.14 0.04 3.28 < .01∗

Domain Celebrities (vs. Cities) 0.01 0.03 0.39 .70

Domain Rivers (vs. Cities) .02 0.04 0.67 .50

RT difference x Case Knowledge (vs. Guessing) 0.48 0.07 6.59 < .001∗

For discrete predictors, information in parentheses clarifies the levels of the predictor

which are being compared. The RT difference is scaled in seconds. ∗ significant at the

.05 α level.

3 Study 2: The influence of re-

moving items with longer recogni-

tion/rejection judgment latencies on

reliance on recognition

As mentioned above, in our second study we wanted to test

the MSH predictions regarding recognition judgment laten-

cies for recognition cases. Similar predictions were pre-

viously tested by Erdfelder et al. (2011), but by relying on

accordance rates only. The core question of our second study

is whether we can replicate their results using the r param-

eter of the r-model as a more refined proxy for MSH use

(Hilbig et al., 2010). Specifically, we aimed to test whether

there is an increase in r when we sequentially remove items

with longer recognition and rejection latencies and fit the

r-model to those subsets of data.6 The rationale behind this

is that by removing those “slow” items we reduce the subset

mostly to objects in recognition certainty and rejection cer-

6We would like to thank Benjamin E. Hilbig for suggesting the general

approach underlying this method of testing the MSH.

tainty states. By doing so successively, we artificially create

the perfect preconditions for relying uniquely on recognition,

which should lead to increasingly higher r estimates. If this

prediction holds, an interesting further question to pursue

is to what degree r estimates approximate 1 (i.e. perfect

reliance on recognition in paired comparison judgments) if

the subset is reduced to objects with the fastest yes or no

recognition judgments only.

3.1 Reanalysis of published data

To address these questions, we first reanalyzed the data for the

14 published data sets that we used in our previous reanalysis

(Table 1). For each data set, we first identified for each

participant which items where in the first, second, third or

fourth quartile of their individual recognition and rejection

latency distributions. In a second step, we created (at the

aggregate level)7 four subsets of pairs that consisted only of

7Note that while we do the analysis at the aggregate level to avoid

problems induced by small cell counts that may compromise hierarchical

MPT analyses (Coolin, Erdfelder, Bernstein, Thornton, & Thornton, 2015;
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Figure 4: Experiment 1. Marginal effect of RT difference on

accordance for guessing and knowledge cases. Error bars

represent 95% confidence intervals.

objects with latencies in each of the quartiles of the latency

distributions.8 Next, we fitted the r-model simultaneously

to these four disjoint subsets of data by replicating the r-

model trees four times, that is, for each subset of pairs. By

implication, we ended up with four r estimates. At the level

of parameters, our hypothesis can be described as an order

restriction such that the r parameters decrease from r1 to r4,

with the index 1 corresponding to the first quartile of the

distribution (only the fastest recognized and unrecognized

objects are included) and 4 the last quartile of the distribution

(only the slowest recognized and unrecognized objects are

included).

All model-based analyses were performed with MPTinR

(Singmann & Kellen, 2013) in R (R Core Team, 2015). We

first fitted the model without any restrictions; this baseline

model fits the data well for 9 of the 14 data sets (Table 4).

To test our hypothesis, we excluded the 5 data sets that were

associated with misfit.9 To evaluate our order restriction

Klauer, 2010; Matzke, Dolan, Batchelder, & Wagenmakers, 2015; Smith &

Batchelder, 2010), individual recognition and rejection latency distributions

are considered when assigning the data categories to each subset. Thus,

individual differences in judgment latencies cannot affect the results.

8This procedure heavily restricted the amount of available data, since

for each subset of data, only pairs where both objects are in the respective

quartile of the recognition or rejection latency distributions were considered

to be appropriate for this analysis.

9In most cases, misfit in the r-model is associated with its inherent

restriction in the b parameters, implying that knowledge validity is the

same for knowledge and recognition pairs (Hilbig et al., 2010). Removing

this constraint eliminated misfit for 4 out of the 5 data sets, but because

the model with two b parameters is saturated, we refrained from including

Table 4: Goodness-of-fit statistics, corresponding degrees

of freedom, and p-values for all reanalyzed data sets and Ex-

periment 2.

Data Set G2 df p-value

1 10.35 4 .03∗

2 3.87 4 .42

3 10.58 4 .03∗

4 9.22 4 .06

5 2.51 4 .64

6 0.50 4 .97

7 10.85 4 .03∗

8 2.74 4 .60

9 4.53 4 .34

10 9.97 4 .04∗

11 4.62 4 .33

12 12.03 4 .02∗

13 5.22 4 .27

14 0.79 4 .94

Exp 2 7.44 4 .11

* indicates that the baseline model does not fit the data

well, leading to statiscally significant misfit.

we need two tests. First, we test the order restriction, r1 ≥

r2 ≥ r3 ≥ r4, against the baseline model (with no restriction

on the four r parameters). Second, we test the model with

order restrictions, r1 ≥ r2 ≥ r3 ≥ r4, against a model

imposing equality restrictions, r1 = r2 = r3 = r4. If the

order restriction corresponds to the most suitable version

of the model, the first test should fail to reach statistical

significance, while the second test should lead to statistically

significant results.

Since our hypothesis involves an order restriction between

four parameters, the sampling distribution of the likelihood-

ratio test statistic ∆G2 does not follow a default χ2 dis-

tribution with the appropriate degrees of freedom. Given

the challenge involved in determining the appropriate dis-

tribution, we opted for using a double bootstrap method

(Van De Schoot, Hoijtink, & Deković, 2010) to compute

p-values. For example, when we want to test the or-

der restrictions, r1 ≥ r2 ≥ r3 ≥ r4, against the baseline

model, the double bootstrap consists of the following steps:

(1) a non-parametric bootstrap sample is obtained from a

given data set; (2) the model imposing the null hypothe-

sis, r1 ≥ r2 ≥ r3 ≥ r4, is fitted to that data set; (3) those

parameter estimates are used to obtain a parametric boot-

strap sample; (4) both models under scrutiny (i.e., the model

these data sets in the subsequent analysis.
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Table 5: Maximum likelihood parameter estimates of all r parameters and p-values and differences in FIA for comparisons

between the baseline model and the order-restriced model (BO) and between the order-restricted and the equality-restricted

model (OE) for all reanalyzed data sets and Experiment 2.

Data set r1 r2 r3 r4 pBO pOE ∆FIABO ∆FIAOE N

2 .71 (.03) .66 (.03) .59 (.04) .46 (.03) 1 0 3.18 -16.44 5521

4 .86 (.02) .83 (.03) .73 (.03) .70 (.03) 1 0 3.18 -9.18 4526

5 .82 (.02) .68 (.03) .58 (.04) .51(.03) 1 0 3.17 -25.41 4260

6 .89 (.02) .83 (.03) .71 (.04) .60 (.03) 1 0 3.18 -28.22 4264

8 .78 (.02) .74 (.03) .62 (.03) .51 (.03) 1 0 3.17 -27.73 5793

9 .93 (.02) .91 (.02) 86 (.03) .71 (.04) 1 0 3.18 -16.69 2929

11 .85 (.04) .85 (.04) .69 (.05) .55 (.06) .41 0 3.18 -11.26 1907

13 .82 (.05) .67 (.08) .63 (.09) .50 (.07) 1 < .01 3.18 -3.97 902

14 .73 (.13) .64 (.15) 1 (.55) .33 (.17) .05 .03 0.61 -3.55 304

Exp 2 .70 (.01) .65 (.02) .64(.02) .47 (.02) 1 0 3.18 -53.25 21456

imposing the order restriction r1 ≥ r2 ≥ r3 ≥ r4 and the

baseline model) are fitted to that sample and the difference

in fit is calculated; (5) steps 1 to 4 are repeated many times

(we repeated it 1000 times). We then compute the p-value by

assessing how many times the difference in fit obtained with

the bootstrapped samples is equal or more extreme than the

difference in fit obtained with the original data set, and re-

ject the null hypothesis if this proportion is smaller than .05.

Additionally, we also compare the models through the model

selection measure FIA (Fisher Information Approximation),

which takes complexity into account.10

The results are shown in Table 5 and Figure 5. We find

a clear support for the order-restricted model both with the

goodness-of-fit test and the FIA comparison.11 In all except

one data set (Data Set 14) the order restriction did not lead

to significant misfit, while the equality restriction did. In

line with these results, FIA was smaller for the order re-

stricted model than for the baseline or the equality restricted

model. Only for Data Set 14, in line with the results from

the goodness-of-fit test, the difference in FIA between the

baseline and the order restricted model is not sufficient to

support the former.

Additionally, to test whether r approaches one, we looked

at the 95% confidence interval of the r1 probability estimates.

For all 9 data sets this confidence interval does not include

1, suggesting that even under ideal conditions for use of

memory state information alone people still sometimes rely

on other strategies, like use of further knowledge.

10When using FIA to compare two models, a difference larger than 1.1 is

considered to be substantial evidence in favor of the model with smaller FIA

(Kellen et al., 2013). For comparisons in terms of FIA we additionally made

sure that the sample-size of all data sets involved was above the lower-bound

recommended by Heck, Moshagen, and Erdfelder (2014).

11A similar pattern of results is found by using adherence rates as a

measure of MSH-use.

While these results lend support to our hypothesis, the

re-analyses are not ideal because, when creating the subsets

of pairs, we necessarily limit the data points available for

analysis (Table 5). Therefore, we designed Experiment 2

with the goal of testing our hypothesis with greater power.

3.2 Experiment 2

3.2.1 Participants

To provide an appropriate balance between type-1 and type-

2 error rates in χ2 model tests (Erdfelder, 1984; Moshagen

& Erdfelder, 2016), we recruited 52 students (35 women)

from the University of Mannheim aged between 18 and 45

(M = 22.38, SD = 5.49). Participation was rewarded either

with a monetary compensation (2 euros) or with study par-

ticipation credits. Additionally, for each correct response in

the comparison task, participants gained 2.5 cents, and for

each incorrect response they lost 2.5 cents.

3.2.2 Material and procedure

The experiment consisted of the city-size paradigm, involv-

ing two tasks. First, participants had a recognition task,

where they saw 60 city names and had to indicate whether

they recognize them or not. Naturally, response times were

recorded along with the recognition judgments. The 60 cities

were a random selection from the largest world cities (with

over 3 million inhabitants; http://en.wikipedia.org/

wiki/List_of_cities_proper_by_population). Af-

ter the recognition task, cities were paired according to their

recognition and rejection latencies, with the cities having

similar recognition or rejection latencies assigned to the

same set. More precisely, there were four subsamples of

pairs, created according to the corresponding four bins of in-
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Figure 5: r probability estimates in all four quartiles of recognition and rejection latency distributions for all reanalyzed

datasets and for Experiment 2. Error bars represent standard errors.

dividual recognition and rejection latencies. Whenever the

number of recognized objects (or the corresponding number

of objects judged unrecognized) was not divisible by four, it

was randomly decided which bin(s) would have one object

more than the other(s). After the pairs were created (the

number of pairs across the four sets varied between partici-

pants, being either 420, 421 or 422), participants saw them

and had to decide for each pair which city was more pop-

ulous. As in the analysis of published data sets, a pair of

cities was considered for subsequent analysis only when (a)

one city was recognized and the other was not and (b) the

corresponding individual recognition and rejection latencies

fell in the same quartile of the response time distribution.

3.2.3 Results

Before fitting the model, we removed one participant because

he recognized only one of the 60 cities, while the remaining

participants recognized on average 57% of the objects. With

the data from the remaining 51 participants, we determined

the frequencies for each category of the model, separately for

the four bins of data. Then, we fitted the r-model to the four

bins of data. The model performed well in describing the

data (G2(4) = 7.44, p = .11, FI A = 65.49). We repeated

the same analysis that we performed with the published data

sets, with the goal of testing our order hypothesis on the

parameters r1 to r4. As can be seen in Table 5 and Figure 5,

we again found support for our hypothesis.12 Additionally,

the 95% confidence interval of the probability estimates of

r1 did not include 1, which again shows that even under

ideal conditions for reliance on memory states alone, other

strategies than mere reliance on memory strength take place.

4 Discussion

When they introduced the MSH, Erdfelder et al. (2011) con-

tributed to the RH literature by providing an extension of

the heuristic that parsimoniously links it with the recogni-

tion memory literature. The MSH not only explains a lot

of previously problematic results but also provides a set of

new predictions. While Erdfelder et al. (2011), Castela et

al. (2014), and Castela and Erdfelder (2017) tested several

12Again, a similar pattern of results is found by using adherence rates as

a measure of MSH-use.
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of these predictions and already gathered some support for

the MSH, a crucial additional empirical prediction regarding

decisions between pairs of unrecognized objects (“guessing

cases”) has not been addressed so far. Our primary aim was

to close this gap and, in addition, to provide further evidence

on MSH predictions regarding pairs of recognized objects

(“knowledge cases”) and mixed pairs of one recognized and

one unrecognized object (“recognition cases”), conceptu-

ally replicating and extending previously published results

on recognition judgment latency effects in binary decisions.

We addressed both of these issues in two studies by rean-

alyzing previously published data sets and conducting two

new experiments. In this way, we found strong converging

evidence in line with the MSH.

In our first study, by relying on recognition and rejection

latencies as a proxy for memory states — under the assump-

tion that longer latencies are associated with the uncertainty

memory state while shorter latencies are associated with cer-

tainty states — we found evidence for the MSH prediction

that for knowledge and guessing cases people also have a

preference for objects that are likely to be in a higher mem-

ory state. While for knowledge cases the MSH prediction

overlaps with predictions of the fluency heuristic (Hertwig

et al., 2008), the prediction regarding guessing cases can-

not be accounted by any other framework we are aware of.

Furthermore, that latter prediction is quite counterintuitive,

since it maintains that objects recognized more slowly, and

thus judged less fluently, should be preferred in guessing

cases. Obviously, this prediction conflicts with the popular

notion that cognitive fluency boosts choice preferences (e.g.

Schooler & Hertwig, 2005; Zajonc, 1968). Nevertheless, we

found unequivocal evidence for our prediction.13

It is also important to note that the MSH not only captures

the preference effects for knowledge and guessing cases cor-

rectly, but also predicts they should be much smaller than the

corresponding effects in recognition cases. This is due to the

fact that, in knowledge and guessing pairs, the objects can

only be either in the same memory state or in adjacent mem-

ory states. Therefore, the preference for the object in a higher

state should be less marked than in cases where the distance

between states is maximal (pairs of one object in recognition

certainty and one object in rejection certainty), a combina-

tion that can only occur for recognition pairs. Note that this

prediction cannot be derived from the fluency heuristic the-

ory (Schooler & Hertwig, 2005), simply because the latter

considers knowledge cases in isolation. Hence, the MSH

theory not only makes more predictions than the fluency

heuristic theory, it also makes more precise (or “specific”)

predictions. In other words, the MSH theory has larger

empirical content (in the Popperian sense) compared to the

latter theory (see, e.g., Glöckner & Betsch, 2011, for a dis-

13Note that our results would not be in conflict with the notion that the

interpretation of fluency can be learned (Unkelbach, 2007).

cussion of the importance of empirical content in theories of

judgment and decision making). We thus believe the MSH

presents itself as the most parsimonious framework for un-

derstanding how recognition is used in binary inferences,

clearly outperforming other heuristic-based approaches, like

the RH and the fluency heuristic, in its explanatory power,

empirical content, and empirical scope.

One result worth noting is that the effect of latencies was

stronger for knowledge cases than for guessing cases. While

we had not predicted this explicitly, it fits nicely with previous

results. Specifically, Castela and Erdfelder (2017) observed

that MSH-use is higher for recognition pairs if one object is in

recognition certainty and one object in the uncertainty state

than for recognition pairs with one object in uncertainty and

one object in the rejection certainty state. Since these are the

memory state combinations that can underlie adjacent state

cases within knowledge and guessing pairs, respectively, our

current results seem to be exactly in line with what was found

by Castela and Erdfelder — a stronger tendency to use the

MSH in the former cases. Given the converging evidence

concerning this effect, future studies should focus on testing

possible explanations for it. One such explanation, already

suggested by Castela and Erdfelder, is that the effective dis-

tance in memory strength between the recognition certainty

and uncertainty memory states might be larger than the cor-

responding difference between the uncertainty and rejection

certainty memory states. This would suggest that a simple

ordinal description of the states might be insufficient.

With our second study, we aimed at further testing the

effect of recognition and rejection latencies on choices for

recognition pairs. While this is largely a conceptual replica-

tion of the test carried out by Erdfelder et al. (2011), we relied

on a different measure of RH-use, which we believe is more

adequate. Erdfelder et al. relied on accordance rates which,

as explained above, are a confounded measure, since people

might choose the recognized option for reasons other than

reliance on recognition, namely because they rely on further

knowledge. For this reason, Hilbig et al. (2010) proposed

the r-model, and specifically the r parameter of the model,

as a better measure. The main advantage is that the r-model

disentangles choices of the recognized option that originate

from reliance on recognition from the ones stemming from

use of further knowledge. Extending the scope of tests previ-

ously carried out by Erdfelder et al. (2011), we additionally

investigated the prediction that MSH-use as indexed by the

r parameter should increase the shorter the recognition and

rejection latencies of objects in a pair. We found support for

this hypothesis by reanalyzing 9 data sets and, in addition,

with a new experiment tailored exactly to this test. Fur-

thermore, we assessed whether in the most extreme cases,

that is, when the recognition and rejection latencies were

shortest and therefore the probabilities that both objects are

in recognition and rejection certainty states were highest,
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MSH-use would be the only strategy used. The 95% confi-

dence intervals for the corresponding r1 parameter estimates

did not include 1 in any of our data sets, suggesting that this

is not the case. Hence, even under perfect conditions for

relying on memory strength, people will sometimes resort to

other inference strategies and integrate further knowledge.

Overall, our results are in stark conflict with the recognition

heuristic (RH) theory as originally proposed by Goldstein

and Gigerenzer (2002) and in line with the MSH theory.

Recently, Heck and Erdfelder (2017) also criticized the

RH framework, but from a different perspective than the

MSH framework does. It thus seems worthwhile to consider

their work in a bit more detail and compare it with our cur-

rent work. Using an extension of Hilbig et al.’s r-model to

response times as an innovative measurement model, Heck

and Erdfelder (2017) showed that the decision latency pre-

dictions of the RH are in conflict with virtually all available

data on RH use in natural decision domains. Only a small

proportion of individual data sets could be adequately de-

scribed by a serial RH theory according to which recognition

vs. non-recognition is considered as the first cue in binary

decisions with probability r , possibly followed by consider-

ation of further knowledge about the recognized object with

probability 1 − r . The vast majority of individual decisions

could be described better by an information integration ac-

count as formalized in the parallel constrained satisfaction

(PCS) model advocated by Glöckner and Betsch (2008; see

also Glöckner & Bröder, 2011, 2014, and Glöckner, Hilbig,

& Jekel, 2014). According to the PCS account, the recogni-

tion cue and further knowledge cues are always considered

simultaneously, resulting in fastest decisions when all cues

are congruent, that is, when both recognition and further

knowledge suggest the choice of the same object.

What are the implications of Heck and Erdfelder (2017)

work for MSH research as addressed in the current paper?

An immediate implication is that the r parameter of the r-

model should not be interpreted as the probability of applying

a serial heuristic as presented by Goldstein and Gigerenzer

(2002) or as part of the take-the-best heuristic that consid-

ers recognition always as the first cue in binary decisions

(Gigerenzer & Goldstein, 1996). This is unproblematic for

our current work since we consider r as a proxy for use of the

MSH in which the order of cue processing is left unspecified.

In our application, r just represents the probability of non-

compensatory reliance on recognition in the sense that the

influence of recognition dominates the joint influence of all

further knowledge cues. Note that this is not in conflict with

a parallel information integration account, as the weight of

recognition in a PCS model can be so high that the influence

of recognition cannot be overruled by any combination of

other decision cues with (much) smaller weights. Thus, the

r parameter of Hilbig et al.’s (2010) r-model (and also the

corresponding parameter of the r-s-model, cf. Hilbig et al.,

2011) can still be interpreted as a measure of noncompen-

satory reliance on recognition if noncompensatory reliance

on recognition is not confused with reliance on recognition

alone (i.e., as a serial cognitive strategy predicted by the RH

theory).

Now let us consider the reverse question: What are the im-

plications of our current MSH research for the PCS model

of recognition-based decisions advanced by Heck and Erd-

felder (2017)? In fact, the latter model shares one weakness

with the RH theory, namely, that recognition is considered

as a binary cue only. Although this simple parallel model

suffices to explain a number of results that the RH cannot

explain (as shown by Heck and Erdfelder), it has difficulties

in explaining some of the results that the MSH can account

for. For example, we cannot see how to explain the choice

preference for the object judged unrecognized more slowly

in guessing pairs using a PCS model with only a single di-

chotomous recognition cue as assumed in Heck and Erdfelder

(2017, p. 446, Fig. 2). If anything, then such a PCS model

would need to be extended to include several nodes repre-

senting differences in recognition information. For the time

being, however, the MSH appears to be the only model that

captures the preference for the option judged unrecognized

more slowly. Recall also that Castela et al. (2014) found a

preference for choices of recognized objects for which par-

ticipants reported having further knowledge as compared to

objects judged merely recognized. This result is predicted

by the MSH (assuming that virtually all objects with further

knowledge are in the recognition certainty state), whereas

it poses difficulties for information integration accounts like

PCS. For fixed weights of the cues this model would predict

more reliance on recognition when further knowledge other

than recognition is not readily available.14

In sum, with our work we tried to answer questions left

open by Castela et al. (2014), Castela and Erdfelder (2017),

and Erdfelder et al. (2011), thereby accumulating further

support for the MSH. We believe we achieved this goal in two

different ways: First and primarily, by finding support for its

bold predictions for guessing cases and in this way showing

how it can parsimoniously explain a much larger chunk of

data than the RH or the fluency heuristic can; second, by

conceptually replicating and finding converging support for

its predictions regarding knowledge and recognition cases

that have larger empirical content than those derived from

the RH or the fluency heuristic. Finally, our results also show

that while the MSH appears to be a more useful framework

than the RH, it should not be understood in a deterministic

way, since even when the objects are (likely to be) in the two

extreme memory states — recognition certainty and rejection

certainty — people sometimes resort to strategies other than

choosing the option in a higher memory state.

14Note, however, that one way to remedy this problem in the PCS frame-

work would be to assume variable cue weights that depend on the recognition

state (see Heck & Erdfelder, 2017, p. 470).
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