On the Vanishing of μ -Invariants of Elliptic Curves over \mathbb{Q}

Mak Trifković

Abstract. Let $E_{/\mathbb{Q}}$ be an elliptic curve with good ordinary reduction at a prime p > 2. It has a welldefined Iwasawa μ -invariant $\mu(E)_p$ which encodes part of the information about the growth of the Selmer group Sel $_{p^{\infty}}(E_{/K_n})$ as K_n ranges over the subfields of the cyclotomic \mathbb{Z}_p -extension K_{∞}/\mathbb{Q} . Ralph Greenberg has conjectured that any such *E* is isogenous to a curve *E'* with $\mu(E')_p = 0$. In this paper we prove Greenberg's conjecture for infinitely many curves *E* with a rational *p*-torsion point, p = 3 or 5, no two of our examples having isomorphic *p*-torsion. The core of our strategy is a partial explicit evaluation of the global duality pairing for finite flat group schemes over rings of integers.

1 Notation

Fix a rational prime p > 2. We denote by $K_{\infty} \supset \cdots \supset K_n \supset \cdots \supset K_0 = \mathbb{Q}$ the unique (cyclotomic) \mathbb{Z}_p -tower over \mathbb{Q} . We write $\Gamma \cong \gamma^{\mathbb{Z}_p}$ for the Galois group $G_{K_{\infty}/\mathbb{Q}}$ and a choice of topological generator γ . Set $\mathcal{O}_n = \text{ring of integers of } K_n$, $X_n = \text{Spec } \mathcal{O}_n$.

We choose

$$\pi_n = N_{\mathbb{Q}(\zeta_{p^{n+1}})/K_n}(1-\zeta_{p^{n+1}})$$

as our preferred generator of the unique prime of K_n above p. The π_n 's satisfy the norm compatibility relation $N_{K_{n+1}/K_n}(\pi_{n+1}) = \pi_n$.

Let *F* be a number field. For any elliptic curve $E_{/F}$, we write $\mathcal{E}_{/O_F}$ for its Néron model. We define the discrete and compact Selmer groups of $E_{/F}$ by

$$\operatorname{Sel}_{p^n}(E_{/F}) = \operatorname{ker}(H^1(F, E[p^n]) \to \prod_{\nu \nmid \infty, \nu \mid \infty} H^1(F_{\nu}, E)), \quad 1 \le n \le \infty$$
$$X_p(E) = \operatorname{Sel}_{p^{\infty}}(E_{/K_{\infty}})^{\vee}$$

respectively. Here $G^{\vee} = \text{Hom}(G, \mathbb{Q}/\mathbb{Z})$ stands for the Pontryagin dual of a group *G*.

2 Introduction

Let $E_{/\mathbb{Q}}$ be an elliptic curve with good ordinary reduction at a prime p > 2. Under this assumption, the compact Selmer group $X_p(E)$ is a finitely generated torsion module over the Iwasawa algebra $\Lambda = \mathbb{Z}_p[[\Gamma]] \cong \mathbb{Z}_p[[T]]$, and as such has a characteristic power series $f_E^{\text{alg}}(T) \in \mathbb{Z}_p[[T]]$. The condition $p^{\mu(E)_p} \parallel f_E^{\text{alg}}(T)$ in $\mathbb{Z}_p[[T]]$ defines the

Received by the editors August 5, 2003.

AMS subject classification: 11R23.

[©]Canadian Mathematical Society 2005.

Iwasawa μ -invariant $\mu(E)_p$ of $X_p(E)$, which controls the growth rate of $\operatorname{III}(E_{/K_n})[p]$ as K_n goes up the cyclotomic tower K_∞/\mathbb{Q} . One can say when it vanishes in purely elementary terms:

$$\mu(E)_p = 0 \iff \operatorname{III}(E_{/K_n})[p] \text{ is bounded as } n \to \infty.$$

Ralph Greenberg has made the following:

Conjecture 1 Every $E_{/\mathbb{Q}}$ with good ordinary reduction at p > 2 is isogenous to a curve E' with $\mu(E')_p = 0$.

When E[p] is irreducible, the Conjecture predicts that $\mu(E)_p = 0$. This, the generic case, seems intractable at present.

The situation is rather brighter when E[p] is reducible, *i.e.*, when it sits in a short exact sequence of $G_{\mathbb{Q}}$ -modules

(1)
$$0 \to \Phi \to E[p] \to \Psi \to 0.$$

This case bifurcates into two sub-cases:

- (1) Φ is odd and unramified at *p*, or even and ramified at *p*. In this case, Greenberg and Vatsal [4] prove that *E* itself has $\mu = 0$. The result follows by a fairly simple bootstrapping from the Ferrero–Washington theorem.
- (2) Φ is even and unramified at p, or odd and ramified at p, the harder case. Here it can happen that $\mu(E)_p > 0$, and we can in fact precisely describe the isogeny which conjecturally annihilates it (see Corollary 1). This paper will approach this sub-case of Greenberg's conjecture in the special instance where E[p] sits in a *non-split* short exact sequence

$$0 \to \mathbb{Z}/p\mathbb{Z} \to E[p] \to \mu_p \to 0.$$

In this situation Greenberg predicts that $\mu(E)_p = 0$, which we indeed prove for infinitely many examples, some of them essentially new, when p = 3 or 5.

For instance, by the end of the paper we will show that the curve

$$E_1: y^2 + xy = x^3 - 6390x - 215900,$$

with a rational 3-torsion point has $\mu(E_1)_3 = 0$. As far as we know, the best previous estimate, coming from Schneider's evaluation of $f_{E_1}^{alg}(0)$ (see [3]), gives $\mu(E_1)_3 \leq 4$. The same argument, *mutatis mutandis*, will show that $\mu(E_2)_3 = 0$ for the rank 1 curve

$$E_2: y^2 + xy = x^3 + 58x - 22684$$

for which the author does not know of a previous upper bound. Both these examples are instances of a general theorem, Theorem 3, which proves that $\mu(E)_p = 0$ in our setting provided there are "enough" cyclotomic units mod *l* for certain primes *l* of bad reduction. The main interest of this result is that it gives a criterion for $\mu(E)_p = 0$ which depends only on the number theory of the cyclotomic tower, and not on the curve itself. We will apply Theorem 3 to find infinitely many essentially distinct examples of curves with $\mu = 0$ inside Kubert's families parametrizing elliptic curves with a rational *p*-torsion point, for p = 3 or 5.

It is interesting to compare the state of our knowledge about Conjecture 1 with what we know about the Main Conjecture of Iwasawa theory. The latter predicts that the characteristic power series $f_E^{alg}(T)$ is, up to multiplication by Λ^{\times} , equal to the power series $f_E^{an}(T)$, associated to the analytic *p*-adic *L* function defined from modular symbols by Mazur and Swinnerton–Dyer. Kato has almost completely proved one half of the Main Conjecture: he shows that $f_E^{alg}(T)|f_E^{an}(T)$ as elements in $\mathbb{Q}_p[[T]]$. In other words, he makes no claim about the relationship between the powers of *p* dividing $f_E^{an}(T)$ and $f_E^{alg}(T)$. He can show that $f_E^{alg}(T)|f_E^{an}$ in $\mathbb{Z}_p[[T]]$ only when $G_{\mathbb{Q}} \rightarrow \operatorname{Aut}E[p]$ is surjective, and *p* is outside an explicit set of primes (see [9]), so it is fortunate that we can get some independent information on μ in the reducible cases.

2.1 μ -Annihilating Isogenies

It is not hard to refine Conjecture 1 to say precisely which curve isogenous to *E* has μ -invariant zero. Let $C \subset E(\overline{\mathbb{Q}})$ be a cyclic subgroup of order p^n , stable under $G_{\mathbb{Q}}$. Then the $G_{\mathbb{Q}}$ -module *C* has a unique composition series

$$C \supset pC \supset \cdots \supset p^{n-1}C = C[p] \supset 0,$$

with each composition factor isomorphic to C[p]. We say that *C* is ramified at *p* (resp., odd) if and only if the action of I_p (resp., the complex conjugation) on C[p] is non-trivial. The following lemma relates the μ -invariants of *E* and E/C.

Lemma 1 We have the formula

$$\mu(E/C)_p = \mu(E)_p + \delta,$$

where the value of δ , depending on the parity and ramification of the Galois action on *C*, is given by the table:

С	ramified	unramified
odd	-n	0
even	0	п

Proof Since *E* is good ordinary at *p*, reduction mod *p* gives an exact sequence of $G_{\mathbb{Q}_p}$ -modules

$$0 \to \mathcal{F} \to E[p^{\infty}] \to \tilde{E}[p^{\infty}] \to 0.$$

Consider the exact sequence $0 \to C \to E \to E' \to 0$ over \mathbb{Q} . Schneider [10] gives a formula relating the μ -invariants of *E* and *E'*:

$$\mu(E')_p - \mu(E)_p = \operatorname{ord}_p(|C(\mathbb{R})|) - \operatorname{ord}_p(|C \cap \mathcal{F}|).$$

On the Vanishing of μ -Invariants of Elliptic Curves over \mathbb{Q}

If $|C| = p, C \cap \mathcal{F}$ is C or 0, depending on whether C is ramified or not, so we get

	С	ramified	unramified
$\mu(E')_p = \mu(E)_p +$	odd	-1	0
	even	0	1

If *C* is cyclic of order p^n , we can factor the isogeny $E \to E' = E/C$ into *n* isogenies with kernels isomorphic to C[p]. Adding up, we get the lemma. For a much more general version, see [2, Theorem 2.2].

This allows us to say precisely which curve isogenous to *E* should have μ -invariant zero:

Corollary 1 Let $M \subset E(\overline{\mathbb{Q}})$ be the maximal subgroup which is

- *cyclic p-primary*,
- \mathbb{Q} -rational, $G_{\mathbb{Q}}$ -action on M odd and ramified at p.

Set $|M| = p^m$. Then

- (a) the minimal value of $\mu(E')_p$ as E' ranges over the isogeny class of E (over \mathbb{Q}) is attained for E' = E/M.
- (b) Conjecture 1 is equivalent to $\mu(E/M)_p = 0$, i.e. $\mu(E)_p = m$.
- (c) When E[p] fits into an exact sequence (1), Conjecture 1 is equivalent to the following claim: μ(E)_p = 0 ⇔
 - (1) Φ is even and ramified at p, or odd and unramified at p, or
 - (2) Φ is even and unramified p, and the exact sequence (1) is non-split (to prevent Ψ from lifting to an odd ramified subgroup, which would increase the μ -invariant).

The beauty of Conjecture 1 is that it allows us to read off the μ -invariant, which is a priori some sort of growth rate all the way up the cyclotomic tower, solely from the arithmetic of *E* over \mathbb{Q} .

Example The situation described in Corollary 1(c) is visible in the very first example, the isogeny class of curves of conductor 11, with p = 5. Of the three, $E = X_1(11)$ has a non-split sequence $0 \rightarrow \mathbb{Z}/5\mathbb{Z} \rightarrow E[5] \rightarrow \mu_5 \rightarrow 0$, and Greenberg [3] proves that $\mu(X_1(11))_5 = 0$. In general, the curve with vanishing μ is expected to be the optimal quotient of $X_1(N)$ in its isogeny class, and to have a number of other canonicality properties (see the forthcoming paper of Vatsal [12]).

2.2 Approaching $\mu(E)_p = 0$

This paper will outline an approach to the following special case of Greenberg's conjecture, as listed in Corollary 1, case (c)(2):

Conjecture 2 If E[p] lives in a non-split sequence of $G_{\mathbb{Q}}$ -modules $0 \to \mathbb{Z}/p\mathbb{Z} \to E[p] \to \mu_p \to 0$, then $\mu(E)_p = 0$.

In the good ordinary case we are dealing with, $X_p(E)$ is a finitely generated torsion Λ -module. The following simple, yet useful criterion for detecting the vanishing of the μ -invariant follows immediately from the structure theory of such Λ -modules:

Lemma 2 $\mu(E)_p = 0 \Leftrightarrow X_p(E)/pX_p(E) (= (\operatorname{Sel}_{p^{\infty}}(E_{/_{K_{\infty}}})[p])^{\vee})$ is a torsion $\mathbb{F}_p[[T]]$ -module.

Thus to show $\mu(E)_p = 0$, it suffices to prove that $\operatorname{Sel}_{p^{\infty}}(E_{/_{K_{\infty}}})[p]$ has $\mathbb{F}_p[[T]]$ -corank equal to zero. Up to finite kernel and cokernel, $\operatorname{Sel}_{p^{\infty}}(E_{/_{K_{\infty}}})[p]$ is just $\operatorname{Sel}_p(E_{/_{K_{\infty}}}) \subset H^1(K_{\infty}, E[p])$, the standard Selmer group for E[p].

Greenberg [3] and Greenberg–Vatsal [4] prove this in the case (c)(1) of Corollary 1 by fitting the Selmer group for E[p] between suitably defined Selmer groups for Φ and Ψ , and deducing from the Ferrero–Washington theorem that both of the latter have $\mathbb{F}_p[[T]]$ -corank zero. The assumptions on parity and ramification of Φ and Ψ are just right to make Ferrero–Washington applicable.

The main reason why the approach of Greenberg–Vatsal fails in the case (c)(2) is that for any reasonable Galois-theoretic definition of finite-singular structures for which we would get an exact sequence of the form

$$0 \to \operatorname{Sel}(\mathbb{Z}/p\mathbb{Z}_{/K_{\infty}}) \to \operatorname{Sel}(E[p]_{/K_{\infty}}) \to \operatorname{Sel}(\mu_{p/K_{\infty}})$$

the last Selmer group, $\text{Sel}(\mu_p/K_\infty)$, has $\mathbb{F}_p[[T]]$ -rank 1. The main idea for rescuing the argument is to carefully (and naturally) cut this group down to something small enough to be $\mathbb{F}_p[[T]]$ -torsion, yet big enough to receive a map from Sel(E[p]).

To do this, we replace the sequence (1) of $G_{\mathbb{Q}}$ -modules with the short exact sequence of quasi-finite flat group schemes over $X_0 = \text{Spec } \mathbb{Z}$ associated to the Néron model $\mathcal{E}_{/X_0}$ of E,

(2)
$$0 \to \mathbb{Z}/p\mathbb{Z} \to \mathcal{E}[p] \to \mu \to 0,$$

where μ is a quasi-finite group scheme isomorphic to μ_p over $\mathbb{Z}[1/N]$ and to {1} elsewhere. Here *N*, the "*p*-torsion conductor", is the product of all primes *l* for which $\mu(\bar{\mathbb{F}}_l) = \{1\}$. A good way to picture μ is as μ_p punctured over l|N. Since $\mu(\bar{\mathbb{F}}_l) = \mathcal{E}(\bar{\mathbb{F}}_l)/\mathbb{Z}/p\mathbb{Z}$, we get a "hole" in μ at *l* if and only if $\mathcal{E}[p](\bar{\mathbb{F}}_l) \cong \mathbb{Z}/p\mathbb{Z}$. For this to happen, *E* must have bad reduction at *l*. Specifically, l|N if and only if the reduction of *E* at *l* is

- multiplicative, and $p \nmid c_l$, the number of connected components of $\mathcal{E}_{/\mathbb{F}_l}$, or
- additive, in which case the presence of a rational torsion point forces p = 3, and the reduction is of type IV or IV*.

The sequence (2) is base-change invariant in the sense that its base-change to X_n gives the structure of the *p*-torsion of the Néron model of $E_{/K_n}$.

We concomitantly replace the Galois-theoretic Selmer groups

$$\operatorname{Sel}_p(E_{/_{K_n}}) \subset H^1(K_n, E[p])$$

with the flat cohomology groups $H^1_{fl}(X_n, \mathcal{E}[p])$.

Lemma 3 There are maps $H^1_{fl}(X_{\infty}, \mathcal{E}[p]) \to Z \leftarrow \operatorname{Sel}_p(E_{/\kappa_{\infty}})$ with finite kernel and cokernel. Thus $H^1_{fl}(X_{\infty}, \mathcal{E}[p])$ is $\mathbb{F}_p[[T]]$ -torsion if and only if $\operatorname{Sel}_p(E_{/\kappa_{\infty}})$ is. To show that $\mu(E)_p = 0$, it suffices to prove that $H^1_{fl}(X_{\infty}, \mathcal{E}[p])$ has corank 0 as an $\mathbb{F}_p[[T]]$ -module.

Proof For the first part, see [6, Prop. 6.4]. The second claim is Lemma 2.

We will thus focus on showing $H^1_{fl}(X_{\infty}, \mathcal{E}[p])$ is a co-torsion $\mathbb{F}_p[[T]]$ -module. Over X_{∞} we get the long exact sequence in flat cohomology associated to (2)

$$(3) \qquad H^{1}_{fl}(X_{\infty},\mathbb{Z}/p\mathbb{Z}) \to H^{1}_{fl}(X_{\infty},\mathcal{E}[p]) \to H^{1}_{fl}(X_{\infty},\mu) \xrightarrow{\delta} H^{2}_{fl}(X_{\infty},\mathbb{Z}/p\mathbb{Z}).$$

To show that $\mu(E)_p = 0$, we will see below that it suffices to find an $\mathbb{F}_p[[T]]$ -divisible class $b \in H^1_{fl}(X_{\infty}, \mu)$ such that $\delta b \neq 0$. How to go about verifying that $\delta b \neq 0$? A naïve idea, which will ultimately work, would be to find a functional $\alpha: H^2_{fl}(X_{\infty}, \mathbb{Z}/p\mathbb{Z}) \to \mathbb{Q}_p/\mathbb{Z}_p$ such that $\alpha(\delta b) \neq 0$. We compute the group of all such functionals:

$$H^2_{fl}(X_{\infty}, \mathbb{Z}/p\mathbb{Z})^{\vee} = (\lim_{\to} H^2_{fl}(X_n, \mathbb{Z}/p\mathbb{Z}))^{\vee}$$
$$= \lim_{\to} H^2_{fl}(X_n, \mathbb{Z}/p\mathbb{Z})^{\vee} \cong \lim_{\to} H^1_{fl}(X_n, \mu_p).$$

The last isomorphism comes from the existence of a perfect *global duality pairing*, see [7]:

$$H^1_{fl}(X_n, \mu_p) \times H^2_{fl}(X_n, \mathbb{Z}/p\mathbb{Z}) \to \mathbb{Q}_p/\mathbb{Z}_p.$$

Notice that by Kummer theory

$$\lim \mathfrak{O}_n^{\times}/\mathfrak{O}_n^{\times p} \hookrightarrow \lim H^1_{fl}(X_n, \mu_p),$$

so we might expect to show $\delta b \neq 0$ by evaluating on it a functional coming from a norm-coherent sequence of units (mod *p*-th powers).

At the heart of this paper will thus be an explicit computation of the global duality pairing $H_{fl}^2(X_n, \mathbb{Z}/p\mathbb{Z}) \times H_{fl}^1(X_n, \mu_p) \to \mathbb{Q}_p/\mathbb{Z}_p$. To be precise, we will produce an explicit pairing formula which will allow us to deduce that $\mu(E)_p = 0$ in some cases. The mere existence of the formula will suffice for us; that it actually computes the canonically defined global duality pairing will not be spelled out.

3 Strategy of Proof

All module-theoretic notions used here ("torsion", "rank", *etc.*) will refer to $\mathbb{F}_p[[T]]$ -modules unless explicitly stated otherwise. In particular, M_{div} will refer to the maximal $\mathbb{F}_p[[T]]$ -divisible submodule of a $\mathbb{F}_p[[T]]$ -module M.

Proposition 1 $\mu(E)_p = 0$ if and only if there exists a $b \in H^1_{fl}(X_\infty, \mu)_{div}$ such that $\delta b \neq 0$.

Proof From (3) we extract the short exact sequence

$$0 \leftarrow H^1_{fl}(X_{\infty}, \mathbb{Z}/p\mathbb{Z})^{\vee} \leftarrow H^1_{fl}(X_{\infty}, \mathcal{E}[p])^{\vee} \leftarrow (\ker \delta)^{\vee} \leftarrow 0.$$

It suffices to show that the flanking $\mathbb{F}_p[[T]]$ -modules $H_{fl}^1(X_{\infty}, \mathbb{Z}/p\mathbb{Z})^{\vee}$ and $(\ker \delta)^{\vee}$ both have rank 0. For the former, this is a straightforward consequence of the Ferrero– Washington theorem. The latter is equal to the cokernel of $\delta^{\vee}: H_{fl}^2(X_{\infty}, \mathbb{Z}/p\mathbb{Z})^{\vee} \to$ $H_{fl}^1(X_{\infty}, \mu)^{\vee}$. Let *F* be the maximal free quotient of $H_{fl}^1(X_{\infty}, \mu)$. Since, up to finite kernel and cokernel, $H_{fl}^1(X_{\infty}, \mu)^{\vee} \cong H_{fl}^1(X_{\infty}, \mu_p)^{\vee} \cong (\mathbb{O}_{\infty}^{\times}/\mathbb{O}_{\infty}^{\times p})^{\vee}$ (see Lemma 4), and the latter is easily seen to be of $\mathbb{F}_p[[T]]$ -rank 1, we conclude that *F* is also of rank 1. To show that the cokernel of δ^{\vee} is $\mathbb{F}_p[[T]]$ -torsion, it is therefore enough to show that the composed map

$$H^2_{fl}(X_\infty, \mathbb{Z}/p\mathbb{Z})^{\vee} \xrightarrow{\delta^{\vee}} H^1_{fl}(X_\infty, \mu)^{\vee} \to F$$

is non-zero. Dualizing, we need to show that the map

$$H^1_{fl}(X_{\infty},\mu)_{div} \xrightarrow{o} H^2_{fl}(X_{\infty},\mathbb{Z}/p\mathbb{Z})$$

is non-zero, as claimed.

So, we start with an $\mathbb{F}_p[[T]]$ -divisible $b \in H^1_{fl}(X_\infty, \mu)$, and we want to show $\delta b \neq 0$. The class *b* will live on some finite level, say $b \in H^1_{fl}(X_n, \mu)$. Our task can be broken up into two:

1. Verify that $\delta b \neq 0$ in $H^2_{fl}(X_n, \mathbb{Z}/p\mathbb{Z})$.

2. Verify that δb remains non-zero under the restriction

$$H^2_{fl}(X_n, \mathbb{Z}/p\mathbb{Z}) \to H^2_{fl}(X_\infty, \mathbb{Z}/p\mathbb{Z}).$$

3.1 Finite-Level Computation

As we will be working over the single scheme $X_n = \text{Spec } \mathcal{O}_n$, for the duration of this subsection we suppress the *n* from our notations. Thus $K = K_n$, $\mathcal{O} = \mathcal{O}_n$, $X = X_n$, *etc.*

As $\mathbb{Z}/p\mathbb{Z}_{/X}$ is a smooth group scheme, its flat cohomology is equal to its étale cohomology (denoted with an unadorned $H^*(X, \mathbb{Z}/p\mathbb{Z})$). The following proposition will give us something of a handle on the elements on $H^2(X, \mathbb{Z}/p\mathbb{Z})$:

Proposition 2 The group $H^2(X, \mathbb{Z}/p\mathbb{Z})$ fits into the following long exact Gysin sequence

$$(4) \quad 0 \to H^{1}(X, \mathbb{Z}/p\mathbb{Z}) \to \operatorname{Hom}(G_{K}, \mathbb{Z}/p\mathbb{Z}) \to \bigoplus_{\nu \nmid \infty} \operatorname{Hom}(U_{\nu}, \mathbb{Z}/p\mathbb{Z})$$
$$\xrightarrow{d_{2}} H^{2}(X, \mathbb{Z}/p\mathbb{Z}) \to H^{2}(K, \mathbb{Z}/p\mathbb{Z})$$

Here U_v denotes the units of the localization $\mathcal{O}_{K,v}$, and the sum is taken over all finite places of *K*. (The meaning of d_2 is explained in the proof.)

Proof Let *i*: Spec $K \to X$ be the inclusion of the generic point. As étale sheaves, $\mathbb{Z}/p\mathbb{Z}_{/X} = i_*(\mathbb{Z}/p\mathbb{Z}_{/\text{Spec }K})$ (note that this fails in the flat topology). Granting for the moment the identification $H^0(X, R^1i_*\mathbb{Z}/p\mathbb{Z}) = \bigoplus_{\nu \nmid \infty} \text{Hom}(U_{\nu}, \mathbb{Z}/p\mathbb{Z})$, the long exact sequence (4) becomes just the low-dimensional terms of the Grothendieck spectral sequence for the composition of functors i_* and $H^0(X, -)$:

$$E_2^{m,n} = H^m(X, \mathbb{R}^n i_* \mathbb{Z}/p\mathbb{Z}) \Rightarrow H^{m+n}(K, \mathbb{Z}/p\mathbb{Z}),$$

and $d_2: E_2^{01} \to E_2^{20}$ the corresponding second-stage diagonal differential.

To prove $H^0(X, R^1i_*\mathbb{Z}/p\mathbb{Z}) = \bigoplus_{\nu \nmid \infty} \operatorname{Hom}(U_{\nu}, \mathbb{Z}/p\mathbb{Z})$, we compute the stalks of $R^1i_*\mathbb{Z}/p\mathbb{Z}$ at geometric points of X. At the geometric generic point $\bar{\eta}$: Spec $\bar{K} \to X$, the stalk is $(R^1i_*\mathbb{Z}/p\mathbb{Z})_{\bar{\eta}} = H^1(\bar{K}, \mathbb{Z}/p\mathbb{Z}) = 0$. At a geometric special point $\bar{\nu}$: Spec $\mathbb{F}_{\nu} \to X$ we get $(R^1i_*\mathbb{Z}/p\mathbb{Z})_{\bar{\nu}} = \operatorname{Hom}(I_{\bar{\nu}/\nu}, \mathbb{Z}/p\mathbb{Z})$, which under the conjugation action of Frobenius Fr_{ν} becomes an étale sheaf on Spec \mathbb{F}_{ν} . From these computations we conclude that $R^1i_*\mathbb{Z}/p\mathbb{Z}$ is an étale skyscraper sheaf on the one-dimensional scheme *X*, and that therefore

$$R^1i_*\mathbb{Z}/p\mathbb{Z}\cong \bigoplus_{\nu
eq\infty}i_{\nu*}\operatorname{Hom}(I_{\bar{\nu}/\nu},\mathbb{Z}/p\mathbb{Z}).$$

The desired identification used above follows from local class field theory:

$$\operatorname{Hom}(I_{\bar{\nu}/\nu},\mathbb{Z}/p\mathbb{Z})^{\operatorname{Fr}_{\nu}=1}\cong\operatorname{Hom}(U_{\nu},\mathbb{Z}/p\mathbb{Z}),$$

for any choice of $\bar{v}|v$.

Say we are lucky enough to have $\delta b \in \ker(H^2(X, \mathbb{Z}/p\mathbb{Z}) \to H^2(K, \mathbb{Z}/p\mathbb{Z}))$. The technical core of this paper is the explicit computation of a lift of δb via d_2 , the spectral sequence differential, to a collection of functions $(f_v: U_v \to \mathbb{Z}/p\mathbb{Z})$, almost all of which vanish. Having computed this lift, the following proposition will give us a sufficient condition for the lift to *not* be a restriction of a homomorphism $f: G_K \to \mathbb{Z}/p\mathbb{Z}$.

For any finite place ν of K, we have the natural injection $\mathbb{O}_K^{\times} \hookrightarrow U_{\nu}, a \mapsto a_{\nu}$.

Proposition 3 To show $\delta b \neq 0 \in H^2(X, \mathbb{Z}/p\mathbb{Z})$, it suffices to show that there is a global unit $a \in \mathbb{O}^{\times}$ such that

$$\sum_{\nu \nmid \infty} f_{\nu}(a_{\nu}) \neq 0$$

Remark Though we will not prove it, the sum on the left is nothing but the pairing $\langle a, b \rangle$ induced from the global duality pairing by the composition

$$\begin{split} \mathfrak{O}^{\times}/\mathfrak{O}^{\times p} \times H^1_{fl}(X,\mu) &\to H^1_{fl}(X,\mu_p) \times H^1_{fl}(X,\mu) \\ & \xrightarrow{id \times \delta} H^1_{fl}(X,\mu_p) \times H^2(X,\mathbb{Z}/p\mathbb{Z}) \to \mathbb{Q}_p/\mathbb{Z}_p. \end{split}$$

819

Proof To show $\delta b \neq 0$ it suffices, by the exact sequence (4), to show that the collection $(f_{\nu}: U_{\nu} \to \mathbb{Z}/p\mathbb{Z})$ is not the restriction of a global homomorphism $f: G_{K} \to \mathbb{Z}/p\mathbb{Z}$. The restriction is given simply by composing along the top row of the diagram

where rec is the Artin map of global class field theory. If $(f_v: U_v \to \mathbb{Z}/p\mathbb{Z})$ were to arise in this way, we would have that

$$\sum_{\nu \nmid \infty} f_{\nu}(a_{\nu}) = f \circ \operatorname{rec}\left(\prod_{\nu \nmid \infty} a_{\nu}\right) = f \circ \operatorname{rec}(a) = 0,$$

since $f \circ \text{rec}|_{K^{\times}} = 0$ by global reciprocity (and the fact that $f \circ \text{rec}$ is trivial on the Archimedean components of \mathbb{A}_{K}^{\times} , since *p* is odd).

3.2 Moving up the Tower

Reinstate the *n* in the notation: $b \in H^1_{fl}(X_n, \mu)$ *etc.* Say we have shown that $0 \neq \delta b \in H^2(X_n, \mathbb{Z}/p\mathbb{Z})$ by finding, as above, a collection $(f_{n,\nu} : U_{n,\nu} \to \mathbb{Z}/p\mathbb{Z})$ lifting δb and a global unit $a_n \in \mathbb{O}_n^{\times}$ such that

$$\sum_{\nu \nmid \infty \text{ of } K_n} f_{n,\nu}(a_{n,\nu}) \neq 0.$$

Proposition 4 Say $a_n = N_{K_{n+1}/K_n}(a_{n+1})$. Then

$$0 \neq \operatorname{res}(\delta b) \in H^2(X_{n+1}, \mathbb{Z}/p\mathbb{Z}).$$

Proof Throughout the proof, *w* will denote a generic finite place of K_{n+1} , *v* the place of K_n below it, and $N_{w/v}$ the corresponding local norm. Let us compare the relevant parts of the long exact sequence (4) for X_n and X_{n+1} :

$$H^{1}(K_{n}, \mathbb{Z}/p\mathbb{Z}) \longrightarrow \bigoplus_{\nu} \operatorname{Hom}(U_{n,\nu}, \mathbb{Z}/p\mathbb{Z}) \xrightarrow{d_{2}} H^{2}(X_{n}, \mathbb{Z}/p\mathbb{Z})$$

$$\stackrel{\operatorname{res}}{\longrightarrow} \bigvee \qquad \stackrel{\circ N_{w/\nu}}{\longrightarrow} \bigvee \qquad \stackrel{\operatorname{res}}{\longrightarrow} \bigvee H^{1}(K_{n+1}, \mathbb{Z}/p\mathbb{Z}) \xrightarrow{d_{2}} H^{2}(X_{n+1}, \mathbb{Z}/p\mathbb{Z})$$

The middle vertical map sends $(f_{n,v}: U_{n,v} \to \mathbb{Z}/p\mathbb{Z})$ to $(f_{n+1,w}: U_{n+1,w} \to \mathbb{Z}/p\mathbb{Z})$ given by $f_{n+1,w} = f_{n,v} \circ N_{w/v}$.

On the Vanishing of μ -Invariants of Elliptic Curves over \mathbb{Q}

The collection $(f_{n+1,w})$ is a lifting of res $(\delta b) \in H^2(X_{n+1}, \mathbb{Z}/p\mathbb{Z})$. We have

$$\sum_{w \text{ of } K_{n+1}} f_{n+1,w}(a_{n+1,w}) = \sum_{v \text{ of } K_n} \sum_{w|v} f_{n,v}(N_{w/v}(a_{n+1,w})) = \sum_{v} f_{n,v}(a_{n,v}) \neq 0,$$

by assumption. Thus, essentially the same computation as on the *n*-th level shows that $\delta b \neq 0$ on the (n + 1)-st level also.

For δb to remain non-zero all the way to $H^2(X_{\infty}, \mathbb{Z}/p\mathbb{Z})$, it will suffice that the unit a_n is the norm from \mathbb{O}_k^{\times} for all $k \ge n$, in other words a universal norm in the cyclotomic tower (at least up to *p*-th powers). A good supply of such a_n 's comes from cyclotomic units.

4 The Structure of $H^1_{fl}(X_{\infty}, \mu)$

Remember that μ is a quasi-finite flat group scheme over Spec \mathbb{Z} , isomorphic to μ_p over Spec $\mathbb{Z}[1/N]$ and to $\{1\}$ over l|N. On Spec \mathbb{Z} , μ represents a flat sheaf whose value at an *irreducible* flat open $U \to \text{Spec } \mathbb{Z}$ is given by

$$\mu(U) = \begin{cases} \mu_p(\mathcal{O}_U), & \text{if } \frac{1}{N} \in \Gamma(U, \mathcal{O}_U) \\ 1 & \text{if } \frac{1}{N} \notin \Gamma(U, \mathcal{O}_U) \end{cases}$$

Lemma 4 Over X_{∞} , we have an exact sequence of $\mathbb{F}_{p}[[T]]$ -modules

,

(5)
$$0 \to \bigoplus_{\nu_{\infty}|N} \mu_{p}(\mathbb{F}_{\nu_{\infty}}) \to H^{1}_{fl}(X_{\infty}, \mu) \to H^{1}_{fl}(X_{\infty}, \mu_{p}) \to 0.$$

The sum in the first term ranges over the finitely many places $v_{\infty}|N$ *of* K_n *.*

Proof For every $n, 1 \le n \le \infty$, the "puncturing" of μ_p at places of X_n dividing N is captured in the exact sequence of flat sheaves over X_n :

$$0 o \mu o \mu_p o igoplus_{v_n|N} i_{v_n*} \mu_p o 0,$$

where i_{v_n} : Spec $\mathbb{F}_{v_n} \to X_n$.

Taking cohomology, we get a long exact sequence

(6)
$$0 = \mu_p(\mathcal{O}_n) \to \bigoplus_{\nu_n \mid N} \mu_p(\mathbb{F}_{\nu_n}) \to H^1_{fl}(X_n, \mu) \to H^1_{fl}(X_n, \mu_p)$$
$$\to \bigoplus_{\nu_n \mid N} H^1_{fl}(X_n, i_{\nu_n *} \mu_p) \hookrightarrow \bigoplus_{\nu_n \mid N} H^1_{fl}(\mathbb{F}_{\nu_n}, \mu_p) = \bigoplus_{\nu_n \mid N} \mathbb{F}_{\nu_n}^{\times} / \mathbb{F}_{\nu_n}^{\times p}.$$

The last inclusion comes from the Grothendieck spectral sequence for i_{ν_n*} . After passing to the direct limit of these exact sequences, the first (non-zero) term in (6) stabilizes to the finite group $\bigoplus_{\nu_{\infty}|N} \mu_p(\mathbb{F}_{\nu_{\infty}})$, since there are only finitely many primes $\nu_{\infty}|N$ of K_{∞} . The last term in (6) vanishes in the limit, since for high *n*, all the elements of $\mathbb{F}_{\nu_n}^{\times}$ become *p*-th powers in $\mathbb{F}_{\nu_{n+1}}^{\times}$.

In particular, we get that $H^1_{fl}(X_{\infty}, \mu)_{div} \twoheadrightarrow H^1_{fl}(X_{\infty}, \mu_p)_{div} \supseteq \mathcal{O}_{\infty}^{\times}/\mathcal{O}_{\infty}^{\times p}$, the inclusion coming from Kummer theory along with the easy fact that $\mathcal{O}_{\infty}^{\times}/\mathcal{O}_{\infty}^{\times p}$ is $\mathbb{F}_p[[T]]$ -divisible. Our goal now is to find explicit Čech cocycles lifting the classes $b \in \mathcal{O}_{\infty}^{\times}/\mathcal{O}_{\infty}^{\times p}$ to $H^1_{fl}(X_{\infty}, \mu)$.

4.1 Illustration

Before we do this, let us do the lifting construction in a slightly different setting which will illustrate the main idea with a maximum of transparency. Take a field *F* containing μ_p , and a prime $v \nmid p$ of *F*. Note that $\mu_p \subset \mathbb{F}_v$. Let $Y = \text{Spec } \mathcal{O}_F$, and let μ be the flat scheme over *Y* obtained from μ_p by puncturing only over *v*. As above, we have the diagram

The diagonal map is nothing but the reduction mod v. Take a $b \neq 1$ in $\mathcal{O}_F^{\times}/\mathcal{O}_F^{\times p}$ such that b is a p-th power mod v. We will lift the corresponding class $b \in H_{fl}^1(Y, \mu_p)$ to $H_{fl}^1(Y, \mu)$.

First of all, the map $\mathbb{O}_F^{\times}/\mathbb{O}_F^{\times p} \to H_{fl}^1(Y, \mu_p)$ is the coboundary map for the Kummer sequence of flat sheaves over $Y, 0 \to \mu_p \to \mathbb{G}_m \xrightarrow{p} \mathbb{G}_m \to 0$. This coboundary is computed in the standard way: by abuse of notation start with $b \in \mathbb{O}_F^{\times} = \mathbb{G}_m(Y)$, take its "*p*-th root" as a flat 0-cochain y' of \mathbb{G}_m , and compute its Čech coboundary. Explicitly, fix once and for all a $b^{1/p}$ and let $L = F(b^{1/p}), G = \text{Gal}(L/F)$. The cochain $(V', b^{1/p} \in \mathbb{G}_m(V'))$ on the flat open cover $V' = \text{Spec } \mathbb{O}_L \xrightarrow{f} Y$ can then be taken as y'.

An easy scheme-theoretic computation gives the decomposition into irreducibles

$$V' \times_Y V' = \bigcup_{\sigma \in G} V'_{\sigma},$$

where each V'_{σ} is a copy of V', and the *p* copies are all glued together at the primes ramified in *L*/*F*, all of which divide *p*. The two projections $p_1, p_2: V' \times_Y V' \rightrightarrows V'$ are given as follows on any component V'_{σ} :

(7)
$$p_1: V'_{\sigma} \cong V' \xrightarrow{id} V', \quad p_2: V'_{\sigma} \cong V' \xrightarrow{\sigma} V'.$$

On the Vanishing of μ -Invariants of Elliptic Curves over \mathbb{Q}

The Čech coboundary $\delta y' = p_2^* y'/p_1^* y'$ is a 1-cocycle for μ_p whose value on V'_{σ} is given by

$$(\delta y')_{\sigma} = (b^{1/p})^{\sigma-1}.$$

This is clearly *not* a cocycle for μ : for $\sigma \neq 1$, the component V'_{σ} has a point over ν , yet supports a non-trivial root of unity, $(\delta \gamma')_{\sigma}$.

We can, however, tweak y' to get a cocycle for μ . For this, we will refine V' to a Zariski open $V \subset V'$. Since $b \pmod{v} \in \mathbb{F}_v^{\times p}$, v splits completely in L/K. The fiber $f^{-1}(v)$ is a *G*-orbit consisting of p points $\{w_1, \ldots, w_p\}$. Remove all but one, setting

$$V = V' \setminus \{w_2, \ldots, w_p\}.$$

The picture of $V \hookrightarrow V'$ (for p = 3) is given in Figure 1 (the circles represent the removed points).

Figure 1

Lemma 5 $V \times_Y V$ is a union of p irreducible components

$$V \times_Y V = \bigcup_{\sigma \in G} W_{\sigma}$$

where $W_{\sigma} \subset V'_{\sigma}$. $W_1 \cong V$, and $W_{\sigma} \cong V \setminus \{w_1\} \cong V' \setminus f^{-1}(v)$ for $\sigma \neq 1$.

Proof We have $V \times_Y V = p_1^{-1}(V) \cap p_2^{-1}(V) \subset V' \times_Y V'$. We obtain the claimed decomposition by setting $W_{\sigma} = (V \times_Y V) \cap V_{\sigma}$. Given the explicit description (7) of the projections, and identifying V'_{σ} with V', we find the identifications

Intersecting the two yields the identification diagram

For $\sigma \neq 1$, the picture is in Figure 2.

Since *v* splits in L/K, $w_1 \neq \sigma^{-1}w_1$, and we see that W_{σ} has no points over *v*.

The cocycle δy , given on W_{σ} by $(\delta y)_{\sigma} = (b^{1/p})^{\sigma-1}$ is indeed a cocycle for μ . If $\sigma \neq 1$, $(\delta y)_{\sigma}$ is a non-trivial *p*-th root of 1, but that is in $\mu(W_{\sigma})$ since the Lemma shows there are no points in W_{σ} above *v*. This procedure for making a cocycle for μ can clearly be performed simultaneously for several *v*'s dividing *N*.

4.2 The General Computation

We will now repeat the same construction in our main setting, *i.e.*, over $K_n \not\supseteq \mu_p$. We start with the class $b \in \mathcal{O}_n^{\times}/\mathcal{O}_n^{\times p} \to \mathcal{O}_{\infty}^{\times}/\mathcal{O}_{\infty}^{\times p} \hookrightarrow H^1_{fl}(X_{\infty}, \mu_p)$, and we assume that *b* is a *p*-th power mod *v* for all *v*|*N*. This can always be achieved by increasing the level *n*. We will only work at level *n*, so we again suppress the index *n*.

The inclusion of rings

$$\mathcal{O} \hookrightarrow \mathcal{O}[y]/(y^p - b) = B,$$

gives us a flat open cover $U' \to X$, and the 0-cochain (U', y) is a "*p*-th root" of $b \in H^0(X, \mathbb{G}_m)$ whose Čech coboundary represents the class $b \in H^1_{fl}(X, \mu_p)$. Inspired by the above illustration, we will puncture U' to make a cocycle for μ . Let $v_1, \ldots, v_r \in X$ be the primes dividing N. Since by assumption $b \equiv *^p \pmod{v_i}$, there is at least one $w_i | v_i$ in U' with $\mathbb{F}_{w_i} = \mathbb{F}_{v_i}$, with p choices if $\mu_p \subset \mathbb{F}_{v_i}$. We set

$$U = U' \setminus \{w | v_i : w \neq w_i\}.$$

Let $F = K(\mu_p)$, $Y = \text{Spec } \mathcal{O}_F$, $V = U \times_X Y$. Since $\mathbb{F}_{w_i} = \mathbb{F}_{v_i}$, all the primes of V above w_i lie above distinct primes of Y, so $V \to Y$ is a cover of the sort we considered in the illustration. In particular, $V \times_Y V = (U \times_X U) \times_X Y = \bigcup W_{\sigma}$, and no $W_{\sigma}, \sigma \neq 1$ has a point above N. The same is thus true for the irreducible components of $U \times_X U$, so that the Čech coboundary of (U, γ) is indeed a 1-cocycle for μ .

What if we had picked a different cover *U*? Specifically, when $\mu_p \subset \mathbb{F}_{v_i}$, we can pick any prime of *B* above v_i to serve as the w_i . Changing w_i corresponds precisely to changing our lift by an element of $\mu_p(\mathbb{F}_{v_i}) \subset \bigoplus_{v|N} i_{v*}\mu_p(\mathbb{F}_v) \hookrightarrow H^1_{fl}(X_n, \mu)$. Since the primes w|v of *B* of degree 1 are in a one-to-one correspondence with the *p*-th roots $t_v \in \mathbb{F}_v$ of *b* mod *v*, we have proved the following Proposition, which establishes our standard explicit notation for elements of $H^1_{fl}(X_n, \mu)$:

Proposition 5 Pick $b \in \mathcal{O}_n^{\times}/\mathcal{O}_n^{\times p}$, and assume that for all primes v|N of K_n , $b \equiv t_v^p$ (mod v) for some $t_v \in \mathbb{F}_v$. We denote by $(b, \{t_v\}_{v|N})$ the cohomology class $\delta(U, y) \in$ $H^1_{fl}(X_n, \mu)$ constructed above using this choice of t_v 's. This notation gives a one-to-one

On the Vanishing of μ -Invariants of Elliptic Curves over \mathbb{Q}

correspondence between the choices $(t_{\nu})_{\nu|N} \in \prod_{\nu|N} \mathbb{F}_{\nu}^{\times} / \mathbb{F}_{\nu}^{\times p}$ of roots of b mod all the places $\nu|N$ of K_n , and the lifts of $b \in \mathfrak{O}_n^{\times} / \mathfrak{O}_n^{\times p} \subset H^1_{fl}(X_n, \mu_p)$ to $H^1_{fl}(X_n, \mu)$.

4.3 Divisible Lifts

We know that $\mathcal{O}_{\infty}^{\times}/\mathcal{O}_{\infty}^{\times p} \subset H^1_{fl}(X_{\infty}, \mu_p)_{\text{div}}$. In terms of the preceding description, which lifts are divisible?

Since $H^1_{fl}(X_{\infty}, \mu)/H^1_{fl}(X_{\infty}, \mu)_{div}$ is dual to the torsion of the $\mathbb{F}_p[[T]]$ -module $H^1_{fl}(X_{\infty}, \mu)^{\vee}$, there is an *r* such that

$$T^{p^r}H^1_{fl}(X_{\infty},\mu)\subseteq H^1_{fl}(X_{\infty},\mu)_{\rm div}.$$

We may as well assume *r* to be such that all the $v_r|N$ are inert in K_{∞}/K_r . T^{p^r} acts as $\rho - 1 := \gamma^{p^r} - 1$.

Proposition 6 Pick $n \ge r$ large enough so that we can find a $b \in \mathcal{O}_n^{\times}/\mathcal{O}_n^{\times p}$, and a $u \in \mathcal{O}_n^{\times}/\mathcal{O}_n^{\times p}$ satisfying the following two conditions:

- $b = u^{\rho-1}$, and
- for every v|N a place of K_n we can find an $s_v \in \mathbb{F}_v^{\times}$ such that $s_v^p \equiv u \pmod{v}$.

Since ρ fixes all the v_r 's, it will act on the residue field extension $\mathbb{F}_{v_n}/\mathbb{F}_{v_r}$, and we set $t_v = s_v^{\rho-1}$ (so that $b \equiv t_v^p \pmod{v}$). Then $(b, \{t_v\}_{v|N}) \in H^1_{fl}(X_\infty, \mu)_{div}$.

Proof Since $T^{p'}(u, \{s_{\nu}\}) = (u^{\rho-1}, \{s_{\nu}^{\rho-1}\}) = (b, \{t_{\nu}\})$, our choice of *r* guarantees that $(b, \{t_{\nu}\}) \in H^{1}_{fl}(X_{\infty}, \mu)_{div}$.

5 The Fake Coboundary Map

Let $F: \mathcal{A} \to \mathcal{B}$ be a left exact functor between Abelian categories. Consider an exact sequence in \mathcal{A} , $0 \to A \to B \to C$. The last map need not be onto, so we do not in general get a coboundary between the derived functors $\mathbb{R}^n F(C) \xrightarrow{\partial} \mathbb{R}^{n+1} F(A)$. We will try to salvage as much of a coboundary map as possible in this slightly more general setting. So, choose the injective resolutions $0 \to A \to I_A^- = (I_A^0 \to I_A^1 \to \cdots)$, and similarly I_B^-, I_C^- fitting into the diagram

$$0 \longrightarrow I_{A}^{i} \longrightarrow I_{B}^{i} \longrightarrow I_{C}^{i}$$

$$\uparrow \qquad \uparrow \qquad \uparrow$$

$$0 \longrightarrow A \longrightarrow B \longrightarrow C$$

The functor *F* induces a ladder

: :

:

The standard "lift-and-differentiate" recipe for the coboundary fails already at the "lift" stage, since $F(I_B^n) \rightarrow F(I_C^n)$ is not necessarily onto. The recipe will still apply to the "liftable" cocycles:

Definition 1 Let $\tilde{F}(I_C^n) = \ker d \cap \operatorname{im}(F(I_B^n) \to F(I_C^n))$ be the group of liftable cocycles in $F(I_C^n)$. Given $x \in \tilde{F}(I_C^n)$, we can lift it to $\tilde{x} \in F(I_B^n)$, and then take $d\tilde{x} \in F(I_B^{n+1})$, which is the image of a $y \in F(I_A^{n+1})$, since x was closed. The cohomology class of $y \in R^{n+1}F(A)$, denoted ∂x , does not depend on the choice of lifting \tilde{x} , and gives us a well-defined "fake coboundary map"

$$\partial \colon \tilde{F}(I_C^n) \to R^{n+1}F(A).$$

The main point to appreciate here is that the fake coboundary *does not* necessarily descend to $\mathbb{R}^n F(C)$, and so indeed depends on the injective resolutions chosen: even if a liftable $x \in F(I_C^n)$ is exact, x = dy, ∂x need not be 0. The usual Snake Lemma argument proving that ∂x is exact needs a lift of y, which need not exist.

6 A Spectral Sequence Lemma

Here is a little technical lemma, giving a sort of *dévissage* for general Grothendieck spectral sequences. Let $\mathcal{A} \xrightarrow{F} \mathcal{B} \xrightarrow{G} \mathcal{A}b$ be the setup for a Grothendieck spectral sequence: \mathcal{A}, \mathcal{B} are Abelian categories, $\mathcal{A}b$ is the category of Abelian groups, F, G are covariant left-exact functors, and F takes injectives of \mathcal{A} into G-acyclic objects of \mathcal{B} . Let $M \in \mathcal{A}$. Consider an injective resolution of M,

$$0 \to M \to I_M^0 \to I_M^1 \to \cdots,$$

apply *F* to it and find injective resolutions $0 \to F(M) \to J_M^i, 0 \to F(I^q) \to J_M^{\cdot q}$ by *B*-injectives fitting into a diagram

Then $E_{0M}^{pq} = G(J_M^{pq})$ is a double complex with anti-commuting differentials d and δ , which yields a spectral sequence with E_2 -term $E_{2M}^{pq} = (R^p F \circ R^q G)(M)$. The sequence converges:

$$(R^{p}F \circ R^{q}G)(M) \Rightarrow R^{p+q}(G \circ F)(M).$$

As for the E_1 -term, we have in particular $E_{1M}^{p0} = \ker d \colon E_{0M}^{p0} \to E_{0M}^{p1}$, which is none other than $G(J_M^p) = \ker d \colon G(J_M^{00}) \to G(J_M^{01})$.

Take an exact sequence in \mathcal{A} , $0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0$. The goal is to prove a lemma relating the above spectral sequence of *C* to that of *A*: suitable coboundary maps are asserted to commute with diagonal spectral sequence differentials d_1 and d_2 . First, find compatible \mathcal{A} -injective resolutions of *A*, *B* and *C*:

$0 \rightarrow$	I_A^{\cdot}	\rightarrow	I_B^{\cdot}	\rightarrow	I_C^{\cdot}	$\rightarrow 0$
	Î		Î		Î	
$0 \rightarrow$	Α	\rightarrow	В	\rightarrow	С	$\rightarrow 0$

Since I_A^q is injective, we get an exact sequence $0 \to F(I_A^q) \to F(I_B^q) \to F(I_C^q) \to 0$ for every q, and then choose the double complexes J_A^{pq} , *etc.* to fit in the three-dimensional ladder whose typical slice is:

The complex $G(J_C)$ computes the derived functors R G on F(C). Let $\tilde{E}_C^1 = \ker \delta \cap \operatorname{im}(G(J_B^1) \to G(J_C^1))$ be the group of liftable cochains in $G(J_C^1) = E_{1C}^{10}$, (so $\tilde{E}_C^1 = \tilde{G}(J_C^1)$, in the notation of Section 5). Set $\tilde{E}_C^0 = \delta^{-1}\tilde{E}_C^1 \subseteq E_{1C}^{00}$. We are now ready to state:

Proposition 7 There exist coboundary maps $\partial_{v} \colon E_{1C}^{00} \to E_{1A}^{01}$ and $\partial_{h} \colon \tilde{E}_{C}^{1} \to E_{2A}^{20}$ such

https://doi.org/10.4153/CJM-2005-032-9 Published online by Cambridge University Press

that for any $a \in \tilde{E}_{C}^{0}$, $\partial_{v}a$ lands inside $E_{2A}^{01} \subseteq E_{1A}^{01}$, and the following diagram commutes:

Here $d_1 = \delta$ is the spectral sequence differential on E_{1C} and d_2 its analog on E_{2A} .

Proof We spell out the definition of the coboundary maps ∂_{ν} , ∂_{h} , leaving the proof of the commutativity to the reader.

The "vertical" coboundary ∂_{ν} : We define $\partial_{\nu} : E_{1C}^{00} = G(J_C^0) \to E_{1A}^{01}$ as the connecting homomorphism arising from

Restricted to $G(F(C)) \hookrightarrow G(J_C^0)$, this map is nothing but $G(F(C)) \xrightarrow{G(\partial)} G(R^1F(A)) = E_{2A}^{01}$ induced from the classic connecting homomorphism of the long exact sequence of the derived functors of *F*.

The "horizontal" coboundary ∂_h : The connecting homomorphism in question should in principle be a map $E_{1C}^{10} \rightarrow E_{2A}^{20}$, but this turns out to be too much to ask for. Indeed, consider the corresponding piece of our 3D spectral sequence ladder at the stage E_0 :

$$(9) \qquad \begin{array}{cccc} 0 &\longrightarrow & G(J_A^{20}) &\longrightarrow & G(J_B^{20}) &\longrightarrow & G(J_C^{20}) &\longrightarrow & 0 \\ E_0: & & \delta & \uparrow & & \delta & \uparrow & \\ & & \delta & \uparrow & & \delta & \uparrow & \\ & & & 0 &\longrightarrow & G(J_A^{10}) &\longrightarrow & G(J_B^{10}) &\longrightarrow & G(J_C^{10}) &\longrightarrow & 0 \end{array}$$

To pass to the E_1 stage we take the kernel of d since we are on the bottom row of E_0 . Note that d is "perpendicular" to the differential δ in (9), which accounts for the (possible) failure of right exactness of the ensuing ladder:

(10)
$$\begin{array}{cccc} 0 & \longrightarrow & G(J_A^2) & \longrightarrow & G(J_B^2) & \longrightarrow & G(J_C^2) \\ E_1: & & \uparrow & & \uparrow & & \uparrow \\ 0 & \longrightarrow & G(J_A^1) & \longrightarrow & G(J_B^1) & \longrightarrow & G(J_C^1) \end{array}$$

This failure precludes the definition of a coboundary map on the entire $G(J_C^1) = E_{1C}^{10}$. Still, we recognize the diagram (10) as being part of the ladder (8) associated to the exact sequence $0 \rightarrow F(A) \rightarrow F(B) \rightarrow F(C)$ in \mathcal{B} . Set

$$\partial_h \colon \tilde{E}^1_C \to R^1 G(F(A)) = E^{20}_{2A}$$

to be the fake coboundary map defined as in Section 5.

The proof of the Proposition now becomes a simple but tedious diagram chase.

Remarks

- (1) This proposition will allow us to replace a computation of d_2 with a computation of d_1 , which is much simpler: notice, for example, that the \tilde{E} 's are defined solely in reference to resolutions of F(B) and F(C), and make no mention of the rest of the spectral sequence machinery.
- (2) One might expect that $\partial_h d_1$ is always 0, since it looks like a connecting homomorphism for δ evaluated on an δ -exact cochain. But this is not quite right: even if $b = \delta a$, the usual Snake lemma argument showing that $\partial_h b$ is a coboundary requires *a* to be liftable to $G(J_B^0)$, which does not necessarily happen. If it does, then $\partial_h b$ is indeed 0.

7 Lifting Across *d*₂

We will now use our spectral sequence lemma to give a general template for lifting across d_2 . We keep the notation of the preceding sections. Start with exact sequences $0 \rightarrow X \rightarrow Y \rightarrow Z$ in \mathcal{B} and $0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0$ in \mathcal{A} living in a diagram

(11)
$$0 \longrightarrow X \longrightarrow Y \longrightarrow Z$$

$$\alpha \downarrow \qquad \alpha \downarrow \qquad \alpha \downarrow$$

$$0 \longrightarrow F(A) \longrightarrow F(B) \longrightarrow F(C)$$

Pick compatible injective resolutions over this ladder required to set up the spectral sequences from Section 6, $0 \to X \to J_X$, $0 \to F(A) \to J_A$, *etc.* As in Section 5, form the groups of liftable cocycles $\tilde{G}(J_Z^1)$, $\tilde{G}(J_C^1) = \tilde{E}_C^1$ which are the domains for fake coboundary maps relative to our choice of injective resolutions. They fit into the commutative diagram:

(12)

$$\begin{aligned}
\tilde{G}(J_Z^1) & \xrightarrow{\partial} [R^2G](X) \\
\alpha \downarrow & \alpha \downarrow \\
\tilde{E}_C^1 &= \tilde{G}(J_C^1) \xrightarrow{\partial_h} [R^2G](F(A))
\end{aligned}$$

This set-up will help us deal with the following basic

Question Given $z \in \tilde{G}(J_z^1)$, is $\partial z \neq 0 \in [R^2G](X)$?

To answer affirmatively, it will suffice to show that $\alpha(\partial z)$ is non-zero in $[R^2G](F(A))$. This would follow if we could lift $\alpha(\partial z)$ across d_2 to an element of $G([R^1F](A))$, and show that this lift does not come from $[R^1(G \circ F)](A)$ in the long exact sequence

$$0 \to [R^1G](F(A)) \to [R^1(G \circ F)](A) \to G([R^1F](A)) \xrightarrow{a_2} [R^2G](F(A)).$$

coming from the spectral sequence for $G \circ F$. On this level of abstraction, it is not at all clear that this is a useful strategy. We have a concrete example in mind, though: the Grothendieck spectral sequence of Proposition 2 computing $H^2(X, \mathbb{Z}/p\mathbb{Z})$. Here, $G([R^1F](A)) \ (= \bigoplus_{\nu \nmid \infty} \operatorname{Hom}(U_{\nu}, \mathbb{Z}/p\mathbb{Z}))$ is a much more concrete object than $[R^2G](F(A)) \ (= H^2(X, \mathbb{Z}/p\mathbb{Z}))$, so the computation will indeed go through. All we have to do is find a d_2 -lift of $\alpha(\partial z)$.

Note that our question makes no reference to the sequence $0 \to A \to B \to C \to 0$, which should indeed be thought of as auxiliary and chosen with a concrete $z \in \tilde{G}(J_Z^1)$ in mind. Specifically, we have

Proposition 8 Assume the class [z] represented by a liftable cocycle $z \in \tilde{G}(J_Z^1)$ is in $\ker([R^1G](Z) \xrightarrow{\alpha} [R^1G](F(C)))$. Then we can explicitly find a lift of $\alpha(\partial z)$ across d_2 .

Proof Since the complex

$$G(J_C^0) \xrightarrow{\delta} G(J_C^1) \xrightarrow{\delta} G(J_C^2) \xrightarrow{\delta} \cdots$$

computes $[R^{\cdot}G](F(C))$, we can find $y \in G(J_C^0)$ with $d_1y = \delta y = \alpha z$. Since $z \in \tilde{G}(J_Z^1)$, $\alpha z \in \tilde{G}(J_C^1) = \tilde{E}_C^1$ and $y \in \tilde{E}_C^0$ (*z* liftable $\Rightarrow \alpha z$ liftable). We can therefore apply our spectral sequence Lemma 7 to conclude that $\partial_y y$ is our lifting of $\alpha(\partial z)$:

$$\alpha(\partial z) = \partial_h(\alpha z) = \partial_h(d_1 y) = d_2(\partial_v y).$$

8 The Meat of the Argument

In this section we use the machinery developed so far to prove that, under certain assumptions, the coboundary map $H^1_{fl}(X_n, \mu) \xrightarrow{\delta} H^2_{fl}(X_n, \mathbb{Z}/p\mathbb{Z})$ is non-zero.

8.1 Preliminaries

The *p*-torsion of our curve $E_{\mathbb{Q}}$ lies in a *non-split* exact sequence of $G_{\mathbb{Q}}$ -modules

(13)
$$0 \to \mathbb{Z}/p\mathbb{Z} \to E[p] \to \mu_p \to 0.$$

Fix once and for all a basis $\langle T_0, T_1 \rangle$ of $E[p](\bar{K})$ such that $T_0 \in E[p](\mathbb{Q})$. Relative to this basis, the action of $\sigma \in G_{\mathbb{Q}}$ on E[p] is given by the matrix

(14)
$$\begin{pmatrix} 1 & c(\sigma) \\ 0 & \omega(\sigma) \end{pmatrix}$$

Here $\omega^{-1}c: G_{\mathbb{Q}} \to \mathbb{Z}/p\mathbb{Z}$ is a 1-cocycle in $H^1(\mathbb{Q}, \mathbb{Z}/p\mathbb{Z}(-1)) \cong \operatorname{Ext}^1_{G_{\mathbb{Q}}}(\mu_p, \mathbb{Z}/p\mathbb{Z})$ whose class corresponds to the extension E[p].

8.2 The Main Theorem

The following theorem provides the key ingredient for the strategy outlined in Section 3.

Theorem 1 Assume that there is a level *n* in the cyclotomic \mathbb{Z}_p -tower, and a prime v|l|N of K_n for which the following condition holds:

(*) There exists a global unit $a \in O_n^{\times}$ which is not a p-th power mod v.

(This forces $\mu_p \subseteq \mathbb{F}_l^{\times} \subseteq \mathbb{F}_v^{\times}$.) Then the coboundary map associated with (2),

$$H^1_{fl}(X_n,\mu) \xrightarrow{\delta} H^2(X_n,\mathbb{Z}/p\mathbb{Z})$$

is non-zero.

Proof We will be working entirely at the finite level *n*, so we again suppress it from the notation. We start with a class $b \in H^1_{fl}(X, \mu)$. Recall our strategy for proving $\delta b \neq 0$ from Section 3: we lift δb across $d_2 : \bigoplus_{\nu \nmid \infty} \text{Hom}(U_{\nu}, \mathbb{Z}/p\mathbb{Z}) \to H^2(X, \mathbb{Z}/p\mathbb{Z})$ to a collection of homomorphisms $(f_{\nu} : U_{\nu} \to \mathbb{Z}/p\mathbb{Z})$, and then find a global unit *a* such that $\sum_{\nu \nmid \infty} f_{\nu}(a_{\nu}) \neq 0$.

Remark We will compute on the étale site. This might seem strange, since we are lifting across d_2 the image of the coboundary in *flat* cohomology,

$$H^1_{fl}(X,\mu) \xrightarrow{\delta} H^2_{fl}(X,\mathbb{Z}/p\mathbb{Z}).$$

The étale cohomology does not "see" most of the classes $(a, \{t_v\}_{v|N}) \in H^1_{fl}(X, \mu)$ since the representing cocycle is usually ramified over p. This is why the class we will work with will have a = 1. Still, the étale site is comfortable to work with, chiefly because $i_*E[p] = \mathcal{E}[p]$ as étale sheaves, and because the Gysin sequence (4) naturally lives on it. It is possible, if more involved, to lift a general $\delta(b, \{t_v\}_{v|N})$, but even this is done by "smoothing" the cocycle at p and doing an étale computation. In any case, $0 \to \mathbb{Z}/p\mathbb{Z} \to \mathcal{E}[p] \to \mu \to 0$ remains exact when viewed as a sequence of étale sheaves.

The Lifting Set-up

So, let us do a concrete application of Section 7. Consider the functors

$$Sh((Spec K)_{\acute{e}t}) \xrightarrow{i_*} Sh(X_{\acute{e}t}) \xrightarrow{\Gamma(\cdot) = \Gamma(X, \cdot)} Ab$$

from G_K -modules to étale sheaves over X to Abelian groups. We have a ladder

which we recognize as an instance of the diagram (11) from Section 7. Choose the panoply of compatible injective resolutions $J_{\mathbb{Z}/p\mathbb{Z}}$, $J_{i_*\mu_p}$, *etc.* as in that section. We are ultimately interested in computing the map $H^1_{fl}(X, \mu) \xrightarrow{\delta} H^2(X, \mathbb{Z}/p\mathbb{Z})$ which appears on the right edge of the diagram:

The commutative square in this diagram is precisely diagram (12) from Section 7. To apply Proposition 8 we will need to find a liftable cocycle $b \in \tilde{\Gamma}(J^1_{\mu})$ whose class [b] is in ker $(H^1(X, \mu) \to H^1(X, i_*\mu_p))$. Liftability of *b* will be automatic, since the map of *étale* sheaves $\mathcal{E}[p] \to \mu$ is onto.

Finding the Right b

Since $\mu_{/X} \to i_*(\mu_{p/K})$ factors as $\mu_{/X} \to \mu_{p/X} \to i_*(\mu_{p/K})$, it will suffice to consider classes in ker $(H^1(X,\mu) \to H^1(X,\mu_p))$. To get at this kernel, consider the short exact sequence of étale sheaves over *X*,

(15)
$$0 \to \mu \to \mu_p \to \bigoplus_{\nu|N} i_{\nu*}\mu_p \to 0$$

analogous to that of Lemma 4, and the corresponding piece of the long exact cohomology sequence with connecting homomorphism *D*:

$$0 \to \bigoplus_{w|N} \mu_p(\mathbb{F}_w) \xrightarrow{D} H^1(X,\mu) \to H^1(X,\mu_p).$$

By assumption (*), there is a $\nu|N$ with $\mu_p(\mathbb{F}_{\nu}) \neq 1$. Fix once and for all a prime $\bar{\nu}|\nu$ of \bar{K} . The image of the basis element T_1 under $E[p] \rightarrow \mu_p$ gives a non-trivial $\zeta \in \mu_p(\bar{K})$. Define $\zeta_{\nu} \in \mu_p(\mathbb{F}_{\nu}) \subset \bigoplus_{w|N} \mu_p(\mathbb{F}_w)$ by $\zeta \equiv \zeta_{\nu} \pmod{\bar{\nu}}$. We obtain the desired class simply by setting $[b] = D(\zeta_{\nu})$. As $[b] \in \ker(H^1(X,\mu) \rightarrow H^1(X,\mu_p))$, αb is a coboundary of a 0-cochain for $i_*\mu_p$, for any cocycle *b* representing [b]. Our spectral sequence lemma works on the level of resolutions, not cohomology, so we need to find this cochain explicitly.

The Čech Cochain

First we represent $\zeta_{\nu} \in H^0(X, \bigoplus_{w|N} i_{w*}\mu_p)$ by a Čech cocycle. To be more precise, we will write down a 0-cochain for μ_p lifting ζ_{ν} , as this is the intermediate step in computing $[b] = D(\zeta_{\nu})$.

Set $K(U_0) = L = K(\zeta)$, $K(U_1) = K$, and $\nu' = \bar{\nu}|_{K(U_0)}$. The $K(U_i)$'s are the function fields of the two components of the étale cover $U = U_0 \coprod U_1 \to X$ given by:

$$U_0 = \operatorname{Spec} \mathcal{O}_{K(U_0)}[1/pN] \cup \{v'\}$$
$$U_1 = \operatorname{Spec} \mathcal{O}_K \setminus \{v\}.$$

For the picture, see Figure 3.

Figure 3

The Čech cochain $y \in \check{C}^0(U, \mu_p)$ defined on U_0 by $y_0 = \zeta \in \mu(U_0) = \mu_p(U_0)$ and on U_1 by $y_1 = 1 \in \mu(U_1)$ lifts $\zeta_v \in H^0(X, \bigoplus_{w|N} i_{w*}\mu_p)$ as promised. Therefore $\delta y = b$ is a cocycle representing our class $[b] \in \ker(H^1(X, \mu) \to H^1(X, i_*\mu_p))$.

Let αy stand for y thought of as a Čech 0-cochain for $i_*\mu_p$. At least in degrees 0 and 1, the complex of Čech sheaves Č $(U, i_*\mu_p)$ maps into the resolution $0 \rightarrow i_*\mu_p \rightarrow J_{i_*\mu_p}^{\cdot}$. By abuse of notation, we still denote by αy the corresponding element of the $\Gamma(J_{i_*\mu_p}^0)$ term of the complex

$$0 \to \Gamma(i_*\mu_p) \to \Gamma(J^0_{i_*\mu_p}) \xrightarrow{\delta} \Gamma(J^1_{i_*\mu_p}) \xrightarrow{\delta} \Gamma(J^2_{i_*\mu_p}) \to \cdots$$

which computes $H^*(X, i_*\mu_p)$. We have $\delta(\alpha y) = \alpha b \in \tilde{E}^1_{i_*\mu_p}$, the group of liftable cocycles, because *b* is automatically liftable. By definition, $\alpha y \in \tilde{E}^0_{i_*\mu_p}$.

Now the comes the crucial step. We apply the spectral sequence Lemma 7:

(16)
$$d_2\partial_\nu(\alpha y) = \partial_h d_1(\alpha y) = \partial_h(\alpha b) = \alpha(\delta[b]) \cong \delta[b] \in H^2(X, \mathbb{Z}/p\mathbb{Z}).$$

We see that $\partial_{\nu}(\alpha y)$ is the desired d_2 -lift of $\delta[b]$. Before representing it explicitly, we recall Remark (2) at the end of Section 6. Indeed, when the extension (13) is non-split, $\partial_h d_1(\alpha y)$ is not necessarily zero. As in the Remark, the 0-cochain $\alpha y =$ $\{(U_0, \zeta), (U_1, 1)\}$ for $i_*\mu_p$ cannot be lifted to a 0-cochain for $i_*E[p]$, as is apparent from the geometry of y. Indeed, say $U' \to U_0$ were an *étale* open cover such that $\zeta \in i_*\mu_p(U') = \mu_p(K(U'))$ lifts to E[p](K(U')). Then all of E[p] must be rational over K(U'). Since the extension (13) is non-split, K(U')/K must ramify at every prime above N. But U_0 , and therefore U', has a point over $\nu|N$, hence the supposedly étale cover $U' \to U_0$ ramifies over ν' .

8.2.1 Finally, a d_2 -Lift

To lift $\delta[b]$, we compute $\partial_{\nu}(\alpha y) \in H^0(X, \mathbb{R}^1i_*\mathbb{Z}/p\mathbb{Z})$ explicitly. Let $f_i = \partial_i y_i, i = 1, 2$, where $\partial_i : \mu_p(K(U_i)) \to \text{Hom}(G_{K(U_i)}, \mathbb{Z}/p\mathbb{Z})$ is the coboundary map associated to (13) viewed as a sequence of $G_{K(U_i)}$ -modules. The homomorphisms $f_i : G_{K(U_i)} \to \mathbb{Z}/p\mathbb{Z}$ are easy to compute, given the Galois module structure (14) of E[p]:

$$f_0 = c \colon G_{K(U_0)} \to \mathbb{Z}/p\mathbb{Z}, \quad f_1 = 0 \colon G_{K(U_1)} \to \mathbb{Z}/p\mathbb{Z}.$$

(The 1-cocycle *c* for $\mathbb{Z}/p\mathbb{Z}(-1)$ becomes a homomorphism when restricted to $G_{K(U_0)}$.) The collection $f := \{(U_0, f_0), (U_1, f_1)\}$ gives a 0-cochain for the presheaf

$$U \mapsto H^1(K(U), \mathbb{Z}/p\mathbb{Z}) = \operatorname{Hom}(G_{K(U)}, \mathbb{Z}/p\mathbb{Z}).$$

This presheaf sheafifies to $R^1 i_* \mathbb{Z}/p\mathbb{Z}$, and f yields a global section which a moment's reflection will convince you is nothing other than

$$\partial_{\nu}(\alpha y) \in E^{01}_{2(\mathbb{Z}/p\mathbb{Z})} = H^0(X, R^1i_*\mathbb{Z}/p\mathbb{Z}).$$

To translate this description of $\partial_{\nu}(\alpha y)$ from $H^0(X, R^1i_*\mathbb{Z}/p\mathbb{Z})$ to

$$\bigoplus_{\nu \nmid \infty} \operatorname{Hom}(U_{\nu}, \mathbb{Z}/p\mathbb{Z}),$$

we simply take a $w \in X$, pick an open U_0 or U_1 covering it, and restrict the corresponding f_i to the inertia group of some $\bar{w}|w$ over $K(U_i)$. In other words, if $w \neq v$, it is covered by U_1 , and the *w*-component of f is 0. An exercise for the reader: what if $w \nmid pN$, so that it is covered by U_0 also? The *v*-component is *c* restricted to $I_{\bar{v}/v}$, which is non-zero precisely because we assumed that (13) is non-split. It is Frobenius-invariant, and thus descends to a map $f_v: U_v \to \mathbb{Z}/p\mathbb{Z}$ since *v* splits completely in $K(U_0)$.

To finish off the proof of Theorem 1, we invoke the unit $a \in O_n^{\times}$. Since by Assumption (*) *a* is not a *p*-th power mod *v*, $f_v(a_v) \neq 0$, and

$$\sum_{w \nmid \infty} f_w(a_w) = f_v(a_v) \neq 0,$$

so the collection $(f_w: U_w \to \mathbb{Z}/p\mathbb{Z})$ is not the restriction of a global homomorphism $f: G_K \to \mathbb{Z}/p\mathbb{Z}$.

The particular shape of f_{ν} is contingent on our choice of $\zeta_{\nu} \equiv \zeta \pmod{\bar{\nu}}$. Had we chosen a different root of unity, its lift would change by a constant multiple, but in any case we have the following more precise theorem:

Theorem 2 With notations of this section, assume there is a prime v|N of K with $|\mathbb{F}_{v}| \equiv 1 \pmod{p}$ (no assumption is made on global units mod v). Pick a $\zeta_{v} \in \mu_{p}(\mathbb{F}_{v})$ non-trivial, and let $b \in H^{1}_{fl}(X, \mu)$ be its image under

$$\mu_p(\mathbb{F}_v) \subset H^0(X, \bigoplus_{w|N} i_{w*}\mu_p) \stackrel{D}{\hookrightarrow} H^1_{fl}(X, \mu).$$

Then $\delta b \in H^2(X, \mathbb{Z}/p\mathbb{Z})$ lifts across $\bigoplus_{\nu \nmid \infty} \operatorname{Hom}(U_{\nu}, \mathbb{Z}/p\mathbb{Z}) \xrightarrow{d_2} H^2(X, \mathbb{Z}/p\mathbb{Z})$ to a collection of homomorphisms

$$(f_w: U_w \to \mathbb{Z}/p\mathbb{Z})$$

with $f_w = 0$ if $w \neq v$, and $f_v \neq 0$.

9 Examples

Finally, we produce some examples to show that the above theory not only has content, but also yields new curves for which we can prove $\mu(E)_p = 0$. In fact, as soon as we get one new example, we trivially get infinitely many: any curve E' with $E'[p] \cong E[p]$ also satisfies $\mu(E')_p = 0$, as the argument depended only on the structure of *p*-torsion. For p = 3 or 5 we can in fact do better and produce infinitely many examples with pairwise non-isomorphic *p*-torsion.

Before stating the general theorems, we will illustrate the strategy on a concrete example when p = 3.

9.1 1990D1

Take p = 3, and consider the curve 1990D1 from Cremona's tables:

$$E_1: y^2 + xy = x^3 - 6390x - 215900.$$

 E_1 is good ordinary at 3, $E_1(\mathbb{Q})_{\text{tors}}$ has order 3, and the corresponding exact sequence

$$0 \to \mathbb{Z}/3\mathbb{Z} \to E_1[3] \to \mu_3 \to 0$$

does not split, since we read from the tables that there is only one other curve in the isogeny class of E_1 . The conductor factors as $1990 = 2 \cdot 5 \cdot 199$, and the corresponding reduction types and Tamagawa numbers are as follows: at $2 - I_{27}$, $c_2 = 27$; at $5 - I_3$, $c_5 = 3$; at $199 - I_1$, $c_{199} = 1$. Since E[p] ramifies at v|N if and only if $p \nmid c_v$, $\mathcal{E}[3]$ fits into the exact sequence

$$0 \to \mathbb{Z}/3\mathbb{Z} \to \mathcal{E}[3] \to \mu \to 0,$$

where μ is μ_3 punctured above 199.

The following formula for the *p*-adic valuation of $f_E^{alg}(0)$ when *E* is good ordinary at *p* and Sel_{*p*^{∞}</sup> (*E*_{/Q}) is finite has been obtained by Perrin-Riou in the CM case, and by Schneider in general (see [3], p. 35):}

(17)
$$v_p(f_E(0)) = v_p(\operatorname{Tam}_E |\tilde{E}(\mathbb{F}_p)|^2 |\operatorname{Sel}_{p^{\infty}}(E_{/\mathbb{Q}})|/|E(\mathbb{Q})|^2),$$

where Tam_{*E*} is the product of the Tamagawa numbers and \tilde{E} is the reduction of *E* at *p*. In the case at hand, we read off from the tables that $III_{E_1}(\mathbb{Q})[3^{\infty}] = 0$, rk $E_1(\mathbb{Q}) = 0$, so Sel_{3 ∞}($E_{1/\mathbb{Q}}$) = 0. Formula (17) gives $f(E_1) = 27 \cdot 3 \cdot 1 \cdot 9 \cdot 1/9 = 81$ up to units, which tells us nothing more than $\mu(E_1)_3 \leq 4$. We can show that, in fact, $\mu(E_1)_3 = 0$.

Since 9 \parallel 199² – 1, 199 splits completely in K_1 and the three primes above it are inert thereafter. Over X_{∞} we thus have

$$0 \to \mu_3(\mathbb{F}_{199})^3 \to H^1_{fl}(X_\infty, \mu) \to H^1_{fl}(X_\infty, \mu_p) \to 0.$$

The primes above 199 in $K_1 = \mathbb{Q}(\alpha)$ correspond to the roots mod 199 of $x^3 - 3x + 1 = 0$, the minimal polynomial of

$$\alpha = \zeta_9^{-1} \frac{1 - \zeta_9^4}{1 - \zeta_9^2}.$$

Those roots, 6, 34, 159 (mod 199) may seem perfectly interchangeable, but in fact they are not: $159 \equiv 69^3$ (mod 199), whereas 6, $34 \notin \mathbb{F}_{199}^{\times 3}$. Fix α and name the three primes $v_i | 199$ of K_1 by stipulating that

$$\alpha \equiv 159 \pmod{\nu_0}, \ \alpha \equiv 6 \pmod{\nu_1}, \ \alpha \equiv 34 \pmod{\nu_2}.$$

Then α fits into a norm-coherent sequence $\{\alpha_n\}, \alpha_1 = \alpha, \alpha_n \in \mathcal{O}_n^{\times}$. Let $v_{i,n}$ be the unique prime of K_n above v_i . We claim that α_n is a cube mod $v_{0,n}$ and a non-cube mod $v_{1,n}, v_{2,n}$. Indeed, $v_{i,n}$ is inert over v_i , so we have a commutative diagram whose vertical arrows are induced by the norm map $N_{n/1}: K_n \to K_1$:

The last map is an isomorphism, being a surjection of two groups of order 3. Therefore, α_n is a cube mod $v_{i,n}$ if and only if $N_{n/1}\alpha_n = \alpha$ is a cube mod v_i .

We now construct a divisible element in ker $(H_{fl}^1(X_{\infty}, \mu) \to H_{fl}^1(X_{\infty}, \mu_p))$. Fix an $r \ge 1$ big enough so that $T^{p'}H_{fl}^1(X_{\infty}, \mu) \subseteq H_{fl}^1(X_{\infty}, \mu)_{div}$, as in Section 4. Let $\rho = \gamma^{p'}$, so that $T^{p'} \in \mathbb{F}_p[[T]]$ acts as $\rho - 1$. For i = 1 or 2, $\alpha_r \mod v_{i,r}$ has no cube root in $\mathbb{F}_{v_{i,r}}$, but acquires one in $\mathbb{F}_{v_{i,r+1}}$; call them s_1, s_2 . Pick s_0 to be a cube root of $\alpha_r \mod v_{0,r}$ already in $\mathbb{F}_{v_{0,r}}$ (say $69 \in \mathbb{F}_{199} \subset \mathbb{F}_{v_{0,r}}$). In $\mathbb{O}_{r+1}^{\times}$, α_r becomes a cube mod all three $v_{i,r+1}$, so we can lift it to a class $(\alpha_r, \{s_0, s_1, s_2\}) \in H_{fl}^1(X_{r+1}, \mu) \to H_{fl}^1(X_{\infty}, \mu)$. As $v_{i,r+1}$ is inert over $v_{i,r}$, ρ acts on $\mathbb{F}_{v_{i,r+1}}$ and we compute

$$T^{p^{r}}(\alpha_{r}, \{s_{0}, s_{1}, s_{2}\}) = (\alpha_{r}, \{s_{0}, s_{1}, s_{2}\})^{\rho-1} = (\alpha_{r}^{\rho-1}, \{s_{0}^{\rho-1}, s_{1}^{\rho-1}, s_{2}^{\rho-1}\})$$
$$= (1, \{1, \zeta_{1}, \zeta_{2}\}),$$

where by our choice of the s_i 's, $\zeta_1, \zeta_2 \neq 1 \in \mu_3(\mathbb{F}_{199})$. By Proposition 6, $b = (1, \{1, \zeta_1, \zeta_2\}) \in \ker(H^1_{fl}(X_{\infty}, \mu) \to H^1_{fl}(X_{\infty}, \mu_p))$ is divisible.

Notice that the class b lives in $H^1_{fl}(X_1, \mu)$; passing to X_{r+1} was necessary only to divide it by T^{p^r} . We will now show that $\delta b \in H^2_{fl}(X_1, \mathbb{Z}/p\mathbb{Z})$ has non-zero image by lifting it to $(f_w : U_w \to \mathbb{Z}/p\mathbb{Z})_{w \nmid \infty}$ and showing that

$$\sum_{w \nmid \infty} f_w(u) \neq 0$$

for a unit *u* in a norm-coherent sequence. By the argument of Section 3, this suffices to show that $\delta b \neq 0 \in H^2_{fl}(X_\infty, \mathbb{Z}/p\mathbb{Z})$.

Since $b = D\zeta_1 + D\zeta_2$ in the notation of Theorem 2, b is "supported" only at v_1 and v_2 , and thus lifts to a collection $(f_w: U_w \to \mathbb{Z}/p\mathbb{Z})_{w \nmid \infty}$ with only f_{v_1}, f_{v_2} non-zero.

Select *u* to be the Galois conjugate of α satisfying the following congruences (obtained by cyclically permuting the congruences for α):

 $u \equiv 34 \pmod{v_0}, \quad u \equiv 159 \pmod{v_1}, \quad u \equiv 6 \pmod{v_2}.$

We see that *u* is now a cube mod v_1 and a non-cube mod v_2 . Thus, by Hensel's lemma, $u \in U^3_{v_1}, u \notin U^3_{v_2}$. Since $U_w/U^3_w \cong \mathbb{Z}/p\mathbb{Z}$ for $w \nmid 3$, we see that $f_{v_1}(u) = 0, f_{v_2}(u) \neq 0$, so finally

$$\sum_{w \nmid \infty} f_w(u) = f_{v_1}(u) + f_{v_2}(u) = f_{v_2}(u) \neq 0.$$

So, we are done: we have an element $b \in H^1_{fl}(X_{\infty}, \mu)_{\text{div}}$ with $\delta b \neq 0$, which, as explained in Section 3, implies $\mu(E_1)_3 = 0$. The key to the evaluation was that we choose the class *b* and a unit *u* so that the sum giving the pairing of *b* and *u* reduces to a single summand. This avoids potentially hard-to-control cancellations.

9.2 3314B1

The same argument, *mutatis mutandis*, applies to Cremona's curve 3314B1 given by the equation

$$E_2: y^2 + xy = x^3 + 58x - 22684,$$

with 1657 replacing 199. Unlike E_1 , E_2 has rank 1: Cremona computes that (104, 1002) is a point of infinite order! Since $f_E(0) = 0$, it carries no information about μ . In a sense the success of our method is not surprising: both the λ and the μ invariants contribute to $f_E(0)$, while our approach zeroes in on μ only (while losing much useful information on λ).

9.3 A Generalization

Let us extract a proof template from the preceding two examples. For a fixed odd prime *p*, any number field *F* and its integral ideal \mathbb{N} , we define the *support* at \mathbb{N} of a global unit $x \in \mathbb{O}_F^{\times}$ by

$$\operatorname{Supp}_{\mathcal{N}}^{F}(x) = \left\{ \nu | \mathcal{N} : x \text{ not a } p \text{-th power in } \mathbb{F}_{\nu}^{\times} \right\}.$$

Note that if $v \in \text{Supp}_{\mathcal{N}}^{F}(x)$ for some $x \in \mathcal{O}_{F}^{\times}$, then $\mu_{p} \subset \mathbb{F}_{v}$. Moreover, the rational prime *l* below *v* is not inert in F/\mathbb{Q} : if it were, the norm from *F* to \mathbb{Q} would induce the vertical maps in the diagram

$$\begin{array}{ccc} \mathcal{O}_{F}^{\times} & \longrightarrow & \mathbb{F}_{\nu}^{\times} / \mathbb{F}_{\nu}^{\times p} \\ & & \downarrow & \\ & & \downarrow & \\ \{\pm 1\} = \mathbb{Z}^{\times} & \longrightarrow & \mathbb{F}_{I}^{\times} / \mathbb{F}_{I}^{\times p} \end{array}$$

which would force the reduction mod v of any unit in \mathcal{O}_F to be a *p*-th power. When $F = K_n$, these two necessary conditions simply translate into

(18)
$$v \in \operatorname{Supp}_{\mathcal{N}}^{K_n}(x) \text{ for some } x \in \mathcal{O}_n^{\times} \Rightarrow p^2 |l-1|$$

This notion of support will help us capture the general argument implicit in the above example:

Theorem 3 Assume there is a level K_n in the \mathbb{Z}_p -tower satisfying the following conditions:

- (a) All primes v|N are inert in K_{∞}/K_n .
- (b) $T^{p^n}H^1_{fl}(X_{\infty},\mu) \subset H^1_{fl}(X_{\infty},\mu)_{div}$.
- (c) There exist units $\alpha, u \in \mathcal{O}_n^{\times}$ such that both are universal norms for the \mathbb{Z}_p -tower K_{∞}/K_n , and such that $\operatorname{Supp}_N^{K_n}(\alpha) \cap \operatorname{Supp}_N^{K_n}(u) = \{v_0\}$, a singleton.

Then, given our assumptions on E, we can conclude that $\mu(E)_p = 0$.

Proof The proof essentially follows the pattern of the example. As above, we choose an $s_v \in \bar{\mathbb{F}}_v$ for all v|N such that $s_v^p \equiv \alpha \pmod{v}$. T^{p^n} acts on $H^1_{fl}(X_\infty, \mu)$ as $\gamma^{p^n} - 1 = \rho - 1$ and fixes all v|N, so we can compute

$$T^{p'}(\alpha, \{s_{\nu}\}_{\nu|N}) = (\alpha, \{s_{\nu}\}_{\nu|N})^{\rho-1} = (\alpha^{\rho-1}, \{s_{\nu}^{\rho-1}\}_{\nu|N})$$
$$= (1, \{\zeta_{\nu}\}_{\nu|N}) =: b \in H^{1}_{fl}(X_{\infty}, \mu)_{\text{div}},$$

where $\zeta_{\nu} \neq 1$ precisely when $s_{\nu} \notin \mathbb{F}_{\nu}$, *i.e.*, when $\nu \in \text{Supp}_{N}^{K_{n}}(\alpha)$. Theorem 2 will then lift the divisible class $b = (1, \{\zeta_{\nu}\}_{\nu|N})$ to a collection of functions $(f_{w} : U_{w} \to \mathbb{Z}/p\mathbb{Z})$, w ranging over all primes of K_{n} , such that $f_{w} \neq 0$ precisely when $w \in \text{Supp}_{N}^{K_{n}}(\alpha)$.

The terms in the sum $\sum_{w \nmid \infty} f_w(u_w)$ are non-zero precisely when $f_w \neq 0$ and u is not a *p*-th power mod *w*, *i.e.*, for $w \in \text{Supp}_N^{K_n}(\alpha) \cap \text{Supp}_N^{K_n}(u) = \{v_0\}$. So the above sum really has only one term, and no cancellation is possible:

$$\sum_{w \nmid \infty} f_w(u) = f_{\nu_0}(u_{\nu}) \neq 0.$$

We conclude $\delta \neq 0$ on $H^1_{fl}(X_{\infty}, \mu)_{\text{div}}$, as desired.

For every l|N define the exponent m_l by $p^{m_l+1} \parallel l-1$. The prime *l* splits completely in K_{m_l} and is inert in K_{∞}/K_{m_l} .

Here is a situation where the conditions of Theorem 3 hold:

Theorem 4 Suppose that there is exactly one prime l|N satisfying $m_l \ge 2$. For this l, also assume the following:

for at least one prime λ of K_{m_l-1} above l, π_{m_l-1} is not a p-th power mod λ .

Then the conditions of Theorem 3 are satisfied. (Here π_{m_l-1} is the generator of the prime above *p* in K_{m_l-1} chosen in Section 1.)

Proof Set $m = m_l$. First we choose n so that $n \ge m$ and $T^{p^n}H^1_{fl}(X_{\infty},\mu) \subset H^1_{fl}(X_{\infty},\mu)_{div}$. This n will satisfy condition (b) of Theorem 3. By the definition of m, all primes dividing l are inert in K_{∞}/K_m , so a fortiori in K_{∞}/K_n , thus satisfying condition (a). Most of our work, then, will focus on producing the units $\alpha, u \in \mathbb{O}_n^{\times}$ satisfying condition c). In fact, we will start by producing suitable units $\alpha', u' \in \mathbb{O}_m^{\times}$, and the lifting to \mathbb{O}_n will be a formality we leave for the end.

We have that $\operatorname{Supp}_{N}^{K_{m}}(x) = \operatorname{Supp}_{l}^{K_{m}}(x)$ for any $x \in \mathcal{O}_{m}^{\times}$, since by assumption *l* is the only prime dividing *N* which satisfies the necessary condition (18). To study the behavior of units modulo the primes above *l*, it is natural to introduce the following definitions.

Set $G = G_{K_m/\mathbb{Q}} = \langle \gamma \rangle$, $R = \mathbb{F}_p[G]$, and let $\mathcal{A} \subset K_m$ be the ring of elements integral at all $\lambda | l$, so that $\pi_m \in \mathcal{A}$. Consider the *R*-module $V = (\prod_{\lambda | l} \mathbb{F}_{\lambda}^{\times} / \mathbb{F}_{\lambda}^{\times p})^0$ of vectors whose components have product 1 under the natural identification $\mathbb{F}_{\lambda}^{\times} / \mathbb{F}_{\lambda}^{\times p} \cong$ $\mathbb{F}_l^{\times} / \mathbb{F}_l^{\times p}$. Then *V* is the target for the (*G*-equivariant) reduction map

$$\operatorname{red}:\mathcal{A}^{\times}/\mathcal{A}^{\times p}\to V,$$

$$a \mapsto (a \mod \lambda)_{\lambda|l}$$
.

We will study the *R*-module theory of this map to show that the image of red is large enough to contain two vectors $r, s \in V$ with a *single* place of common support (*i.e.*, a place where both have an entry $\neq 1$). Lifting them to \mathcal{O}_m^{\times} , and then to \mathcal{O}_n^{\times} , will produce our desired units α and u.

First, some basic structure theory of R: $R \cong \mathbb{F}_p[T]/T^{p^m}$ under the identification $T \leftrightarrow \gamma - 1$, and all its ideals are powers of the augmentation ideal $I = \ker(R \rightarrow \mathbb{Z}/p\mathbb{Z})$, forming the chain $I \supset I^2 \supset \cdots \supset I^{p^m} = 0$. For any subgroup $G_k = \langle \gamma^{p^k} \rangle \subseteq G$, we will be interested in the ideal

$$I^{p^{k}} = \langle \gamma^{p^{k}} - 1 \rangle = \left\{ \sum a_{\sigma} \sigma \mid \sum_{\tau \in G_{k}} a_{\rho\tau} = 0, \ \forall \rho \in G \right\}.$$

Since *l* splits completely in K_m/\mathbb{Q} and is inert thereafter, $V \cong I$ as *R*-modules (this is the main advantage of working over K_m). Call $V_k \subset V$ the submodule corresponding to $I^{p^k} \subset I$:

$$V_k = \{(x_\lambda) \in \prod_{\lambda \mid l} \mathbb{F}_\lambda^{ imes} / \mathbb{F}_\lambda^{ imes p} | \prod_{ au \in G_k} x_{ au \lambda} = 1, \; orall \lambda | l \}$$

In particular, $\operatorname{red}(\pi_m) \in V_k \Leftrightarrow N_{K_m/K_k}(\pi_m) = \pi_k$ is a *p*-th power mod every λ . Our assumption on π_{m-1} now simply reads $\operatorname{red}(\pi_m) \notin V_{m-1}$.

The group of cyclotomic units modulo *p*-th powers, denoted $C \subset \mathcal{A}^{\times}/\mathcal{A}^{\times p}$, is isomorphic to $I\pi_m$. We claim that

$$\operatorname{red}(C) \supseteq V_{m-1}$$

Since $V \cong I$, and since the *R*-submodules of *I* form a chain, it is enough to show that the reverse inclusion does not hold. Suppose $V_{m-1} \supseteq \text{red}(C) = I\pi_m$. Then we would have $V_{m-1} \supseteq R \operatorname{red}(\pi_m)$, contradicting our assumption that $\operatorname{red}(\pi_m) \notin V_{m-1}$.

Since $\operatorname{red}(C) \supseteq V_{m-1}$, all we have to do is find two elements $r, s \in V_{m-1}$ whose supports have precisely one $\lambda | l$ in common. This is easy: Since $p \ge 3$, we can find three distinct elements $\alpha_1, \alpha_2, \alpha_3 \in G_{m-1}$. Fix a place $\lambda_0 | l$, and let $u \in \mathbb{F}_l^{\times} / \mathbb{F}_l^{\times p}$ be a generator. We define $r, s \in V_{m-1}$ by specifying their components:

We lift *r* and *s* to α' and u' in $C \subset \mathcal{O}_m^{\times}/\mathcal{O}_m^{\times p}$. Cyclotomic units being universal norms, we can choose $\alpha, u \in \mathcal{O}_n^{\times}$ whose norms from K_n to K_m are α' and u', respectively. Since all primes above *l* in K_m remain inert in K_m , there are one-to-one correspondences $\operatorname{Supp}_l^{K_n}(\alpha) \cong \operatorname{Supp}_l^{K_m}(\alpha')$, $\operatorname{Supp}_l^{K_n}(u) \cong \operatorname{Supp}_l^{K_m}(u')$ and we conclude

$$\operatorname{Supp}_{l}^{K_{n}}(\alpha) \cap \operatorname{Supp}_{l}^{K_{n}}(u) \cong \operatorname{Supp}_{l}^{K_{m}}(\alpha') \cap \operatorname{Supp}_{l}^{K_{m}}(u') = \{\alpha_{2}\lambda_{0}\},$$

a singleton as required.

Remark The simpler condition "*p* not a *p*-th power mod *l*" implies that π_{m-1} in not a *p*-th power mod λ , for some $\lambda | l$.

When p = 3 or 5, we now have the tools to prove $\mu(E)_p = 0$ for infinitely many curves *E* satisfying our running hypotheses on E[p], as in Conjecture 2. Our examples are essentially different in that no two curves we will produce have isomorphic *p*-torsion. We will find our curves in the Kubert families (see [5]) parametrizing curves with a point of order *p*.

p = 3: Consider the family

$$E_t: y^2 + ty = x^3 + x^2 + tx$$

whose discriminant and *j*-invariant are given by

$$\Delta_t = -t^3(27t-8), \quad j_t = \frac{(3t-1)^3}{t^3(27t-8)}.$$

The point P = (0, 0) is of order 3 on any E_t .

Choose $t \in \mathbb{Z}$ such that l = 27t - 8 is a prime number, and such that 3 is not a cube mod *l*. There are infinitely many such *t* by the Čebotarev Theorem applied to the extension $K = \mathbb{Q}(\zeta_{27}, \sqrt[3]{3})$ and $\sigma \in G_{K/\mathbb{Q}}$ satisfying $\sigma|_{\mathbb{Q}(\zeta_{27})} = -8 \in \mathbb{Z}/27\mathbb{Z}^{\times}$ and not fixing $\sqrt[3]{3}$.

Since $v_l(\Delta_t) = 1$, the equation for E_t is minimal at l, and l is a prime of bad reduction. If the reduction at l is additive, the point of order 3 forces it to be of type IV or IV^* , and μ has a puncture at l in either case. If the reduction is multiplicative, the numerator cannot cancel the l in the denominator (since $j(E_t)$ would then be integral at l, and the reduction would be potentially good), thus $c_l = -v_l(j_l) = 1$.

Any other prime *p* of bad reduction divides *t*. Since t^3 and $(3t - 1)^3$ are relatively prime *in* $\mathbb{Z}[x]$, we conclude that $3|v_p(j_t) \leq 0$. Thus *p* is a prime of multiplicative reduction: if it were additive, it would again have to be of type *IV* or *IV*^{*}, in which case we would have $j(E_t) \equiv 0 \pmod{p}$, contradiction. Thus reduction is multiplicative, and $3|c_p = -v_p(j(E_t))$.

We conclude that the quasi-finite flat group scheme μ associated to E_t has precisely one puncture, at *l*, *i.e.*, that its *p*-torsion conductor is N = l. Since $9 \parallel l - 1$ and 3 is not a cube mod *l*, *l* satisfies all the conditions of Theorem 4, which guarantees $\mu(E_t)_3 = 0$. The infinitely many E_t 's we have thus produced have pairwise nonisomorphic 3-torsion, since the punctures occur at different primes *l*.

p = 5: Consider the family

$$E_{s,t}: y^2 + (s-t)xy - s^2ty = x^3 - stx^2$$

whose members have the point (0,0) of order 5, and whose discriminant and *j*-invariant are given by

$$\Delta_{s,t} = -s^5 t^5 (s^2 + 11st - t^2), \quad j_{s,t} = \frac{(s^4 + 12s^3t + 14s^2t^2 - 12st^3 + t^4)^3}{s^5 t^5 (s^2 + 11st - t^2)}.$$

We now choose $s, t \in \mathbb{Z}$ so that $l = s^2 + 11st - t^2$ is a prime, 25|l - 1, and such that 5 is not a 5th power mod l as follows. Consider the extension $L = Q(\zeta_{25}, \sqrt[5]{5})$, and choose a rational prime l which splits completely in $\mathbb{Q}(\zeta_{25})$, but not in L. This clearly forces the last two conditions on l. As for finding $s, t \in \mathbb{Z}$ with $l = s^2 + 11st - t^2$, this is possible for any $l \equiv \pm 1 \pmod{5}$, since the strict class number of the order of $\mathbb{Q}(\sqrt{5})$ of discriminant 125 is 1.

Having chosen our *s* and *t*, we check that μ , the quasi-finite flat quotient of $\mathcal{E}_{s,t}[5]$, has a single puncture precisely at *l*. As $E_{s,t}$ has a point of order 5, all primes of bad reduction are necessarily multiplicative. Since $v_l(\Delta_{s,t}) = 1$, *l* is a prime of (stable) bad reduction. Therefore the *l* in the denominator of $j_{s,t}$ cannot cancel, and $c_l =$ $v_l(j_{s,t}) = 1$. Any other bad prime *p* divides *s* or *t*, say *s*. If *p* were to divide the numerator in $j_{s,t}$, we would have have p|t also, so p|l, a contradiction. Thus $5|c_p =$ $-v_p(j_{s,t})$, and μ has no puncture at *p*. Theorem 4 applies again and allows us to conclude that $\mu(E_{s,t})_5 = 0$. Moreover, if for a (s', t') chosen analogously we have $l' \neq l$, $E_{s,t}[5] \ncong E_{s',t'}[5]$, and we get an infinite supply of fundamentally distinct examples of curves with μ -invariant zero. For example, s = 6, t = 1 will satisfy all our conditions. The corresponding curve

$$E_{6,1}: y^2 + 5xy - 36y = x^3 - 6x$$

has conductor 606, and Tamagawa numbers $c_2 = c_3 = 5$, $c_{101} = 1$.

A similar argument with p = 7 is in principle possible, but runs into interesting difficulties, analytic in nature, concerning the representation of primes by cubic forms. For now, here are three curves with a rational point of order 7 which satisfy the conditions of Theorem 4 and thus have $\mu(E)_7 = 0$. The examples were chosen to have a relatively small puncture prime *l*, which is the last prime in the factorization of the (elliptic curve) conductor:

$$y^{2} - 319xy - 49096y = x^{3} - 12274x^{2}, N_{E} = 950266 = 2 \cdot 17 \cdot 19 \cdot 1471,$$

$$y^{2} - 589xy - 419796y = x^{3} - 46644x^{2}, N_{E} = 20510 = 2 \cdot 3 \cdot 13 \cdot 23 \cdot 2594,$$

$$y^{2} - 155xy + 1872y = x^{3} + 1872x^{2}, N_{E} = 20622 = 2 \cdot 3 \cdot 13 \cdot 2939.$$

A final note: The argument above works only with the quasi-finite flat group scheme $\mathcal{E}[p]$, so it is tempting to consider a slightly more general situation. Fix a field *F*, and consider a \mathbb{Z}_p extension F_{∞}/F . Take a quasi-finite flat group scheme $\mathcal{G}_{/\mathcal{O}_F}$ living in a short exact sequence

(19)
$$0 \to \mathbb{Z}/p\mathbb{Z} \to \mathcal{G} \to \mu \to 0,$$

with μ again a punctured over an ideal \mathbb{N} , all of whose prime factors are assumed finitely split in F_{∞} . As in Section 4, we can find a $\mathcal{K} \subseteq H^1_{fl}(\text{Spec } \mathcal{O}_{F_{\infty}}, \mu)$ which is an extension of $\mathcal{O}_{F_{\infty}}^{\times} / \mathcal{O}_{F_{\infty}}^{\times p}$ by a finite group. As in the case of elliptic curves, the long exact sequence differential δ associated to (19) induces a pairing:

$$\lim_{\leftarrow} \mathfrak{O}_{F_n}^{\times}/\mathfrak{O}_{F_n}^{\times p} \times \mathfrak{K} \to \lim_{\leftarrow} H^1_{fl}(\operatorname{Spec} \mathfrak{O}_{F_n}, \mu_p) \times H^1_{fl}(\operatorname{Spec} \mathfrak{O}_{F_\infty}, \mu) \xrightarrow{id \times \delta} \\ \to \lim_{\leftarrow} H^1_{fl}(\operatorname{Spec} \mathfrak{O}_{F_n}, \mu_p) \times H^2(\operatorname{Spec} \mathfrak{O}_{F_\infty}, \mathbb{Z}/p\mathbb{Z}) \to \mathbb{Z}/p\mathbb{Z},$$

where the last arrow is the limit of the canonical global duality pairing. Here is a natural question to consider: is this pairing always non-zero when the pullback of (19) to the generic point is non-split?

Acknowledgments I would like to thank my thesis adviser, Prof. Barry Mazur, for help and encouragement in pursuing this work.

References

- [1] J. E. Cremona, *Algorithms for Modular Elliptic Curves*. Second edition. Cambridge University Press, Cambridge, 1997.
- [2] M. J. Drinen, Finite submodules and Iwasawa μ-invariants. J. Number Theory 93(2002), 1–22.
- [3] R. Greenberg, *Iwasawa theory for elliptic curves*. In: Arithmetic Theory of Elliptic Curves, Lecture Notes in Math. 1716, Springer, Berlin, 1999, pp. 51–144.

On the Vanishing of μ -Invariants of Elliptic Curves over \mathbb{Q}

- [4] R. Greenberg and V. Vatsal, On the Iwasawa invariants of elliptic curves. Invent. Math. 142(2000), 17–63.
- [5] D. S. Kubert, Universal bounds on the torsion of elliptic curves. Proc. London Math. Soc. (3) 33(1976), 193–237.
- [6] B. Mazur, *Rational points of abelian varieties with values in towers of number fields*. Invent. Math. **18**(1972), 183–266.
- [7] J. S. Milne, *Étale Cohomology*. Princeton Mathematical Series 33, Princeton University Press, Princeton, NJ, 1980.
- [8] B. Perrin-Riou, *Variation de la fonction L p-adique par isogénie*. In: Algebraic Number Theory, Adv. Stud. Pure Math. 17, Academic Press, Boston, MA, 1989, pp. 347–358.
- [9] K. Rubin, Euler systems and modular elliptic curves. In: Galois Representations in Arithmetic Algebraic Geometry, (A. Scholl and R. Taylor, eds.), London Math. Soc. Lecture Note Ser. 254, Cambridge University Press, Cambridge, 1998, pp. 351–367.
- [10] P. Schneider, The μ invariant of isogenies. J. Indian Math. Soc. (N.S.) **52**(1988), 159–170.
- [11] V. Vatsal, Special values of anticyclotomic L-functions. Duke Math. J. 116(2003), 219–261.
- [12] _____, *Multiplicative-type subgroups of* $J_0(N)$ *and applications to elliptic curves*, to appear in J. Inst. Math. Jussieu.

Department of Mathematics McGill University Montreal, QC H3A 2T5 e-mail: mak@math.mcgill.ca