On the Vanishing of μ-Invariants of Elliptic Curves over (${ }^{2}$)

Mak Trifković

Abstract. Let $E_{/ \mathbb{Q}}$ be an elliptic curve with good ordinary reduction at a prime $p>2$. It has a welldefined Iwasawa μ-invariant $\mu(E)_{p}$ which encodes part of the information about the growth of the Selmer group $\operatorname{Sel}_{p \infty}\left(E_{/ K_{n}}\right)$ as K_{n} ranges over the subfields of the cyclotomic \mathbb{Z}_{p}-extension K_{∞} / \mathbb{O}. Ralph Greenberg has conjectured that any such E is isogenous to a curve E^{\prime} with $\mu\left(E^{\prime}\right)_{p}=0$. In this paper we prove Greenberg's conjecture for infinitely many curves E with a rational p-torsion point, $p=3$ or 5 , no two of our examples having isomorphic p-torsion. The core of our strategy is a partial explicit evaluation of the global duality pairing for finite flat group schemes over rings of integers.

1 Notation

Fix a rational prime $p>2$. We denote by $K_{\infty} \supset \cdots \supset K_{n} \supset \cdots \supset K_{0}=(\mathbb{O})$ the unique (cyclotomic) \mathbb{Z}_{p}-tower over \mathbb{O}_{2}. We write $\Gamma \cong \gamma^{\mathbb{Z}_{p}}$ for the Galois group $G_{K_{\infty} / \mathbb{Q}}$ and a choice of topological generator γ. Set $\mathcal{O}_{n}=$ ring of integers of K_{n}, $X_{n}=\operatorname{Spec} \mathcal{O}_{n}$.

We choose

$$
\pi_{n}=N_{\mathbb{Q}\left(\zeta_{p^{n+1}}\right) / K_{n}}\left(1-\zeta_{p^{n+1}}\right)
$$

as our preferred generator of the unique prime of K_{n} above p. The π_{n} 's satisfy the norm compatibility relation $N_{K_{n+1} / K_{n}}\left(\pi_{n+1}\right)=\pi_{n}$.

Let F be a number field. For any elliptic curve $E_{/ F}$, we write $\mathcal{E}_{/ \mathcal{O}_{F}}$ for its Néron model. We define the discrete and compact Selmer groups of $E_{/ F}$ by

$$
\begin{aligned}
\operatorname{Sel}_{p^{n}}(E / F) & =\operatorname{ker}\left(H^{1}\left(F, E\left[p^{n}\right]\right) \rightarrow \prod_{\nu \nmid \infty, v \mid \infty} H^{1}\left(F_{v}, E\right)\right), \quad 1 \leq n \leq \infty \\
X_{p}(E) & =\operatorname{Sel}_{p^{\infty}}\left(E / K_{\infty}\right)^{\vee}
\end{aligned}
$$

respectively. Here $G^{\vee}=\operatorname{Hom}(G, \mathbb{O} / \mathbb{Z})$ stands for the Pontryagin dual of a group G.

2 Introduction

Let $E_{/ \mathbb{Q}}$ be an elliptic curve with good ordinary reduction at a prime $p>2$. Under this assumption, the compact Selmer group $X_{p}(E)$ is a finitely generated torsion module over the Iwasawa algebra $\Lambda=\mathbb{Z}_{p}[[\Gamma]] \cong \mathbb{Z}_{p}[[T]]$, and as such has a characteristic power series $f_{E}^{\text {alg }}(T) \in \mathbb{Z}_{p}[[T]]$. The condition $p^{\mu(E)_{p}} \| f_{E}^{\text {alg }}(T)$ in $\mathbb{Z}_{p}[[T]]$ defines the

[^0]Iwasawa μ-invariant $\mu(E)_{p}$ of $X_{p}(E)$, which controls the growth rate of $\amalg\left(E_{/ K_{n}}\right)[p]$ as K_{n} goes up the cyclotomic tower K_{∞} / \mathbb{O}. One can say when it vanishes in purely elementary terms:

$$
\mu(E)_{p}=0 \Leftrightarrow \amalg\left(E_{/ K_{n}}\right)[p] \text { is bounded as } n \rightarrow \infty
$$

Ralph Greenberg has made the following:
Conjecture 1 Every $E_{/ \mathbb{Q}}$ with good ordinary reduction at $p>2$ is isogenous to a curve E^{\prime} with $\mu\left(E^{\prime}\right)_{p}=0$.

When $E[p]$ is irreducible, the Conjecture predicts that $\mu(E)_{p}=0$. This, the generic case, seems intractable at present.

The situation is rather brighter when $E[p]$ is reducible, i.e., when it sits in a short exact sequence of $G_{\mathbb{Q}}$-modules

$$
\begin{equation*}
0 \rightarrow \Phi \rightarrow E[p] \rightarrow \Psi \rightarrow 0 \tag{1}
\end{equation*}
$$

This case bifurcates into two sub-cases:
(1) Φ is odd and unramified at p, or even and ramified at p. In this case, Greenberg and Vatsal [4] prove that E itself has $\mu=0$. The result follows by a fairly simple bootstrapping from the Ferrero-Washington theorem.
(2) Φ is even and unramified at p, or odd and ramified at p, the harder case. Here it can happen that $\mu(E)_{p}>0$, and we can in fact precisely describe the isogeny which conjecturally annihilates it (see Corollary 1). This paper will approach this sub-case of Greenberg's conjecture in the special instance where $E[p]$ sits in a non-split short exact sequence

$$
0 \rightarrow \mathbb{Z} / p \mathbb{Z} \rightarrow E[p] \rightarrow \mu_{p} \rightarrow 0
$$

In this situation Greenberg predicts that $\mu(E)_{p}=0$, which we indeed prove for infinitely many examples, some of them essentially new, when $p=3$ or 5 .
For instance, by the end of the paper we will show that the curve

$$
E_{1}: y^{2}+x y=x^{3}-6390 x-215900
$$

with a rational 3-torsion point has $\mu\left(E_{1}\right)_{3}=0$. As far as we know, the best previous estimate, coming from Schneider's evaluation of $f_{E_{1}}^{\text {alg }}(0)$ (see [3]), gives $\mu\left(E_{1}\right)_{3} \leq 4$. The same argument, mutatis mutandis, will show that $\mu\left(E_{2}\right)_{3}=0$ for the rank 1 curve

$$
E_{2}: y^{2}+x y=x^{3}+58 x-22684
$$

for which the author does not know of a previous upper bound. Both these examples are instances of a general theorem, Theorem 3, which proves that $\mu(E)_{p}=0$ in our setting provided there are "enough" cyclotomic units mod l for certain primes l of bad reduction. The main interest of this result is that it gives a criterion for $\mu(E)_{p}=0$ which depends only on the number theory of the cyclotomic tower, and
not on the curve itself. We will apply Theorem 3 to find infinitely many essentially distinct examples of curves with $\mu=0$ inside Kubert's families parametrizing elliptic curves with a rational p-torsion point, for $p=3$ or 5 .

It is interesting to compare the state of our knowledge about Conjecture 1 with what we know about the Main Conjecture of Iwasawa theory. The latter predicts that the characteristic power series $f_{E}^{\text {alg }}(T)$ is, up to multiplication by Λ^{\times}, equal to the power series $f_{E}^{\text {an }}(T)$, associated to the analytic p-adic L function defined from modular symbols by Mazur and Swinnerton-Dyer. Kato has almost completely proved one half of the Main Conjecture: he shows that $f_{E}^{\text {alg }}(T) \mid f_{E}^{\text {an }}(T)$ as elements in $\mathbb{O}_{p}[[T]]$. In other words, he makes no claim about the relationship between the powers of p dividing $f_{E}^{\text {an }}(T)$ and $f_{E}^{\text {alg }}(T)$. He can show that $f_{E}^{\text {alg }}(T) \mid f_{E}^{\text {an }}$ in $\mathbb{Z}_{p}[[T]]$ only when $G_{02} \rightarrow \operatorname{Aut} E[p]$ is surjective, and p is outside an explicit set of primes (see [9]), so it is fortunate that we can get some independent information on μ in the reducible cases.

2.1μ-Annihilating Isogenies

It is not hard to refine Conjecture 1 to say precisely which curve isogenous to E has μ-invariant zero. Let $C \subset E(\overline{\mathbb{O}})$ be a cyclic subgroup of order p^{n}, stable under $G_{\mathbb{O}}$. Then the $G_{\mathbb{Q}}$-module C has a unique composition series

$$
C \supset p C \supset \cdots \supset p^{n-1} C=C[p] \supset 0
$$

with each composition factor isomorphic to $C[p]$. We say that C is ramified at p (resp., odd) if and only if the action of I_{p} (resp., the complex conjugation) on $C[p]$ is non-trivial. The following lemma relates the μ-invariants of E and E / C.

Lemma 1 We have the formula

$$
\mu(E / C)_{p}=\mu(E)_{p}+\delta
$$

where the value of δ, depending on the parity and ramification of the Galois action on C, is given by the table:

C	ramified	unramified
odd	$-n$	0
even	0	n

Proof Since E is good ordinary at p, reduction $\bmod p$ gives an exact sequence of $G_{\mathbb{Q}_{p}}$-modules

$$
0 \rightarrow \mathcal{F} \rightarrow E\left[p^{\infty}\right] \rightarrow \tilde{E}\left[p^{\infty}\right] \rightarrow 0
$$

Consider the exact sequence $0 \rightarrow C \rightarrow E \rightarrow E^{\prime} \rightarrow 0$ over (O). Schneider [10] gives a formula relating the μ-invariants of E and E^{\prime} :

$$
\mu\left(E^{\prime}\right)_{p}-\mu(E)_{p}=\operatorname{ord}_{p}(|C(\mathbb{R})|)-\operatorname{ord}_{p}(|C \cap \mathcal{F}|)
$$

If $|C|=p, C \cap \mathcal{F}$ is C or 0 , depending on whether C is ramified or not, so we get

$$
\mu\left(E^{\prime}\right)_{p}=\mu(E)_{p}+\begin{array}{c|c|c}
C & \text { ramified } & \text { unramified } \\
\hline \text { odd } & -1 & 0 \\
\hline \text { even } & 0 & 1
\end{array}
$$

If C is cyclic of order p^{n}, we can factor the isogeny $E \rightarrow E^{\prime}=E / C$ into n isogenies with kernels isomorphic to $C[p]$. Adding up, we get the lemma. For a much more general version, see [2, Theorem 2.2].

This allows us to say precisely which curve isogenous to E should have μ-invariant zero:

Corollary 1 Let $M \subset E(\overline{\mathbb{O}})$ be the maximal subgroup which is

- cyclic p-primary,
- (O)-rational, $G_{\mathbb{Q}}$-action on M odd and ramified at p.

Set $|M|=p^{m}$. Then
(a) the minimal value of $\mu\left(E^{\prime}\right)_{p}$ as E^{\prime} ranges over the isogeny class of E (over (\mathbb{O})) is attained for $E^{\prime}=E / M$.
(b) Conjecture 1 is equivalent to $\mu(E / M)_{p}=0$, i.e. $\mu(E)_{p}=m$.
(c) When $E[p]$ fits into an exact sequence (1), Conjecture 1 is equivalent to the following claim: $\mu(E)_{p}=0 \Leftrightarrow$
(1) Φ is even and ramified at p, or odd and unramified at p, or
(2) Φ is even and unramified p, and the exact sequence (1) is non-split (to prevent Ψ from lifting to an odd ramified subgroup, which would increase the μ invariant).

The beauty of Conjecture 1 is that it allows us to read off the μ-invariant, which is a priori some sort of growth rate all the way up the cyclotomic tower, solely from the arithmetic of E over $(\mathbb{O}$.

Example The situation described in Corollary 1(c) is visible in the very first example, the isogeny class of curves of conductor 11 , with $p=5$. Of the three, $E=X_{1}(11)$ has a non-split sequence $0 \rightarrow \mathbb{Z} / 5 \mathbb{Z} \rightarrow E[5] \rightarrow \mu_{5} \rightarrow 0$, and Greenberg [3] proves that $\mu\left(X_{1}(11)\right)_{5}=0$. In general, the curve with vanishing μ is expected to be the optimal quotient of $X_{1}(N)$ in its isogeny class, and to have a number of other canonicality properties (see the forthcoming paper of Vatsal [12]).

2.2 Approaching $\mu(E)_{p}=0$

This paper will outline an approach to the following special case of Greenberg's conjecture, as listed in Corollary 1, case (c)(2):

Conjecture 2 If $E[p]$ lives in a non-split sequence of $G_{\mathbb{Q}}$-modules $0 \rightarrow \mathbb{Z} / p \mathbb{Z} \rightarrow$ $E[p] \rightarrow \mu_{p} \rightarrow 0$, then $\mu(E)_{p}=0$.

In the good ordinary case we are dealing with, $X_{p}(E)$ is a finitely generated torsion Λ-module. The following simple, yet useful criterion for detecting the vanishing of the μ-invariant follows immediately from the structure theory of such Λ-modules:

Lemma $2 \mu(E)_{p}=0 \Leftrightarrow X_{p}(E) / p X_{p}(E)\left(=\left(\operatorname{Sel}_{p \infty}\left(E /_{K_{\infty}}\right)[p]\right)^{\vee}\right)$ is a torsion $\mathbb{F}_{p}[[T]]$-module.

Thus to show $\mu(E)_{p}=0$, it suffices to prove that $\operatorname{Sel}_{p_{\infty}}\left(E_{/ \kappa_{\infty}}\right)[p]$ has $\mathbb{F}_{p}[[T]]$-corank equal to zero. Up to finite kernel and cokernel, $\operatorname{Sel}_{p \infty}\left(E_{/ \kappa_{\infty}}\right)[p]$ is just $\operatorname{Sel}_{p}\left(E_{K_{\infty}}\right) \subset$ $H^{1}\left(K_{\infty}, E[p]\right)$, the standard Selmer group for $E[p]$.

Greenberg [3] and Greenberg-Vatsal [4] prove this in the case (c)(1) of Corollary 1 by fitting the Selmer group for $E[p]$ between suitably defined Selmer groups for Φ and Ψ, and deducing from the Ferrero-Washington theorem that both of the latter have $\mathbb{F}_{p}[[T]]$-corank zero. The assumptions on parity and ramification of Φ and Ψ are just right to make Ferrero-Washington applicable.

The main reason why the approach of Greenberg-Vatsal fails in the case (c)(2) is that for any reasonable Galois-theoretic definition of finite-singular structures for which we would get an exact sequence of the form

$$
0 \rightarrow \operatorname{Sel}\left(\mathbb{Z} / p \mathbb{Z}_{/ K_{\infty}}\right) \rightarrow \operatorname{Sel}\left(E[p]_{/ K_{\infty}}\right) \rightarrow \operatorname{Sel}\left(\mu_{p / K_{\infty}}\right)
$$

the last Selmer group, $\operatorname{Sel}\left(\mu_{p} / K_{\infty}\right)$, has $\mathbb{F}_{p}[[T]]$-rank 1. The main idea for rescuing the argument is to carefully (and naturally) cut this group down to something small enough to be $\mathbb{F}_{p}[[T]]$-torsion, yet big enough to receive a map from $\operatorname{Sel}(E[p])$.

To do this, we replace the sequence (1) of $G_{\mathbb{Q}}$-modules with the short exact sequence of quasi-finite flat group schemes over $X_{0}=\operatorname{Spec} \mathbb{Z}$ associated to the Néron $\operatorname{model} \mathcal{E}_{/ X_{0}}$ of E,

$$
\begin{equation*}
0 \rightarrow \mathbb{Z} / p \mathbb{Z} \rightarrow \mathcal{E}[p] \rightarrow \mu \rightarrow 0 \tag{2}
\end{equation*}
$$

where μ is a quasi-finite group scheme isomorphic to μ_{p} over $\mathbb{Z}[1 / N]$ and to $\{1\}$ elsewhere. Here N, the " p-torsion conductor", is the product of all primes l for which $\mu\left(\overline{\mathbb{F}}_{l}\right)=\{1\}$. A good way to picture μ is as μ_{p} punctured over $l \mid N$. Since $\mu\left(\overline{\mathbb{F}}_{l}\right)=$ $\mathcal{E}\left(\overline{\mathbb{F}}_{l}\right) / \mathbb{Z} / p \mathbb{Z}$, we get a "hole" in μ at l if and only if $\mathcal{E}[p]\left(\overline{\mathbb{F}}_{l}\right) \cong \mathbb{Z} / p \mathbb{Z}$. For this to happen, E must have bad reduction at l. Specifically, $l \mid N$ if and only if the reduction of E at l is

- multiplicative, and $p \nmid c_{l}$, the number of connected components of $\mathcal{E}_{/ \mathbb{F}_{l}}$, or
- additive, in which case the presence of a rational torsion point forces $p=3$, and the reduction is of type $I V$ or $I V^{*}$.
The sequence (2) is base-change invariant in the sense that its base-change to X_{n} gives the structure of the p-torsion of the Néron model of $E_{/ K_{n}}$.

We concomitantly replace the Galois-theoretic Selmer groups

$$
\operatorname{Sel}_{p}\left(E_{/ K_{n}}\right) \subset H^{1}\left(K_{n}, E[p]\right)
$$

with the flat cohomology groups $H_{f l}^{1}\left(X_{n}, \mathcal{E}[p]\right)$.

Lemma 3 There are maps $H_{f l}^{1}\left(X_{\infty}, \mathcal{E}[p]\right) \rightarrow Z \leftarrow \operatorname{Sel}_{p}\left(E_{/_{\infty}}\right)$ with finite kernel and cokernel. Thus $H_{f l}^{1}\left(X_{\infty}, \mathcal{E}[p]\right)$ is $\mathbb{F}_{p}[[T]]$-torsion if and only if $\operatorname{Sel}_{p}\left(E_{/_{\infty}}\right)$ is. To show that $\mu(E)_{p}=0$, it suffices to prove that $H_{f l}^{1}\left(X_{\infty}, \mathcal{E}[p]\right)$ has corank 0 as an $\mathbb{F}_{p}[[T]]-$ module.

Proof For the first part, see [6, Prop. 6.4]. The second claim is Lemma 2.
We will thus focus on showing $H_{f l}^{1}\left(X_{\infty}, \mathcal{E}[p]\right)$ is a co-torsion $\mathbb{F}_{p}[[T]]$-module. Over X_{∞} we get the long exact sequence in flat cohomology associated to (2)

$$
\begin{equation*}
H_{f l}^{1}\left(X_{\infty}, \mathbb{Z} / p \mathbb{Z}\right) \rightarrow H_{f l}^{1}\left(X_{\infty}, \mathcal{E}[p]\right) \rightarrow H_{f l}^{1}\left(X_{\infty}, \mu\right) \xrightarrow{\delta} H_{f l}^{2}\left(X_{\infty}, \mathbb{Z} / p \mathbb{Z}\right) \tag{3}
\end{equation*}
$$

To show that $\mu(E)_{p}=0$, we will see below that it suffices to find an $\mathbb{F}_{p}[[T]]$-divisible class $b \in H_{f l}^{1}\left(X_{\infty}, \mu\right)$ such that $\delta b \neq 0$. How to go about verifying that $\delta b \neq 0$? A naïve idea, which will ultimately work, would be to find a functional $\alpha: H_{f l}^{2}\left(X_{\infty}, \mathbb{Z} / p \mathbb{Z}\right) \rightarrow\left(\mathbb{O}_{p} / \mathbb{Z}_{p}\right.$ such that $\alpha(\delta b) \neq 0$. We compute the group of all such functionals:

$$
\begin{aligned}
H_{f l}^{2}\left(X_{\infty}, \mathbb{Z} / p \mathbb{Z}\right)^{\vee} & =\left(\underset{\rightarrow}{\lim } H_{f l}^{2}\left(X_{n}, \mathbb{Z} / p \mathbb{Z}\right)\right)^{\vee} \\
& =\underset{\leftarrow}{\lim _{\leftarrow} H_{f l}^{2}\left(X_{n}, \mathbb{Z} / p \mathbb{Z}\right)^{\vee} \cong \lim _{\leftarrow} H_{f l}^{1}\left(X_{n}, \mu_{p}\right)} .
\end{aligned}
$$

The last isomorphism comes from the existence of a perfect global duality pairing, see [7]:

$$
H_{f l}^{1}\left(X_{n}, \mu_{p}\right) \times H_{f l}^{2}\left(X_{n}, \mathbb{Z} / p \mathbb{Z}\right) \rightarrow\left(\mathbb{O}_{p} / \mathbb{Z}_{p}\right.
$$

Notice that by Kummer theory

$$
\lim _{\leftarrow} \mathcal{O}_{n}^{\times} / \mathcal{O}_{n}^{\times p} \hookrightarrow \lim _{\leftarrow} H_{f l}^{1}\left(X_{n}, \mu_{p}\right)
$$

so we might expect to show $\delta b \neq 0$ by evaluating on it a functional coming from a norm-coherent sequence of units ($\bmod p$-th powers).

At the heart of this paper will thus be an explicit computation of the global duality pairing $H_{f l}^{2}\left(X_{n}, \mathbb{Z} / p \mathbb{Z}\right) \times H_{f l}^{1}\left(X_{n}, \mu_{p}\right) \rightarrow \mathbb{O}_{p} / \mathbb{Z}_{p}$. To be precise, we will produce an explicit pairing formula which will allow us to deduce that $\mu(E)_{p}=0$ in some cases. The mere existence of the formula will suffice for us; that it actually computes the canonically defined global duality pairing will not be spelled out.

3 Strategy of Proof

All module-theoretic notions used here ("torsion", "rank", etc.) will refer to $\mathbb{F}_{p}[[T]]$ modules unless explicitly stated otherwise. In particular, $M_{\text {div }}$ will refer to the maximal $\mathbb{F}_{p}[[T]]$-divisible submodule of a $\mathbb{F}_{p}[[T]]$-module M.

Proposition $1 \mu(E)_{p}=0$ if and only if there exists a $b \in H_{f l}^{1}\left(X_{\infty}, \mu\right)_{\text {div }}$ such that $\delta b \neq 0$.

Proof From (3) we extract the short exact sequence

$$
0 \leftarrow H_{f l}^{1}\left(X_{\infty}, \mathbb{Z} / p \mathbb{Z}\right)^{\vee} \leftarrow H_{f l}^{1}\left(X_{\infty}, \mathcal{E}[p]\right)^{\vee} \leftarrow(\operatorname{ker} \delta)^{\vee} \leftarrow 0
$$

It suffices to show that the flanking $\mathbb{F}_{p}[[T]]$-modules $H_{f l}^{1}\left(X_{\infty}, \mathbb{Z} / p \mathbb{Z}\right)^{\vee}$ and $(\operatorname{ker} \delta)^{\vee}$ both have rank 0 . For the former, this is a straightforward consequence of the FerreroWashington theorem. The latter is equal to the cokernel of $\delta^{\vee}: H_{f l}^{2}\left(X_{\infty}, \mathbb{Z} / p \mathbb{Z}\right)^{\vee} \rightarrow$ $H_{f l}^{1}\left(X_{\infty}, \mu\right)^{\vee}$. Let F be the maximal free quotient of $H_{f l}^{1}\left(X_{\infty}, \mu\right)$. Since, up to finite kernel and cokernel, $H_{f l}^{1}\left(X_{\infty}, \mu\right)^{\vee} \cong H_{f l}^{1}\left(X_{\infty}, \mu_{p}\right)^{\vee} \cong\left(\mathcal{O}_{\infty}^{\times} / \mathcal{O}_{\infty}^{\times p}\right)^{\vee}$ (see Lemma 4), and the latter is easily seen to be of $\mathbb{F}_{p}[[T]]$-rank 1, we conclude that F is also of rank 1. To show that the cokernel of δ^{\vee} is $\mathbb{F}_{p}[[T]]$-torsion, it is therefore enough to show that the composed map

$$
H_{f l}^{2}\left(X_{\infty}, \mathbb{Z} / p \mathbb{Z}\right)^{\vee} \xrightarrow{\delta^{\vee}} H_{f l}^{1}\left(X_{\infty}, \mu\right)^{\vee} \rightarrow F
$$

is non-zero. Dualizing, we need to show that the map

$$
H_{f l}^{1}\left(X_{\infty}, \mu\right)_{d i v} \xrightarrow{\delta} H_{f l}^{2}\left(X_{\infty}, \mathbb{Z} / p \mathbb{Z}\right)
$$

is non-zero, as claimed.
So, we start with an $\mathbb{F}_{p}[[T]]$-divisible $b \in H_{f l}^{1}\left(X_{\infty}, \mu\right)$, and we want to show $\delta b \neq$ 0 . The class b will live on some finite level, say $b \in H_{f l}^{1}\left(X_{n}, \mu\right)$. Our task can be broken up into two:

1. Verify that $\delta b \neq 0$ in $H_{f l}^{2}\left(X_{n}, \mathbb{Z} / p \mathbb{Z}\right)$.
2. Verify that δb remains non-zero under the restriction

$$
H_{f l}^{2}\left(X_{n}, \mathbb{Z} / p \mathbb{Z}\right) \rightarrow H_{f l}^{2}\left(X_{\infty}, \mathbb{Z} / p \mathbb{Z}\right)
$$

3.1 Finite-Level Computation

As we will be working over the single scheme $X_{n}=\operatorname{Spec} \mathcal{O}_{n}$, for the duration of this subsection we suppress the n from our notations. Thus $K=K_{n}, \mathcal{O}=\mathcal{O}_{n}, X=X_{n}$, etc.

As $\mathbb{Z} / p \mathbb{Z}_{/ X}$ is a smooth group scheme, its flat cohomology is equal to its étale cohomology (denoted with an unadorned $H^{*}(X, \mathbb{Z} / p \mathbb{Z})$). The following proposition will give us something of a handle on the elements on $H^{2}(X, \mathbb{Z} / p \mathbb{Z})$:

Proposition 2 The group $H^{2}(X, \mathbb{Z} / p \mathbb{Z})$ fits into the following long exact Gysin sequence

$$
\begin{align*}
0 \rightarrow H^{1}(X, \mathbb{Z} / p \mathbb{Z}) \rightarrow \operatorname{Hom}\left(G_{K}, \mathbb{Z} / p \mathbb{Z}\right) \rightarrow & \bigoplus_{\nu \nmid \infty} \operatorname{Hom}\left(U_{v}, \mathbb{Z} / p \mathbb{Z}\right) \tag{4}\\
& \xrightarrow{d_{2}} H^{2}(X, \mathbb{Z} / p \mathbb{Z}) \rightarrow H^{2}(K, \mathbb{Z} / p \mathbb{Z})
\end{align*}
$$

Here U_{v} denotes the units of the localization $\mathcal{O}_{K, v}$, and the sum is taken over all finite places of K. (The meaning of d_{2} is explained in the proof.)

Proof Let i : Spec $K \rightarrow X$ be the inclusion of the generic point. As étale sheaves, $\mathbb{Z} / p \mathbb{Z}_{/ X}=i_{*}\left(\mathbb{Z} / p \mathbb{Z}_{/ \operatorname{Spec} K}\right)$ (note that this fails in the flat topology). Granting for the moment the identification $H^{0}\left(X, R^{1} i_{*} \mathbb{Z} / p \mathbb{Z}\right)=\oplus_{\nu \nmid \infty} \operatorname{Hom}\left(U_{v}, \mathbb{Z} / p \mathbb{Z}\right)$, the long exact sequence (4) becomes just the low-dimensional terms of the Grothendieck spectral sequence for the composition of functors i_{*} and $H^{0}(X,-)$:

$$
E_{2}^{m, n}=H^{m}\left(X, R^{n} i_{*} \mathbb{Z} / p \mathbb{Z}\right) \Rightarrow H^{m+n}(K, \mathbb{Z} / p \mathbb{Z})
$$

and $d_{2}: E_{2}^{01} \rightarrow E_{2}^{20}$ the corresponding second-stage diagonal differential.
To prove $H^{0}\left(X, R^{1} i_{*} \mathbb{Z} / p \mathbb{Z}\right)=\bigoplus_{v \nmid \infty} \operatorname{Hom}\left(U_{v}, \mathbb{Z} / p \mathbb{Z}\right)$, we compute the stalks of $R^{1} i_{*} \mathbb{Z} / p \mathbb{Z}$ at geometric points of X. At the geometric generic point $\bar{\eta}:$ Spec $\bar{K} \rightarrow$ X, the stalk is $\left(R^{1} i_{*} \mathbb{Z} / p \mathbb{Z}\right)_{\bar{\eta}}=H^{1}(\bar{K}, \mathbb{Z} / p \mathbb{Z})=0$. At a geometric special point \bar{v} : Spec $\overline{\mathbb{F}}_{v} \rightarrow X$ we get $\left(R^{1} i_{*} \mathbb{Z} / p \mathbb{Z}\right)_{\bar{v}}=\operatorname{Hom}\left(I_{\bar{v} / v}, \mathbb{Z} / p \mathbb{Z}\right)$, which under the conjugation action of Frobenius Fr_{v} becomes an étale sheaf on $\operatorname{Spec} \mathbb{F}_{v}$. From these computations we conclude that $R^{1} i_{*} \mathbb{Z} / p \mathbb{Z}$ is an étale skyscraper sheaf on the one-dimensional scheme X, and that therefore

$$
R^{1} i_{*} \mathbb{Z} / p \mathbb{Z} \cong \bigoplus_{v \nmid \infty} i_{v *} \operatorname{Hom}\left(I_{\bar{v} / v}, \mathbb{Z} / p \mathbb{Z}\right)
$$

The desired identification used above follows from local class field theory:

$$
\operatorname{Hom}\left(I_{\bar{v} / v}, \mathbb{Z} / p \mathbb{Z}\right)^{\mathrm{Fr}_{v}=1} \cong \operatorname{Hom}\left(U_{v}, \mathbb{Z} / p \mathbb{Z}\right)
$$

for any choice of $\bar{v} \mid v$.
Say we are lucky enough to have $\delta b \in \operatorname{ker}\left(H^{2}(X, \mathbb{Z} / p \mathbb{Z}) \rightarrow H^{2}(K, \mathbb{Z} / p \mathbb{Z})\right)$. The technical core of this paper is the explicit computation of a lift of δb via d_{2}, the spectral sequence differential, to a collection of functions ($f_{v}: U_{v} \rightarrow \mathbb{Z} / p \mathbb{Z}$), almost all of which vanish. Having computed this lift, the following proposition will give us a sufficient condition for the lift to not be a restriction of a homomorphism $f: G_{K} \rightarrow \mathbb{Z} / p \mathbb{Z}$.

For any finite place v of K, we have the natural injection $\mathcal{O}_{K}^{\times} \hookrightarrow U_{v}, a \mapsto a_{v}$.
Proposition 3 To show $\delta b \neq 0 \in H^{2}(X, \mathbb{Z} / p \mathbb{Z})$, it suffices to show that there is a global unit $a \in \mathcal{O}^{\times}$such that

$$
\sum_{\nu \nmid \infty} f_{v}\left(a_{v}\right) \neq 0 .
$$

Remark Though we will not prove it, the sum on the left is nothing but the pairing $\langle a, b\rangle$ induced from the global duality pairing by the composition

$$
\begin{aligned}
\mathcal{O}^{\times} / \mathcal{O}^{\times p} \times H_{f l}^{1}(X, \mu) \rightarrow H_{f l}^{1}(X, & \left.\mu_{p}\right) \times H_{f l}^{1}(X, \mu) \\
& \xrightarrow{i d \times \delta} H_{f l}^{1}\left(X, \mu_{p}\right) \times H^{2}(X, \mathbb{Z} / p \mathbb{Z}) \rightarrow\left(\mathbb{O}_{p} / \mathbb{Z}_{p} .\right.
\end{aligned}
$$

Proof To show $\delta b \neq 0$ it suffices, by the exact sequence (4), to show that the collection $\left(f_{v}: U_{v} \rightarrow \mathbb{Z} / p \mathbb{Z}\right)$ is not the restriction of a global homomorphism $f: G_{K} \rightarrow$ $\mathbb{Z} / p \mathbb{Z}$. The restriction is given simply by composing along the top row of the diagram

where rec is the Artin map of global class field theory. If ($f_{v}: U_{v} \rightarrow \mathbb{Z} / p \mathbb{Z}$) were to arise in this way, we would have that

$$
\sum_{\nu \nmid \infty} f_{v}\left(a_{v}\right)=f \circ \operatorname{rec}\left(\prod_{v \nmid \infty} a_{v}\right)=f \circ \operatorname{rec}(a)=0,
$$

since $\left.f \circ \operatorname{rec}\right|_{K^{\times}}=0$ by global reciprocity (and the fact that $f \circ$ rec is trivial on the Archimedean components of \mathbb{A}_{K}^{\times}, since p is odd).

3.2 Moving up the Tower

Reinstate the n in the notation: $b \in H_{f l}^{1}\left(X_{n}, \mu\right)$ etc. Say we have shown that $0 \neq \delta b \in$ $H^{2}\left(X_{n}, \mathbb{Z} / p \mathbb{Z}\right)$ by finding, as above, a collection $\left(f_{n, v}: U_{n, v} \rightarrow \mathbb{Z} / p \mathbb{Z}\right)$ lifting δb and a global unit $a_{n} \in \mathcal{O}_{n}^{\times}$such that

$$
\sum_{\nu \nmid \infty \text { of } K_{n}} f_{n, v}\left(a_{n, v}\right) \neq 0 .
$$

Proposition 4 Say $a_{n}=N_{K_{n+1} / K_{n}}\left(a_{n+1}\right)$. Then

$$
0 \neq \operatorname{res}(\delta b) \in H^{2}\left(X_{n+1}, \mathbb{Z} / p \mathbb{Z}\right)
$$

Proof Throughout the proof, w will denote a generic finite place of K_{n+1}, v the place of K_{n} below it, and $N_{w / v}$ the corresponding local norm. Let us compare the relevant parts of the long exact sequence (4) for X_{n} and X_{n+1} :

The middle vertical map sends $\left(f_{n, v}: U_{n, v} \rightarrow \mathbb{Z} / p \mathbb{Z}\right)$ to $\left(f_{n+1, w}: U_{n+1, w} \rightarrow \mathbb{Z} / p \mathbb{Z}\right)$ given by $f_{n+1, w}=f_{n, v} \circ N_{w / v}$.

The collection $\left(f_{n+1, w}\right)$ is a lifting of $\operatorname{res}(\delta b) \in H^{2}\left(X_{n+1}, \mathbb{Z} / p \mathbb{Z}\right)$. We have

$$
\sum_{w \text { of } K_{n+1}} f_{n+1, w}\left(a_{n+1, w}\right)=\sum_{v \text { of } K_{n}} \sum_{w \mid v} f_{n, v}\left(N_{w / v}\left(a_{n+1, w}\right)\right)=\sum_{v} f_{n, v}\left(a_{n, v}\right) \neq 0
$$

by assumption. Thus, essentially the same computation as on the n-th level shows that $\delta b \neq 0$ on the $(n+1)$-st level also.

For δb to remain non-zero all the way to $H^{2}\left(X_{\infty}, \mathbb{Z} / p \mathbb{Z}\right)$, it will suffice that the unit a_{n} is the norm from \mathcal{O}_{k}^{\times}for all $k \geq n$, in other words a universal norm in the cyclotomic tower (at least up to p-th powers). A good supply of such a_{n} 's comes from cyclotomic units.

4 The Structure of $H_{f l}^{1}\left(X_{\infty}, \mu\right)$

Remember that μ is a quasi-finite flat group scheme over Spec \mathbb{Z}, isomorphic to μ_{p} over Spec $\mathbb{Z}[1 / N]$ and to $\{1\}$ over $l \mid N$. On Spec \mathbb{Z}, μ represents a flat sheaf whose value at an irreducible flat open $U \rightarrow$ Spec \mathbb{Z} is given by

$$
\mu(U)= \begin{cases}\mu_{p}\left(\mathcal{O}_{U}\right), & \text { if } \frac{1}{N} \in \Gamma\left(U, \mathcal{O}_{U}\right) \\ 1 & \text { if } \frac{1}{N} \notin \Gamma\left(U, \mathcal{O}_{U}\right)\end{cases}
$$

Lemma 4 Over X_{∞}, we have an exact sequence of $\mathbb{F}_{p}[[T]]$-modules

$$
\begin{equation*}
0 \rightarrow \bigoplus_{v_{\infty} \mid N} \mu_{p}\left(\mathbb{F}_{v_{\infty}}\right) \rightarrow H_{f l}^{1}\left(X_{\infty}, \mu\right) \rightarrow H_{f l}^{1}\left(X_{\infty}, \mu_{p}\right) \rightarrow 0 \tag{5}
\end{equation*}
$$

The sum in the first term ranges over the finitely many places $v_{\infty} \mid N$ of K_{n}.
Proof For every $n, 1 \leq n \leq \infty$, the "puncturing" of μ_{p} at places of X_{n} dividing N is captured in the exact sequence of flat sheaves over X_{n} :

$$
0 \rightarrow \mu \rightarrow \mu_{p} \rightarrow \bigoplus_{v_{n} \mid N} i_{v_{n} *} \mu_{p} \rightarrow 0
$$

where $i_{v_{n}}:$ Spec $\mathbb{F}_{v_{n}} \rightarrow X_{n}$.
Taking cohomology, we get a long exact sequence
(6) $\quad 0=\mu_{p}\left(\mathcal{O}_{n}\right) \rightarrow \bigoplus_{v_{n} \mid N} \mu_{p}\left(\mathbb{F}_{v_{n}}\right) \rightarrow H_{f l}^{1}\left(X_{n}, \mu\right) \rightarrow H_{f l}^{1}\left(X_{n}, \mu_{p}\right)$

$$
\rightarrow \bigoplus_{v_{n} \mid N} H_{f l}^{1}\left(X_{n}, i_{v_{n} *} \mu_{p}\right) \hookrightarrow \bigoplus_{v_{n} \mid N} H_{f l}^{1}\left(\mathbb{F}_{v_{n}}, \mu_{p}\right)=\bigoplus_{v_{n} \mid N} \mathbb{F}_{v_{n}}^{\times} / \mathbb{F}_{v_{n}}^{\times p}
$$

The last inclusion comes from the Grothendieck spectral sequence for $i_{v_{n} *}$. After passing to the direct limit of these exact sequences, the first (non-zero) term in (6) stabilizes to the finite group $\bigoplus_{v_{\infty} \mid N} \mu_{p}\left(\mathbb{F}_{v_{\infty}}\right)$, since there are only finitely many primes $v_{\infty} \mid N$ of K_{∞}. The last term in (6) vanishes in the limit, since for high n, all the elements of $\mathbb{F}_{v_{n}}^{\times}$become p-th powers in $\mathbb{F}_{v_{n+1}}^{\times}$.

In particular, we get that $H_{f l}^{1}\left(X_{\infty}, \mu\right)_{d i v} \rightarrow H_{f l}^{1}\left(X_{\infty}, \mu_{p}\right)_{d i v} \supseteq \mathcal{O}_{\infty}^{\times} / \mathcal{O}_{\infty}^{\times p}$, the inclusion coming from Kummer theory along with the easy fact that $\mathcal{O}_{\infty}^{\times} / \mathcal{O}_{\infty}^{\times p}$ is $\mathbb{F}_{p}[[T]]$-divisible. Our goal now is to find explicit Čech cocycles lifting the classes $b \in \mathcal{O}_{\infty}^{\times} / \mathcal{O}_{\infty}^{\times p}$ to $H_{f l}^{1}\left(X_{\infty}, \mu\right)$.

4.1 Illustration

Before we do this, let us do the lifting construction in a slightly different setting which will illustrate the main idea with a maximum of transparency. Take a field F containing μ_{p}, and a prime $v \nmid p$ of F. Note that $\mu_{p} \subset \mathbb{F}_{v}$. Let $Y=\operatorname{Spec} \mathcal{O}_{F}$, and let μ be the flat scheme over Y obtained from μ_{p} by puncturing only over v. As above, we have the diagram

The diagonal map is nothing but the reduction $\bmod v$. Take a $b \neq 1$ in $\mathcal{O}_{F}^{\times} / \mathcal{O}_{F}^{\times p}$ such that b is a p-th power $\bmod v$. We will lift the corresponding class $b \in H_{f l}^{1}\left(Y, \mu_{p}\right)$ to $H_{f l}^{1}(Y, \mu)$.

First of all, the map $\mathcal{O}_{F}^{\times} / \mathcal{O}_{F}^{\times p} \rightarrow H_{f l}^{1}\left(Y, \mu_{p}\right)$ is the coboundary map for the Kummer sequence of flat sheaves over $Y, 0 \rightarrow \mu_{p} \rightarrow \mathbb{G}_{m} \xrightarrow{p}\left(\mathbb{G}_{m} \rightarrow 0\right.$. This coboundary is computed in the standard way: by abuse of notation start with $b \in \mathcal{O}_{F}^{\times}=\mathbb{G}_{m}(Y)$, take its " p-th root" as a flat 0 -cochain y^{\prime} of \mathbb{G}_{m}, and compute its Čech coboundary. Explicitly, fix once and for all a $b^{1 / p}$ and let $L=F\left(b^{1 / p}\right), G=\operatorname{Gal}(L / F)$. The cochain $\left(V^{\prime}, b^{1 / p} \in \mathbb{G}_{m}\left(V^{\prime}\right)\right)$ on the flat open cover $V^{\prime}=\operatorname{Spec} \mathcal{O}_{L} \xrightarrow{f} Y$ can then be taken as y^{\prime}.

An easy scheme-theoretic computation gives the decomposition into irreducibles

$$
V^{\prime} \times_{Y} V^{\prime}=\bigcup_{\sigma \in G} V_{\sigma}^{\prime}
$$

where each V_{σ}^{\prime} is a copy of V^{\prime}, and the p copies are all glued together at the primes ramified in L / F, all of which divide p. The two projections $p_{1}, p_{2}: V^{\prime} \times_{Y} V^{\prime} \rightrightarrows V^{\prime}$ are given as follows on any component V_{σ}^{\prime} :

$$
\begin{equation*}
p_{1}: V_{\sigma}^{\prime} \cong V^{\prime} \xrightarrow{i d} V^{\prime}, \quad p_{2}: V_{\sigma}^{\prime} \cong V^{\prime} \xrightarrow{\sigma} V^{\prime} \tag{7}
\end{equation*}
$$

The Čech coboundary $\delta y^{\prime}=p_{2}^{*} y^{\prime} / p_{1}^{*} y^{\prime}$ is a 1-cocycle for μ_{p} whose value on V_{σ}^{\prime} is given by

$$
\left(\delta y^{\prime}\right)_{\sigma}=\left(b^{1 / p}\right)^{\sigma-1}
$$

This is clearly not a cocycle for μ : for $\sigma \neq 1$, the component V_{σ}^{\prime} has a point over v, yet supports a non-trivial root of unity, $\left(\delta y^{\prime}\right)_{\sigma}$.

We can, however, tweak y^{\prime} to get a cocycle for μ. For this, we will refine V^{\prime} to a Zariski open $V \subset V^{\prime}$. Since $b(\bmod v) \in \mathbb{F}_{v}^{\times p}, v$ splits completely in L / K. The fiber $f^{-1}(v)$ is a G-orbit consisting of p points $\left\{w_{1}, \ldots, w_{p}\right\}$. Remove all but one, setting

$$
V=V^{\prime} \backslash\left\{w_{2}, \ldots, w_{p}\right\}
$$

The picture of $V \hookrightarrow V^{\prime}$ (for $p=3$) is given in Figure 1 (the circles represent the removed points).

Figure 1

Lemma $5 V \times_{Y} V$ is a union of p irreducible components

$$
V \times_{Y} V=\bigcup_{\sigma \in G} W_{\sigma}
$$

where $W_{\sigma} \subset V_{\sigma}^{\prime} . W_{1} \cong V$, and $W_{\sigma} \cong V \backslash\left\{w_{1}\right\} \cong V^{\prime} \backslash f^{-1}(v)$ for $\sigma \neq 1$.
Proof We have $V \times_{Y} V=p_{1}^{-1}(V) \cap p_{2}^{-1}(V) \subset V^{\prime} \times_{Y} V^{\prime}$. We obtain the claimed decomposition by setting $W_{\sigma}=\left(V \times_{Y} V\right) \cap V_{\sigma}$. Given the explicit description (7) of the projections, and identifying V_{σ}^{\prime} with V^{\prime}, we find the identifications

$$
\begin{array}{ccccccc}
p_{1}^{-1}(V) \cap V_{\sigma}^{\prime} & \subset & V_{\sigma}^{\prime} & & p_{2}^{-1}(V) \cap V_{\sigma}^{\prime} & \subset & V_{\sigma}^{\prime} \\
\| & & \|_{V} & \text { and } & \|_{0} & & \| \\
& \subset & V^{\prime} & & \sigma^{-1} V & & \subset
\end{array} V^{\prime}
$$

Intersecting the two yields the identification diagram

$$
\begin{array}{ccc}
W_{\sigma}=\left(p_{1}^{-1}(V) \cap p_{2}^{-1}(V)\right) \cap V_{\sigma}^{\prime} & \subset V_{\sigma}^{\prime} \\
\| & & \|_{1} \\
V \cap \sigma^{-1} V & \subset & V^{\prime}
\end{array}
$$

For $\sigma \neq 1$, the picture is in Figure 2.
Since v splits in $L / K, w_{1} \neq \sigma^{-1} w_{1}$, and we see that W_{σ} has no points over v.

Figure 2

The cocycle δy, given on W_{σ} by $(\delta y)_{\sigma}=\left(b^{1 / p}\right)^{\sigma-1}$ is indeed a cocycle for μ. If $\sigma \neq 1,(\delta y)_{\sigma}$ is a non-trivial p-th root of 1 , but that is in $\mu\left(W_{\sigma}\right)$ since the Lemma shows there are no points in W_{σ} above v. This procedure for making a cocycle for μ can clearly be performed simultaneously for several v 's dividing N.

4.2 The General Computation

We will now repeat the same construction in our main setting, i.e., over $K_{n} \not \supset \mu_{p}$. We start with the class $b \in \mathcal{O}_{n}^{\times} / \mathcal{O}_{n}^{\times p} \rightarrow \mathcal{O}_{\infty}^{\times} / \mathcal{O}_{\infty}^{\times p} \hookrightarrow H_{f l}^{1}\left(X_{\infty}, \mu_{p}\right)$, and we assume that b is a p-th power mod v for all $v \mid N$. This can always be achieved by increasing the level n. We will only work at level n, so we again suppress the index n.

The inclusion of rings

$$
\mathcal{O} \hookrightarrow \mathcal{O}[y] /\left(y^{p}-b\right)=B
$$

gives us a flat open cover $U^{\prime} \rightarrow X$, and the 0 -cochain $\left(U^{\prime}, y\right)$ is a " p-th root" of $b \in$ $H^{0}\left(X, \mathrm{G}_{m}\right)$ whose Čech coboundary represents the class $b \in H_{f l}^{1}\left(X, \mu_{p}\right)$. Inspired by the above illustration, we will puncture U^{\prime} to make a cocycle for μ. Let $v_{1}, \ldots, v_{r} \in X$ be the primes dividing N. Since by assumption $b \equiv *^{p}\left(\bmod v_{i}\right)$, there is at least one $w_{i} \mid v_{i}$ in U^{\prime} with $\mathbb{F}_{w_{i}}=\mathbb{F}_{v_{i}}$, with p choices if $\mu_{p} \subset \mathbb{F}_{v_{i}}$. We set

$$
U=U^{\prime} \backslash\left\{w \mid v_{i}: w \neq w_{i}\right\}
$$

Let $F=K\left(\mu_{p}\right), Y=\operatorname{Spec} \mathcal{O}_{F}, V=U \times_{X} Y$. Since $\mathbb{F}_{w_{i}}=\mathbb{F}_{v_{i}}$, all the primes of V above w_{i} lie above distinct primes of Y, so $V \rightarrow Y$ is a cover of the sort we considered in the illustration. In particular, $V \times_{Y} V=\left(U \times_{X} U\right) \times_{X} Y=\cup W_{\sigma}$, and no $W_{\sigma}, \sigma \neq 1$ has a point above N. The same is thus true for the irreducible components of $U \times_{X} U$, so that the Čech coboundary of (U, y) is indeed a 1-cocycle for μ.

What if we had picked a different cover U ? Specifically, when $\mu_{p} \subset \mathbb{F}_{v_{i}}$, we can pick any prime of B above v_{i} to serve as the w_{i}. Changing w_{i} corresponds precisely to changing our lift by an element of $\mu_{p}\left(\mathbb{F}_{v_{i}}\right) \subset \bigoplus_{v \mid N} i_{v *} \mu_{p}\left(\mathbb{F}_{v}\right) \hookrightarrow H_{f l}^{1}\left(X_{n}, \mu\right)$. Since the primes $w \mid v$ of B of degree 1 are in a one-to-one correspondence with the p-th roots $t_{v} \in \mathbb{F}_{v}$ of $b \bmod v$, we have proved the following Proposition, which establishes our standard explicit notation for elements of $H_{f l}^{1}\left(X_{n}, \mu\right)$:

Proposition 5 Pick $b \in \mathcal{O}_{n}^{\times} / \mathcal{O}_{n}^{\times p}$, and assume that for all primes $v \mid N$ of $K_{n}, b \equiv t_{v}^{p}$ $(\bmod v)$ for some $t_{v} \in \mathbb{F}_{v}$. We denote by $\left(b,\left\{t_{v}\right\}_{v \mid N}\right)$ the cohomology class $\delta(U, y) \in$ $H_{f l}^{1}\left(X_{n}, \mu\right)$ constructed above using this choice of t_{v} 's. This notation gives a one-to-one
correspondence between the choices $\left(t_{v}\right)_{v \mid N} \in \prod_{v \mid N} \mathbb{F}_{v}^{\times} / \mathbb{F}_{v}^{\times p}$ of roots of b mod all the places $v \mid N$ of K_{n}, and the lifts of $b \in \mathcal{O}_{n}^{\times} / \mathcal{O}_{n}^{\times p} \subset H_{f l}^{1}\left(X_{n}, \mu_{p}\right)$ to $H_{f l}^{1}\left(X_{n}, \mu\right)$.

4.3 Divisible Lifts

We know that $\mathcal{O}_{\infty}^{\times} / \mathcal{O}_{\infty}^{\times p} \subset H_{f l}^{1}\left(X_{\infty}, \mu_{p}\right)_{\text {div }}$. In terms of the preceding description, which lifts are divisible?

Since $H_{f l}^{1}\left(X_{\infty}, \mu\right) / H_{f l}^{1}\left(X_{\infty}, \mu\right)_{\text {div }}$ is dual to the torsion of the $\mathbb{F}_{p}[[T]]$-module $H_{f l}^{1}\left(X_{\infty}, \mu\right)^{\vee}$, there is an r such that

$$
T^{p^{r}} H_{f l}^{1}\left(X_{\infty}, \mu\right) \subseteq H_{f l}^{1}\left(X_{\infty}, \mu\right)_{\mathrm{div}}
$$

We may as well assume r to be such that all the $v_{r} \mid N$ are inert in $K_{\infty} / K_{r} . T^{p^{r}}$ acts as $\rho-1:=\gamma^{p^{r}}-1$.

Proposition 6 Pick $n \geq r$ large enough so that we can find a $b \in \mathcal{O}_{n}^{\times} / \mathcal{O}_{n}^{\times p}$, and a $u \in \mathcal{O}_{n}^{\times} / \mathcal{O}_{n}^{\times p}$ satisfying the following two conditions:

- $b=u^{\rho-1}$, and
- for every $v \mid N$ a place of K_{n} we can find an $s_{v} \in \mathbb{F}_{v}^{\times}$such that $s_{v}^{p} \equiv u(\bmod v)$.

Since ρ fixes all the v_{r} 's, it will act on the residue field extension $\mathbb{F}_{v_{n}} / \mathbb{F}_{v_{r}}$, and we set $t_{v}=s_{v}^{\rho-1}\left(\right.$ so that $\left.b \equiv t_{v}^{p}(\bmod v)\right)$. Then $\left(b,\left\{t_{v}\right\}_{v \mid N}\right) \in H_{f l}^{1}\left(X_{\infty}, \mu\right)_{\text {div }}$.

Proof Since $T^{p^{r}}\left(u,\left\{s_{v}\right\}\right)=\left(u^{\rho-1},\left\{s_{v}^{\rho-1}\right\}\right)=\left(b,\left\{t_{v}\right\}\right)$, our choice of r guarantees that $\left(b,\left\{t_{v}\right\}\right) \in H_{f l}^{1}\left(X_{\infty}, \mu\right)_{\text {div }}$.

5 The Fake Coboundary Map

Let $F: \mathcal{A} \rightarrow \mathcal{B}$ be a left exact functor between Abelian categories. Consider an exact sequence in $\mathcal{A}, 0 \rightarrow A \rightarrow B \rightarrow C$. The last map need not be onto, so we do not in general get a coboundary between the derived functors $R^{n} F(C) \xrightarrow{\partial} R^{n+1} F(A)$. We will try to salvage as much of a coboundary map as possible in this slightly more general setting. So, choose the injective resolutions $0 \rightarrow A \rightarrow I_{A}=\left(I_{A}^{0} \rightarrow I_{A}^{1} \rightarrow \cdots\right)$, and similarly $I_{B}^{\cdot}, I_{C}^{\cdot}$ fitting into the diagram

The functor F induces a ladder

The standard "lift-and-differentiate" recipe for the coboundary fails already at the "lift" stage, since $F\left(I_{B}^{n}\right) \rightarrow F\left(I_{C}^{n}\right)$ is not necessarily onto. The recipe will still apply to the "liftable" cocycles:

Definition 1 Let $\tilde{F}\left(I_{C}^{n}\right)=\operatorname{ker} d \cap \operatorname{im}\left(F\left(I_{B}^{n}\right) \rightarrow F\left(I_{C}^{n}\right)\right)$ be the group of liftable cocycles in $F\left(I_{C}^{n}\right)$. Given $x \in \tilde{F}\left(I_{C}^{n}\right)$, we can lift it to $\tilde{x} \in F\left(I_{B}^{n}\right)$, and then take $d \tilde{x} \in F\left(I_{B}^{n+1}\right)$, which is the image of a $y \in F\left(I_{A}^{n+1}\right)$, since x was closed. The cohomology class of $y \in R^{n+1} F(A)$, denoted ∂x, does not depend on the choice of lifting \tilde{x}, and gives us a well-defined "fake coboundary map"

$$
\partial: \tilde{F}\left(I_{C}^{n}\right) \rightarrow R^{n+1} F(A)
$$

The main point to appreciate here is that the fake coboundary does not necessarily descend to $R^{n} F(C)$, and so indeed depends on the injective resolutions chosen: even if a liftable $x \in F\left(I_{C}^{n}\right)$ is exact, $x=d y, \partial x$ need not be 0 . The usual Snake Lemma argument proving that ∂x is exact needs a lift of y, which need not exist.

6 A Spectral Sequence Lemma

Here is a little technical lemma, giving a sort of dévissage for general Grothendieck spectral sequences. Let $\mathcal{A} \xrightarrow{F} \mathcal{B} \xrightarrow{G} \mathcal{A} b$ be the setup for a Grothendieck spectral sequence: \mathcal{A}, \mathcal{B} are Abelian categories, $\mathcal{A l b}$ is the category of Abelian groups, F, G are covariant left-exact functors, and F takes injectives of \mathcal{A} into G-acyclic objects of \mathcal{B}. Let $M \in \mathcal{A}$. Consider an injective resolution of M,

$$
0 \rightarrow M \rightarrow I_{M}^{0} \rightarrow I_{M}^{1} \rightarrow \cdots
$$

apply F to it and find injective resolutions $0 \rightarrow F(M) \rightarrow J_{M}, 0 \rightarrow F\left(I^{q}\right) \rightarrow J_{M}^{q}$ by \mathcal{B}-injectives fitting into a diagram

Then $E_{0 M}^{p q}=G\left(J_{M}^{p q}\right)$ is a double complex with anti-commuting differentials d and δ, which yields a spectral sequence with E_{2}-term $E_{2 M}^{p q}=\left(R^{p} F \circ R^{q} G\right)(M)$. The sequence converges:

$$
\left(R^{p} F \circ R^{q} G\right)(M) \Rightarrow R^{p+q}(G \circ F)(M)
$$

As for the E_{1}-term, we have in particular $E_{1 M}^{p 0}=\operatorname{ker} d: E_{0 M}^{p 0} \rightarrow E_{0 M}^{p 1}$, which is none other than $G\left(J_{M}^{p}\right)=\operatorname{ker} d: G\left(J_{M}^{00}\right) \rightarrow G\left(J_{M}^{01}\right)$.

Take an exact sequence in $\mathcal{A}, 0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0$. The goal is to prove a lemma relating the above spectral sequence of C to that of A : suitable coboundary maps are asserted to commute with diagonal spectral sequence differentials d_{1} and d_{2}. First, find compatible \mathcal{A}-injective resolutions of A, B and C :

$$
\begin{array}{lcccccc}
0 \rightarrow & I_{A} & \rightarrow & I_{B} & \rightarrow & I_{C} & \rightarrow 0 \\
& \uparrow & & \uparrow & & \uparrow & \\
0 \rightarrow & A & \rightarrow & B & \rightarrow & C & \rightarrow 0
\end{array}
$$

Since I_{A}^{q} is injective, we get an exact sequence $0 \rightarrow F\left(I_{A}^{q}\right) \rightarrow F\left(I_{B}^{q}\right) \rightarrow F\left(I_{C}^{q}\right) \rightarrow 0$ for every q, and then choose the double complexes $J_{A}^{p q}$, etc. to fit in the three-dimensional ladder whose typical slice is:

The complex $G\left(J_{C}^{\dot{C}}\right)$ computes the derived functors $R \cdot G$ on $F(C)$. Let $\tilde{E}_{C}^{1}=\operatorname{ker} \delta \cap$ $\operatorname{im}\left(G\left(J_{B}^{1}\right) \rightarrow G\left(J_{C}^{1}\right)\right)$ be the group of liftable cochains in $G\left(J_{C}^{1}\right)=E_{1 C}^{10}$, (so $\tilde{E}_{C}^{1}=$ $\tilde{G}\left(J_{C}^{1}\right)$, in the notation of Section 5). Set $\tilde{E}_{C}^{0}=\delta^{-1} \tilde{E}_{C}^{1} \subseteq E_{1 C}^{00}$. We are now ready to state:

Proposition 7 There exist coboundary maps $\partial_{v}: E_{1 C}^{00} \rightarrow E_{1 A}^{01}$ and $\partial_{h}: \tilde{E}_{C}^{1} \rightarrow E_{2 A}^{20}$ such
that for any $a \in \tilde{E}_{C}^{0}, \partial_{v}$ a lands inside $E_{2 A}^{01} \subseteq E_{1 A}^{01}$, and the following diagram commutes:

Here $d_{1}=\delta$ is the spectral sequence differential on $E_{1 C}$ and d_{2} its analog on $E_{2 A}$.
Proof We spell out the definition of the coboundary maps $\partial_{v}, \partial_{h}$, leaving the proof of the commutativity to the reader.

The "vertical" coboundary ∂_{v} : We define $\partial_{v}: E_{1 C}^{00}=G\left(J_{C}^{0}\right) \rightarrow E_{1 A}^{01}$ as the connecting homomorphism arising from

Restricted to $G(F(C)) \hookrightarrow G\left(J_{C}^{0}\right)$, this map is nothing but $G(F(C)) \xrightarrow{G(\partial)} G\left(R^{1} F(A)\right)=$ $E_{2 A}^{01}$ induced from the classic connecting homomorphism of the long exact sequence of the derived functors of F.

The "horizontal" coboundary ∂_{h} : The connecting homomorphism in question should in principle be a map $E_{1 C}^{10} \rightarrow E_{2 A}^{20}$, but this turns out to be too much to ask for. Indeed, consider the corresponding piece of our 3D spectral sequence ladder at the stage E_{0} :

To pass to the E_{1} stage we take the kernel of d since we are on the bottom row of E_{0}. Note that d is "perpendicular" to the differential δ in (9), which accounts for the (possible) failure of right exactness of the ensuing ladder:

This failure precludes the definition of a coboundary map on the entire $G\left(J_{C}^{1}\right)=E_{1 C}^{10}$. Still, we recognize the diagram (10) as being part of the ladder (8) associated to the exact sequence $0 \rightarrow F(A) \rightarrow F(B) \rightarrow F(C)$ in \mathcal{B}. Set

$$
\partial_{h}: \tilde{E}_{C}^{1} \rightarrow R^{1} G(F(A))=E_{2 A}^{20}
$$

to be the fake coboundary map defined as in Section 5.
The proof of the Proposition now becomes a simple but tedious diagram chase.

Remarks

(1) This proposition will allow us to replace a computation of d_{2} with a computation of d_{1}, which is much simpler: notice, for example, that the \tilde{E} 's are defined solely in reference to resolutions of $F(B)$ and $F(C)$, and make no mention of the rest of the spectral sequence machinery.
(2) One might expect that $\partial_{h} d_{1}$ is always 0 , since it looks like a connecting homomorphism for δ evaluated on an δ-exact cochain. But this is not quite right: even if $b=\delta a$, the usual Snake lemma argument showing that $\partial_{h} b$ is a coboundary requires a to be liftable to $G\left(J_{B}^{0}\right)$, which does not necessarily happen. If it does, then $\partial_{h} b$ is indeed 0 .

7 Lifting Across d_{2}

We will now use our spectral sequence lemma to give a general template for lifting across d_{2}. We keep the notation of the preceding sections. Start with exact sequences $0 \rightarrow X \rightarrow Y \rightarrow Z$ in \mathcal{B} and $0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0$ in \mathcal{A} living in a diagram

Pick compatible injective resolutions over this ladder required to set up the spectral sequences from Section 6, $0 \rightarrow X \rightarrow J_{X}, 0 \rightarrow F(A) \rightarrow J_{A}$, etc. As in Section 5, form the groups of liftable cocycles $\tilde{G}\left(J_{Z}^{1}\right), \tilde{G}\left(J_{C}^{1}\right)=\tilde{E}_{C}^{1}$ which are the domains for fake coboundary maps relative to our choice of injective resolutions. They fit into the commutative diagram:

This set-up will help us deal with the following basic

Question Given $z \in \tilde{G}\left(J_{Z}^{1}\right)$, is $\partial z \neq 0 \in\left[R^{2} G\right](X)$?
To answer affirmatively, it will suffice to show that $\alpha(\partial z)$ is non-zero in $\left[R^{2} G\right](F(A))$. This would follow if we could lift $\alpha(\partial z)$ across d_{2} to an element of $G\left(\left[R^{1} F\right](A)\right)$, and show that this lift does not come from $\left[R^{1}(G \circ F)\right](A)$ in the long exact sequence

$$
0 \rightarrow\left[R^{1} G\right](F(A)) \rightarrow\left[R^{1}(G \circ F)\right](A) \rightarrow G\left(\left[R^{1} F\right](A)\right) \xrightarrow{d_{2}}\left[R^{2} G\right](F(A)),
$$

coming from the spectral sequence for $G \circ F$. On this level of abstraction, it is not at all clear that this is a useful strategy. We have a concrete example in mind, though: the Grothendieck spectral sequence of Proposition 2 computing $H^{2}(X, \mathbb{Z} / p \mathbb{Z})$. Here, $G\left(\left[R^{1} F\right](A)\right)\left(=\bigoplus_{\nu \nmid \infty} \operatorname{Hom}\left(U_{v}, \mathbb{Z} / p \mathbb{Z}\right)\right)$ is a much more concrete object than $\left[R^{2} G\right](F(A))\left(=H^{2}(X, \mathbb{Z} / p \mathbb{Z})\right)$, so the computation will indeed go through. All we have to do is find a d_{2}-lift of $\alpha(\partial z)$.

Note that our question makes no reference to the sequence $0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0$, which should indeed be thought of as auxiliary and chosen with a concrete $z \in \tilde{G}\left(J_{Z}^{1}\right)$ in mind. Specifically, we have

Proposition 8 Assume the class $[z]$ represented by a liftable cocycle $z \in \tilde{G}\left(J_{Z}^{1}\right)$ is in $\operatorname{ker}\left(\left[R^{1} G\right](Z) \xrightarrow{\alpha}\left[R^{1} G\right](F(C))\right.$. Then we can explicitly find a lift of $\alpha(\partial z)$ across d_{2}.

Proof Since the complex

$$
G\left(J_{C}^{0}\right) \xrightarrow{\delta} G\left(J_{C}^{1}\right) \xrightarrow{\delta} G\left(J_{C}^{2}\right) \xrightarrow{\delta} \ldots
$$

computes $[R \cdot G](F(C))$, we can find $y \in G\left(J_{C}^{0}\right)$ with $d_{1} y=\delta y=\alpha z$. Since $z \in$ $\tilde{G}\left(J_{Z}^{1}\right), \alpha z \in \tilde{G}\left(J_{C}^{1}\right)=\tilde{E}_{C}^{1}$ and $y \in \tilde{E}_{C}^{0}$ (z liftable $\Rightarrow \alpha z$ liftable). We can therefore apply our spectral sequence Lemma 7 to conclude that $\partial_{v} y$ is our lifting of $\alpha(\partial z)$:

$$
\alpha(\partial z)=\partial_{h}(\alpha z)=\partial_{h}\left(d_{1} y\right)=d_{2}\left(\partial_{v} y\right)
$$

8 The Meat of the Argument

In this section we use the machinery developed so far to prove that, under certain assumptions, the coboundary map $H_{f l}^{1}\left(X_{n}, \mu\right) \xrightarrow{\delta} H_{f l}^{2}\left(X_{n}, \mathbb{Z} / p \mathbb{Z}\right)$ is non-zero.

8.1 Preliminaries

The p-torsion of our curve $E_{/ \mathbb{Q}}$ lies in a non-split exact sequence of $G_{(\mathbb{Q} 2}$-modules

$$
\begin{equation*}
0 \rightarrow \mathbb{Z} / p \mathbb{Z} \rightarrow E[p] \rightarrow \mu_{p} \rightarrow 0 \tag{13}
\end{equation*}
$$

Fix once and for all a basis $\left\langle T_{0}, T_{1}\right\rangle$ of $E[p](\bar{K})$ such that $T_{0} \in E[p](\mathbb{O})$. Relative to this basis, the action of $\sigma \in G_{\mathbb{Q}}$ on $E[p]$ is given by the matrix

$$
\left(\begin{array}{cc}
1 & c(\sigma) \tag{14}\\
0 & \omega(\sigma)
\end{array}\right) .
$$

Here $\omega^{-1} c: G_{\mathbb{Q}} \rightarrow \mathbb{Z} / p \mathbb{Z}$ is a 1-cocycle in $H^{1}(\mathbb{O}, \mathbb{Z} / p \mathbb{Z}(-1)) \cong \operatorname{Ext}_{G_{\mathbb{Q}}}^{1}\left(\mu_{p}, \mathbb{Z} / p \mathbb{Z}\right)$ whose class corresponds to the extension $E[p]$.

8.2 The Main Theorem

The following theorem provides the key ingredient for the strategy outlined in Section 3.

Theorem 1 Assume that there is a level n in the cyclotomic \mathbb{Z}_{p}-tower, and a prime $v|l| N$ of K_{n} for which the following condition holds:
(*) There exists a global unit $a \in \mathcal{O}_{n}^{\times}$which is not a p-th power mod v.
(This forces $\mu_{p} \subseteq \mathbb{F}_{l}^{\times} \subseteq \mathbb{F}_{v}^{\times}$.) Then the coboundary map associated with (2),

$$
H_{f l}^{1}\left(X_{n}, \mu\right) \xrightarrow{\delta} H^{2}\left(X_{n}, \mathbb{Z} / p \mathbb{Z}\right)
$$

is non-zero.
Proof We will be working entirely at the finite level n, so we again suppress it from the notation. We start with a class $b \in H_{f l}^{1}(X, \mu)$. Recall our strategy for proving $\delta b \neq 0$ from Section 3: we lift δb across $d_{2}: \bigoplus_{\nu \nmid \infty} \operatorname{Hom}\left(U_{v}, \mathbb{Z} / p \mathbb{Z}\right) \rightarrow H^{2}(X, \mathbb{Z} / p \mathbb{Z})$ to a collection of homomorphisms $\left(f_{v}: U_{v} \rightarrow \mathbb{Z} / p \mathbb{Z}\right)$, and then find a global unit a such that $\sum_{v \nmid \infty} f_{v}\left(a_{v}\right) \neq 0$.

Remark We will compute on the étale site. This might seem strange, since we are lifting across d_{2} the image of the coboundary in flat cohomology,

$$
H_{f l}^{1}(X, \mu) \xrightarrow{\delta} H_{f l}^{2}(X, \mathbb{Z} / p \mathbb{Z})
$$

The étale cohomology does not "see" most of the classes $\left(a,\left\{t_{v}\right\}_{v \mid N}\right) \in H_{f l}^{1}(X, \mu)$ since the representing cocycle is usually ramified over p. This is why the class we will work with will have $a=1$. Still, the étale site is comfortable to work with, chiefly because $i_{*} E[p]=\mathcal{E}[p]$ as étale sheaves, and because the Gysin sequence (4) naturally lives on it. It is possible, if more involved, to lift a general $\delta\left(b,\left\{t_{v}\right\}_{v \mid N}\right)$, but even this is done by "smoothing" the cocycle at p and doing an étale computation. In any case, $0 \rightarrow \mathbb{Z} / p \mathbb{Z} \rightarrow \mathcal{E}[p] \rightarrow \mu \rightarrow 0$ remains exact when viewed as a sequence of étale sheaves.

The Lifting Set-up

So, let us do a concrete application of Section 7. Consider the functors

$$
\operatorname{Sh}\left((\operatorname{Spec} K)_{e ́ t}\right) \xrightarrow{i_{*}} \operatorname{Sh}\left(X_{\hat{e} t}\right) \xrightarrow{\Gamma(\cdot)=\Gamma(X, \cdot)} \mathcal{A} b
$$

from G_{K}-modules to étale sheaves over X to Abelian groups. We have a ladder

which we recognize as an instance of the diagram (11) from Section 7. Choose the panoply of compatible injective resolutions $J_{\mathbb{Z} / p \mathbb{Z}}, J_{i_{*} \mu_{p}}$, etc. as in that section. We are ultimately interested in computing the map $H_{f l}^{1}(X, \mu) \xrightarrow{\delta} H^{2}(X, \mathbb{Z} / p \mathbb{Z})$ which appears on the right edge of the diagram:

The commutative square in this diagram is precisely diagram (12) from Section 7. To apply Proposition 8 we will need to find a liftable cocycle $b \in \tilde{\Gamma}\left(J_{\mu}^{1}\right)$ whose class [b] is in $\operatorname{ker}\left(H^{1}(X, \mu) \rightarrow H^{1}\left(X, i_{*} \mu_{p}\right)\right)$. Liftability of b will be automatic, since the map of étale sheaves $\mathcal{E}[p] \rightarrow \mu$ is onto.

Finding the Right b

Since $\mu_{/ X} \rightarrow i_{*}\left(\mu_{p / K}\right)$ factors as $\mu_{/ X} \rightarrow \mu_{p / X} \rightarrow i_{*}\left(\mu_{p / K}\right)$, it will suffice to consider classes in $\operatorname{ker}\left(H^{1}(X, \mu) \rightarrow H^{1}\left(X, \mu_{p}\right)\right)$. To get at this kernel, consider the short exact sequence of étale sheaves over X,

$$
\begin{equation*}
0 \rightarrow \mu \rightarrow \mu_{p} \rightarrow \bigoplus_{v \mid N} i_{v *} \mu_{p} \rightarrow 0 \tag{15}
\end{equation*}
$$

analogous to that of Lemma 4, and the corresponding piece of the long exact cohomology sequence with connecting homomorphism D :

$$
0 \rightarrow \bigoplus_{w \mid N} \mu_{p}\left(\mathbb{F}_{w}\right) \xrightarrow{D} H^{1}(X, \mu) \rightarrow H^{1}\left(X, \mu_{p}\right)
$$

By assumption $(*)$, there is a $v \mid N$ with $\mu_{p}\left(\mathbb{F}_{v}\right) \neq 1$. Fix once and for all a prime $\bar{v} \mid v$ of \bar{K}. The image of the basis element T_{1} under $E[p] \rightarrow \mu_{p}$ gives a non-trivial $\zeta \in \mu_{p}(\bar{K})$. Define $\zeta_{v} \in \mu_{p}\left(\mathbb{F}_{v}\right) \subset \bigoplus_{w \mid N} \mu_{p}\left(\mathbb{F}_{w}\right)$ by $\zeta \equiv \zeta_{v}(\bmod \bar{v})$. We obtain the desired class simply by setting $[b]=D\left(\zeta_{\nu}\right)$. As $[b] \in \operatorname{ker}\left(H^{1}(X, \mu) \rightarrow H^{1}\left(X, \mu_{p}\right)\right)$, αb is a coboundary of a 0 -cochain for $i_{*} \mu_{p}$, for any cocycle b representing [b]. Our spectral sequence lemma works on the level of resolutions, not cohomology, so we need to find this cochain explicitly.

The Čech Cochain

First we represent $\zeta_{v} \in H^{0}\left(X, \bigoplus_{w \mid N} i_{w *} \mu_{p}\right)$ by a Čech cocycle. To be more precise, we will write down a 0 -cochain for μ_{p} lifting ζ_{v}, as this is the intermediate step in computing $[b]=D\left(\zeta_{v}\right)$.

Set $K\left(U_{0}\right)=L=K(\zeta), K\left(U_{1}\right)=K$, and $v^{\prime}=\left.\bar{v}\right|_{K\left(U_{0}\right)}$. The $K\left(U_{i}\right)$'s are the function fields of the two components of the étale cover $U=U_{0} \coprod U_{1} \rightarrow X$ given by:

$$
\begin{aligned}
U_{0} & =\operatorname{Spec} \mathcal{O}_{K\left(U_{0}\right)}[1 / p N] \cup\left\{v^{\prime}\right\} \\
U_{1} & =\operatorname{Spec} \mathcal{O}_{K} \backslash\{v\}
\end{aligned}
$$

For the picture, see Figure 3.

Figure 3

The Čech cochain $y \in \check{C}^{0}\left(U, \mu_{p}\right)$ defined on U_{0} by $y_{0}=\zeta \in \mu\left(U_{0}\right)=\mu_{p}\left(U_{0}\right)$ and on U_{1} by $y_{1}=1 \in \mu\left(U_{1}\right)$ lifts $\zeta_{v} \in H^{0}\left(X, \bigoplus_{w \mid N} i_{w *} \mu_{p}\right)$ as promised. Therefore $\delta y=b$ is a cocycle representing our class $[b] \in \operatorname{ker}\left(H^{1}(X, \mu) \rightarrow H^{1}\left(X, i_{*} \mu_{p}\right)\right)$.

Let αy stand for y thought of as a Čech 0 -cochain for $i_{*} \mu_{p}$. At least in degrees 0 and 1 , the complex of Čech sheaves $\check{\mathcal{C}} \cdot\left(U, i_{*} \mu_{p}\right)$ maps into the resolution $0 \rightarrow$ $i_{*} \mu_{p} \rightarrow J_{i_{*} \mu_{p}}$. By abuse of notation, we still denote by αy the corresponding element of the $\Gamma\left(J_{i_{*} \mu_{p}}^{0}\right)$ term of the complex

$$
0 \rightarrow \Gamma\left(i_{*} \mu_{p}\right) \rightarrow \Gamma\left(J_{i_{*} \mu_{p}}^{0}\right) \xrightarrow{\delta} \Gamma\left(J_{i_{*} \mu_{p}}^{1}\right) \xrightarrow{\delta} \Gamma\left(J_{i_{*} \mu_{p}}^{2}\right) \rightarrow \cdots
$$

which computes $H^{*}\left(X, i_{*} \mu_{p}\right)$. We have $\delta(\alpha y)=\alpha b \in \tilde{E}_{i_{*} \mu_{p}}^{1}$, the group of liftable cocycles, because b is automatically liftable. By definition, $\alpha y \in \tilde{E}_{i_{*}}^{0} \mu_{p}$.

Now the comes the crucial step. We apply the spectral sequence Lemma 7:

$$
\begin{equation*}
d_{2} \partial_{v}(\alpha y)=\partial_{h} d_{1}(\alpha y)=\partial_{h}(\alpha b)=\alpha(\delta[b]) \cong \delta[b] \in H^{2}(X, \mathbb{Z} / p \mathbb{Z}) \tag{16}
\end{equation*}
$$

We see that $\partial_{v}(\alpha y)$ is the desired d_{2}-lift of $\delta[b]$. Before representing it explicitly, we recall Remark (2) at the end of Section 6. Indeed, when the extension (13) is non-split, $\partial_{h} d_{1}(\alpha y)$ is not necessarily zero. As in the Remark, the 0 -cochain $\alpha y=$ $\left\{\left(U_{0}, \zeta\right),\left(U_{1}, 1\right)\right\}$ for $i_{*} \mu_{p}$ cannot be lifted to a 0 -cochain for $i_{*} E[p]$, as is apparent from the geometry of y. Indeed, say $U^{\prime} \rightarrow U_{0}$ were an étale open cover such that $\zeta \in i_{*} \mu_{p}\left(U^{\prime}\right)=\mu_{p}\left(K\left(U^{\prime}\right)\right)$ lifts to $E[p]\left(K\left(U^{\prime}\right)\right)$. Then all of $E[p]$ must be rational over $K\left(U^{\prime}\right)$. Since the extension (13) is non-split, $K\left(U^{\prime}\right) / K$ must ramify at every prime above N. But U_{0}, and therefore U^{\prime}, has a point over $v \mid N$, hence the supposedly étale cover $U^{\prime} \rightarrow U_{0}$ ramifies over v^{\prime}.

8.2.1 Finally, a d_{2}-Lift

To lift $\delta[b]$, we compute $\partial_{v}(\alpha y) \in H^{0}\left(X, R^{1} i_{*} \mathbb{Z} / p \mathbb{Z}\right)$ explicitly. Let $f_{i}=\partial_{i} y_{i}, i=$ 1,2 , where $\partial_{i}: \mu_{p}\left(K\left(U_{i}\right)\right) \rightarrow \operatorname{Hom}\left(G_{K\left(U_{i}\right)}, \mathbb{Z} / p \mathbb{Z}\right)$ is the coboundary map associated to (13) viewed as a sequence of $G_{K\left(U_{i}\right)}$-modules. The homomorphisms $f_{i}: G_{K\left(U_{i}\right)} \rightarrow$ $\mathbb{Z} / p \mathbb{Z}$ are easy to compute, given the Galois module structure (14) of $E[p]$:

$$
f_{0}=c: G_{K\left(U_{0}\right)} \rightarrow \mathbb{Z} / p \mathbb{Z}, \quad f_{1}=0: G_{K\left(U_{1}\right)} \rightarrow \mathbb{Z} / p \mathbb{Z}
$$

(The 1-cocycle c for $\mathbb{Z} / p \mathbb{Z}(-1)$ becomes a homomorphism when restricted to $G_{K\left(U_{0}\right)}$.) The collection $f:=\left\{\left(U_{0}, f_{0}\right),\left(U_{1}, f_{1}\right)\right\}$ gives a 0 -cochain for the presheaf

$$
U \mapsto H^{1}(K(U), \mathbb{Z} / p \mathbb{Z})=\operatorname{Hom}\left(G_{K(U)}, \mathbb{Z} / p \mathbb{Z}\right)
$$

This presheaf sheafifies to $R^{1} i_{*} \mathbb{Z} / p \mathbb{Z}$, and f yields a global section which a moment's reflection will convince you is nothing other than

$$
\partial_{v}(\alpha y) \in E_{2(\mathbb{Z} / p \mathbb{Z})}^{01}=H^{0}\left(X, R^{1} i_{*} \mathbb{Z} / p \mathbb{Z}\right)
$$

To translate this description of $\partial_{v}(\alpha y)$ from $H^{0}\left(X, R^{1} i_{*} \mathbb{Z} / p \mathbb{Z}\right)$ to

$$
\bigoplus_{v \nmid \infty} \operatorname{Hom}\left(U_{v}, \mathbb{Z} / p \mathbb{Z}\right),
$$

we simply take a $w \in X$, pick an open U_{0} or U_{1} covering it, and restrict the corresponding f_{i} to the inertia group of some $\bar{w} \mid w$ over $K\left(U_{i}\right)$. In other words, if $w \neq v$, it is covered by U_{1}, and the w-component of f is 0 . An exercise for the reader: what if $w \nmid p N$, so that it is covered by U_{0} also? The v-component is c restricted to $I_{\bar{v} / v}$, which is non-zero precisely because we assumed that (13) is non-split. It is Frobeniusinvariant, and thus descends to a map $f_{v}: U_{v} \rightarrow \mathbb{Z} / p \mathbb{Z}$ since v splits completely in $K\left(U_{0}\right)$.

To finish off the proof of Theorem 1, we invoke the unit $a \in \mathcal{O}_{n}^{\times}$. Since by Assumption $(*) a$ is not a p-th power $\bmod v, f_{v}\left(a_{v}\right) \neq 0$, and

$$
\sum_{w \nmid \infty} f_{w}\left(a_{w}\right)=f_{v}\left(a_{v}\right) \neq 0,
$$

so the collection $\left(f_{w}: U_{w} \rightarrow \mathbb{Z} / p \mathbb{Z}\right)$ is not the restriction of a global homomorphism $f: G_{K} \rightarrow \mathbb{Z} / p \mathbb{Z}$.

The particular shape of f_{v} is contingent on our choice of $\zeta_{v} \equiv \zeta(\bmod \bar{v})$. Had we chosen a different root of unity, its lift would change by a constant multiple, but in any case we have the following more precise theorem:

Theorem 2 With notations of this section, assume there is a prime $v \mid N$ of K with $\left|\mathbb{F}_{v}\right| \equiv 1(\bmod p)($ no assumption is made on global units mod $v)$. Pick a $\zeta_{v} \in \mu_{p}\left(\mathbb{F}_{v}\right)$ non-trivial, and let $b \in H_{f l}^{1}(X, \mu)$ be its image under

$$
\mu_{p}\left(\mathbb{F}_{v}\right) \subset H^{0}\left(X, \bigoplus_{w \mid N} i_{w *} \mu_{p}\right) \stackrel{D}{\hookrightarrow} H_{f l}^{1}(X, \mu)
$$

Then $\delta b \in H^{2}(X, \mathbb{Z} / p \mathbb{Z})$ lifts across $\bigoplus_{\nu \nmid \infty} \operatorname{Hom}\left(U_{v}, \mathbb{Z} / p \mathbb{Z}\right) \xrightarrow{d_{2}} H^{2}(X, \mathbb{Z} / p \mathbb{Z})$ to a collection of homomorphisms

$$
\left(f_{w}: U_{w} \rightarrow \mathbb{Z} / p \mathbb{Z}\right)
$$

with $f_{w}=0$ if $w \neq v$, and $f_{v} \neq 0$.

9 Examples

Finally, we produce some examples to show that the above theory not only has content, but also yields new curves for which we can prove $\mu(E)_{p}=0$. In fact, as soon as we get one new example, we trivially get infinitely many: any curve E^{\prime} with $E^{\prime}[p] \cong E[p]$ also satisfies $\mu\left(E^{\prime}\right)_{p}=0$, as the argument depended only on the structure of p-torsion. For $p=3$ or 5 we can in fact do better and produce infinitely many examples with pairwise non-isomorphic p-torsion.

Before stating the general theorems, we will illustrate the strategy on a concrete example when $p=3$.

9.1 1990D1

Take $p=3$, and consider the curve 1990D1 from Cremona's tables:

$$
E_{1}: y^{2}+x y=x^{3}-6390 x-215900
$$

E_{1} is good ordinary at $3, E_{1}(\mathbb{O})_{\text {tors }}$ has order 3 , and the corresponding exact sequence

$$
0 \rightarrow \mathbb{Z} / 3 \mathbb{Z} \rightarrow E_{1}[3] \rightarrow \mu_{3} \rightarrow 0
$$

does not split, since we read from the tables that there is only one other curve in the isogeny class of E_{1}. The conductor factors as $1990=2 \cdot 5 \cdot 199$, and the corresponding reduction types and Tamagawa numbers are as follows: at $2-I_{27}, c_{2}=27$; at $5-$ $I_{3}, c_{5}=3$; at $199-I_{1}, c_{199}=1$. Since $E[p]$ ramifies at $v \mid N$ if and only if $p \nmid c_{v}, \mathcal{E}[3]$ fits into the exact sequence

$$
0 \rightarrow \mathbb{Z} / 3 \mathbb{Z} \rightarrow \varepsilon[3] \rightarrow \mu \rightarrow 0
$$

where μ is μ_{3} punctured above 199 .
The following formula for the p-adic valuation of $f_{E}^{\text {alg }}(0)$ when E is good ordinary at p and $\operatorname{Sel}_{p \infty}\left(E_{/ Q}\right)$ is finite has been obtained by Perrin-Riou in the CM case, and by Schneider in general (see [3], p. 35):

$$
\begin{equation*}
v_{p}\left(f_{E}(0)\right)=v_{p}\left(\operatorname{Tam}_{E}\left|\tilde{E}\left(\mathbb{F}_{p}\right)\right|^{2}\left|\operatorname{Sel}_{p}\left(E_{/ \mathbb{Q}}\right)\right| /|E(\mathbb{O})|^{2}\right) \tag{17}
\end{equation*}
$$

where Tam_{E} is the product of the Tamagawa numbers and \tilde{E} is the reduction of E at p. In the case at hand, we read off from the tables that $\amalg_{E_{1}}(\mathbb{O})\left[3^{\infty}\right]=0$, rk $E_{1}(\mathbb{O})=0$, so $\operatorname{Sel}_{3 \infty}\left(E_{1 / \mathbb{Q}}\right)=0$. Formula (17) gives $f\left(E_{1}\right)=27 \cdot 3 \cdot 1 \cdot 9 \cdot 1 / 9=81$ up to units, which tells us nothing more than $\mu\left(E_{1}\right)_{3} \leq 4$. We can show that, in fact, $\mu\left(E_{1}\right)_{3}=0$.

Since $9 \| 199^{2}-1,199$ splits completely in K_{1} and the three primes above it are inert thereafter. Over X_{∞} we thus have

$$
0 \rightarrow \mu_{3}\left(\mathbb{F}_{199}\right)^{3} \rightarrow H_{f l}^{1}\left(X_{\infty}, \mu\right) \rightarrow H_{f l}^{1}\left(X_{\infty}, \mu_{p}\right) \rightarrow 0
$$

The primes above 199 in $K_{1}=\mathbb{O}(\alpha)$ correspond to the roots $\bmod 199$ of $x^{3}-3 x+$ $1=0$, the minimal polynomial of

$$
\alpha=\zeta_{9}^{-1} \frac{1-\zeta_{9}^{4}}{1-\zeta_{9}^{2}}
$$

Those roots, $6,34,159(\bmod 199)$ may seem perfectly interchangeable, but in fact they are not: $159 \equiv 69^{3}(\bmod 199)$, whereas $6,34 \notin \mathbb{F}_{199}^{\times 3}$. Fix α and name the three primes $v_{i} \mid 199$ of K_{1} by stipulating that

$$
\alpha \equiv 159\left(\bmod v_{0}\right), \alpha \equiv 6\left(\bmod v_{1}\right), \alpha \equiv 34\left(\bmod v_{2}\right)
$$

Then α fits into a norm-coherent sequence $\left\{\alpha_{n}\right\}, \alpha_{1}=\alpha, \alpha_{n} \in \mathcal{O}_{n}^{\times}$. Let $v_{i, n}$ be the unique prime of K_{n} above v_{i}. We claim that α_{n} is a cube $\bmod v_{0, n}$ and a non-cube $\bmod v_{1, n}, v_{2, n}$. Indeed, $v_{i, n}$ is inert over v_{i}, so we have a commutative diagram whose vertical arrows are induced by the norm map $N_{n / 1}: K_{n} \rightarrow K_{1}$:

The last map is an isomorphism, being a surjection of two groups of order 3. Therefore, α_{n} is a cube $\bmod v_{i, n}$ if and only if $N_{n / 1} \alpha_{n}=\alpha$ is a cube $\bmod v_{i}$.

We now construct a divisible element in $\operatorname{ker}\left(H_{f l}^{1}\left(X_{\infty}, \mu\right) \rightarrow H_{f l}^{1}\left(X_{\infty}, \mu_{p}\right)\right)$. Fix an $r \geq 1$ big enough so that $T^{p^{r}} H_{f l}^{1}\left(X_{\infty}, \mu\right) \subseteq H_{f l}^{1}\left(X_{\infty}, \mu\right)_{\text {div }}$, as in Section 4. Let $\rho=\gamma^{p^{r}}$, so that $T^{p^{r}} \in \mathbb{F}_{p}[[T]]$ acts as $\rho-1$. For $i=1$ or $2, \alpha_{r} \bmod v_{i, r}$ has no cube root in $\mathbb{F}_{v_{i, r}}$, but acquires one in $\mathbb{F}_{v_{i, r+1}}$; call them s_{1}, s_{2}. Pick s_{0} to be a cube root of $\alpha_{r} \bmod v_{0, r}$ already in $\mathbb{F}_{v_{0, r}}\left(\right.$ say $\left.69 \in \mathbb{F}_{199} \subset \mathbb{F}_{v_{0, r}}\right)$. In $\mathcal{O}_{r+1}^{\times}, \alpha_{r}$ becomes a cube mod all three $v_{i, r+1}$, so we can lift it to a class $\left(\alpha_{r},\left\{s_{0}, s_{1}, s_{2}\right\}\right) \in H_{f l}^{1}\left(X_{r+1}, \mu\right) \rightarrow H_{f l}^{1}\left(X_{\infty}, \mu\right)$. As $v_{i, r+1}$ is inert over $v_{i, r}, \rho$ acts on $\mathbb{F}_{v_{i, r+1}}$ and we compute

$$
\begin{aligned}
T^{p^{r}}\left(\alpha_{r},\left\{s_{0}, s_{1}, s_{2}\right\}\right) & =\left(\alpha_{r},\left\{s_{0}, s_{1}, s_{2}\right\}\right)^{\rho-1}=\left(\alpha_{r}^{\rho-1},\left\{s_{0}^{\rho-1}, s_{1}^{\rho-1}, s_{2}^{\rho-1}\right\}\right) \\
& =\left(1,\left\{1, \zeta_{1}, \zeta_{2}\right\}\right)
\end{aligned}
$$

where by our choice of the s_{i} 's, $\zeta_{1}, \zeta_{2} \neq 1 \in \mu_{3}\left(\mathbb{F}_{199}\right)$. By Proposition $6, b=$ $\left(1,\left\{1, \zeta_{1}, \zeta_{2}\right\}\right) \in \operatorname{ker}\left(H_{f l}^{1}\left(X_{\infty}, \mu\right) \rightarrow H_{f l}^{1}\left(X_{\infty}, \mu_{p}\right)\right)$ is divisible.

Notice that the class b lives in $H_{f l}^{1}\left(X_{1}, \mu\right)$; passing to X_{r+1} was necessary only to divide it by $T^{p^{r}}$. We will now show that $\delta b \in H_{f l}^{2}\left(X_{1}, \mathbb{Z} / p \mathbb{Z}\right)$ has non-zero image by lifting it to $\left(f_{w}: U_{w} \rightarrow \mathbb{Z} / p \mathbb{Z}\right)_{w \nmid \infty}$ and showing that

$$
\sum_{w \nmid \infty} f_{w}(u) \neq 0
$$

for a unit u in a norm-coherent sequence. By the argument of Section 3, this suffices to show that $\delta b \neq 0 \in H_{f l}^{2}\left(X_{\infty}, \mathbb{Z} / p \mathbb{Z}\right)$.

Since $b=D \zeta_{1}+D \zeta_{2}$ in the notation of Theorem 2, b is "supported" only at v_{1} and v_{2}, and thus lifts to a collection $\left(f_{w}: U_{w} \rightarrow \mathbb{Z} / p \mathbb{Z}\right)_{w \nmid \infty}$ with only $f_{v_{1}}, f_{v_{2}}$ non-zero.

Select u to be the Galois conjugate of α satisfying the following congruences (obtained by cyclically permuting the congruences for α):

$$
u \equiv 34\left(\bmod v_{0}\right), \quad u \equiv 159\left(\bmod v_{1}\right), \quad u \equiv 6\left(\bmod v_{2}\right)
$$

We see that u is now a cube $\bmod v_{1}$ and a non-cube $\bmod v_{2}$. Thus, by Hensel's lemma, $u \in U_{v_{1}}^{3}, u \notin U_{v_{2}}^{3}$. Since $U_{w} / U_{w}^{3} \cong \mathbb{Z} / p \mathbb{Z}$ for $w \nmid 3$, we see that $f_{v_{1}}(u)=0, f_{v_{2}}(u) \neq 0$, so finally

$$
\sum_{w \nmid \infty} f_{w}(u)=f_{v_{1}}(u)+f_{v_{2}}(u)=f_{v_{2}}(u) \neq 0
$$

So, we are done: we have an element $b \in H_{f l}^{1}\left(X_{\infty}, \mu\right)_{\text {div }}$ with $\delta b \neq 0$, which, as explained in Section 3, implies $\mu\left(E_{1}\right)_{3}=0$. The key to the evaluation was that we choose the class b and a unit u so that the sum giving the pairing of b and u reduces to a single summand. This avoids potentially hard-to-control cancellations.

9.23314 B 1

The same argument, mutatis mutandis, applies to Cremona's curve 3314B1 given by the equation

$$
E_{2}: y^{2}+x y=x^{3}+58 x-22684
$$

with 1657 replacing 199. Unlike E_{1}, E_{2} has rank 1: Cremona computes that $(104,1002)$ is a point of infinite order! Since $f_{E}(0)=0$, it carries no information about μ. In a sense the success of our method is not surprising: both the λ and the μ invariants contribute to $f_{E}(0)$, while our approach zeroes in on μ only (while losing much useful information on λ).

9.3 A Generalization

Let us extract a proof template from the preceding two examples. For a fixed odd prime p, any number field F and its integral ideal \mathcal{N}, we define the support at \mathcal{N} of a global unit $x \in \mathcal{O}_{F}^{\times}$by

$$
\operatorname{Supp}_{\mathcal{N}}^{F}(x)=\left\{v \mid \mathcal{N}: x \text { not a } p \text {-th power in } \mathbb{F}_{v}^{\times}\right\}
$$

Note that if $v \in \operatorname{Supp}_{\mathcal{N}}^{F}(x)$ for some $x \in \mathcal{O}_{F}^{\times}$, then $\mu_{p} \subset \mathbb{F}_{v}$. Moreover, the rational prime l below v is not inert in $F /(\mathbb{O}$: if it were, the norm from F to $(\mathbb{O}$) would induce the vertical maps in the diagram

which would force the reduction $\bmod v$ of any unit in \mathcal{O}_{F} to be a p-th power. When $F=K_{n}$, these two necessary conditions simply translate into

$$
\begin{equation*}
v \in \operatorname{Supp}_{\mathcal{N}}^{K_{n}}(x) \text { for some } x \in \mathcal{O}_{n}^{\times} \Rightarrow p^{2} \mid l-1 \tag{18}
\end{equation*}
$$

This notion of support will help us capture the general argument implicit in the above example:

Theorem 3 Assume there is a level K_{n} in the \mathbb{Z}_{p}-tower satisfying the following conditions:
(a) All primes $v \mid N$ are inert in K_{∞} / K_{n}.
(b) $T^{p^{n}} H_{f l}^{1}\left(X_{\infty}, \mu\right) \subset H_{f l}^{1}\left(X_{\infty}, \mu\right)_{d i v}$.
(c) There exist units $\alpha, u \in \mathcal{O}_{n}^{\times}$such that both are universal norms for the \mathbb{Z}_{p}-tower K_{∞} / K_{n}, and such that $\operatorname{Supp}_{N}^{K_{n}}(\alpha) \cap \operatorname{Supp}_{N}^{K_{n}}(u)=\left\{v_{0}\right\}$, a singleton.
Then, given our assumptions on E, we can conclude that $\mu(E)_{p}=0$.
Proof The proof essentially follows the pattern of the example. As above, we choose an $s_{v} \in \overline{\mathbb{F}}_{v}$ for all $v \mid N$ such that $s_{v}^{p} \equiv \alpha(\bmod v) . T^{p^{n}}$ acts on $H_{f l}^{1}\left(X_{\infty}, \mu\right)$ as $\gamma^{p^{n}}-1=$ $\rho-1$ and fixes all $v \mid N$, so we can compute

$$
\begin{aligned}
T^{p^{r}}\left(\alpha,\left\{s_{v}\right\}_{v \mid N}\right) & =\left(\alpha,\left\{s_{v}\right\}_{v \mid N}\right)^{\rho-1}=\left(\alpha^{\rho-1},\left\{s_{v}^{\rho-1}\right\}_{v \mid N}\right) \\
& =\left(1,\left\{\zeta_{v}\right\}_{v \mid N}\right)=: b \in H_{f l}^{1}\left(X_{\infty}, \mu\right)_{\mathrm{div}}
\end{aligned}
$$

where $\zeta_{v} \neq 1$ precisely when $s_{v} \notin \mathbb{F}_{v}$, i.e., when $v \in \operatorname{Supp}_{N}^{K_{n}}(\alpha)$. Theorem 2 will then lift the divisible class $b=\left(1,\left\{\zeta_{\nu}\right\}_{v \mid N}\right)$ to a collection of functions $\left(f_{w}: U_{w} \rightarrow \mathbb{Z} / p \mathbb{Z}\right)$, w ranging over all primes of K_{n}, such that $f_{w} \neq 0$ precisely when $w \in \operatorname{Supp}_{N}^{K_{n}}(\alpha)$.

The terms in the sum $\sum_{w \nmid \infty} f_{w}\left(u_{w}\right)$ are non-zero precisely when $f_{w} \neq 0$ and u is not a p-th power $\bmod w$, i.e., for $w \in \operatorname{Supp}_{N}^{K_{n}}(\alpha) \cap \operatorname{Supp}_{N}^{K_{n}}(u)=\left\{v_{0}\right\}$. So the above sum really has only one term, and no cancellation is possible:

$$
\sum_{w \nmid \infty} f_{w}(u)=f_{v_{0}}\left(u_{v}\right) \neq 0 .
$$

We conclude $\delta \neq 0$ on $H_{f l}^{1}\left(X_{\infty}, \mu\right)_{\text {div }}$, as desired.

For every $l \mid N$ define the exponent m_{l} by $p^{m_{l}+1} \| l-1$. The prime l splits completely in $K_{m_{l}}$ and is inert in $K_{\infty} / K_{m_{l}}$.

Here is a situation where the conditions of Theorem 3 hold:
Theorem 4 Suppose that there is exactly one prime $l \mid N$ satisfying $m_{l} \geq 2$. For this l, also assume the following:
for at least one prime λ of $K_{m_{l}-1}$ above $l, \pi_{m_{l}-1}$ is not a p-th power mod λ.
Then the conditions of Theorem 3 are satisfied. (Here $\pi_{m_{l}-1}$ is the generator of the prime above p in $K_{m_{l}-1}$ chosen in Section 1.)

Proof Set $m=m_{l}$. First we choose n so that $n \geq m$ and $T^{p^{n}} H_{f l}^{1}\left(X_{\infty}, \mu\right) \subset$ $H_{f l}^{1}\left(X_{\infty}, \mu\right)_{\text {div }}$. This n will satisfy condition (b) of Theorem 3. By the definition of m, all primes dividing l are inert in K_{∞} / K_{m}, so a fortiori in K_{∞} / K_{n}, thus satisfying condition (a). Most of our work, then, will focus on producing the units $\alpha, u \in \mathcal{O}_{n}^{\times}$ satisfying condition c). In fact, we will start by producing suitable units $\alpha^{\prime}, u^{\prime} \in \mathcal{O}_{m}^{\times}$, and the lifting to \mathcal{O}_{n} will be a formality we leave for the end.

We have that $\operatorname{Supp}_{N}^{K_{m}}(x)=\operatorname{Supp}_{l}^{K_{m}}(x)$ for any $x \in \mathcal{O}_{m}^{\times}$, since by assumption l is the only prime dividing N which satisfies the necessary condition (18). To study the behavior of units modulo the primes above l, it is natural to introduce the following definitions.

Set $G=G_{K_{m} / \mathbb{Q}}=\langle\gamma\rangle, R=\mathbb{F}_{p}[G]$, and let $\mathcal{A} \subset K_{m}$ be the ring of elements integral at all $\lambda \mid l$, so that $\pi_{m} \in \mathcal{A}$. Consider the R-module $V=\left(\prod_{\lambda l l} \mathbb{F}_{\lambda}^{\times} / \mathbb{F}_{\lambda}^{\times p}\right)^{0}$ of vectors whose components have product 1 under the natural identification $\mathbb{F}_{\lambda}^{\times} / \mathbb{F}_{\lambda}^{\times p} \cong$ $\mathbb{F}_{l}^{\times} / \mathbb{F}_{l}^{\times p}$. Then V is the target for the (G-equivariant) reduction map

$$
\begin{aligned}
\operatorname{red}: \mathcal{A}^{\times} / \mathcal{A}^{\times p} & \rightarrow V \\
a & \mapsto(a \bmod \lambda)_{\lambda \mid l} .
\end{aligned}
$$

We will study the R-module theory of this map to show that the image of red is large enough to contain two vectors $r, s \in V$ with a single place of common support (i.e., a place where both have an entry $\neq 1$). Lifting them to \mathcal{O}_{m}^{\times}, and then to \mathcal{O}_{n}^{\times}, will produce our desired units α and u.

First, some basic structure theory of $R: R \cong \mathbb{F}_{p}[T] / T^{p^{m}}$ under the identification $T \leftrightarrow \gamma-1$, and all its ideals are powers of the augmentation ideal $I=\operatorname{ker}(R \rightarrow$ $\mathbb{Z} / p \mathbb{Z}$), forming the chain $I \supset I^{2} \supset \cdots \supset I^{p^{m}}=0$. For any subgroup $G_{k}=\left\langle\gamma^{p^{k}}\right\rangle \subseteq$ G, we will be interested in the ideal

$$
I^{p^{k}}=\left\langle\gamma^{p^{k}}-1\right\rangle=\left\{\sum a_{\sigma} \sigma \mid \sum_{\tau \in G_{k}} a_{\rho \tau}=0, \forall \rho \in G\right\}
$$

Since l splits completely in K_{m} / \mathbb{O}) and is inert thereafter, $V \cong I$ as R-modules (this is the main advantage of working over K_{m}). Call $V_{k} \subset V$ the submodule corresponding to $I^{p^{k}} \subset I$:

$$
V_{k}=\left\{\left(x_{\lambda}\right) \in \prod_{\lambda \mid l} \mathbb{F}_{\lambda}^{\times} / \mathbb{F}_{\lambda}^{\times p}\left|\prod_{\tau \in G_{k}} x_{\tau \lambda}=1, \forall \lambda\right| l\right\}
$$

In particular, $\operatorname{red}\left(\pi_{m}\right) \in V_{k} \Leftrightarrow N_{K_{m} / K_{k}}\left(\pi_{m}\right)=\pi_{k}$ is a p-th power mod every λ. Our assumption on π_{m-1} now simply reads red $\left(\pi_{m}\right) \notin V_{m-1}$.

The group of cyclotomic units modulo p-th powers, denoted $C \subset \mathcal{A}^{\times} / \mathcal{A}^{\times p}$, is isomorphic to $I \pi_{m}$. We claim that

$$
\operatorname{red}(C) \supseteq V_{m-1}
$$

Since $V \cong I$, and since the R-submodules of I form a chain, it is enough to show that the reverse inclusion does not hold. Suppose $V_{m-1} \supsetneq \operatorname{red}(C)=I \pi_{m}$. Then we would have $V_{m-1} \supseteq R \operatorname{red}\left(\pi_{m}\right)$, contradicting our assumption that $\operatorname{red}\left(\pi_{m}\right) \notin V_{m-1}$.

Since $\operatorname{red}(C) \supseteq V_{m-1}$, all we have to do is find two elements $r, s \in V_{m-1}$ whose supports have precisely one $\lambda \mid l$ in common. This is easy: Since $p \geq 3$, we can find three distinct elements $\alpha_{1}, \alpha_{2}, \alpha_{3} \in G_{m-1}$. Fix a place $\lambda_{0} \mid l$, and let $u \in \mathbb{F}_{l}^{\times} / \mathbb{F}_{l}^{\times p}$ be a generator. We define $r, s \in V_{m-1}$ by specifying their components:

$$
r=\left(\begin{array}{cccc}
\alpha_{1} \lambda_{0} & \alpha_{2} \lambda_{0} & \alpha_{3} \lambda_{0} & \\
\downarrow & \downarrow & \downarrow & \\
u & u^{-1} & 1 & 1 \ldots 1
\end{array}\right)
$$

We lift r and s to α^{\prime} and u^{\prime} in $C \subset \mathcal{O}_{m}^{\times} / \mathcal{O}_{m}^{\times p}$. Cyclotomic units being universal norms, we can choose $\alpha, u \in \mathcal{O}_{n}^{\times}$whose norms from K_{n} to K_{m} are α^{\prime} and u^{\prime}, respectively. Since all primes above l in K_{m} remain inert in K_{m}, there are one-to-one correspondences $\operatorname{Supp}_{l}^{K_{n}}(\alpha) \cong \operatorname{Supp}_{l}^{K_{m}}\left(\alpha^{\prime}\right), \operatorname{Supp}_{l}^{K_{n}}(u) \cong \operatorname{Supp}_{l}^{K_{m}}\left(u^{\prime}\right)$ and we conclude

$$
\operatorname{Supp}_{l}^{K_{n}}(\alpha) \cap \operatorname{Supp}_{l}^{K_{n}}(u) \cong \operatorname{Supp}_{l}^{K_{m}}\left(\alpha^{\prime}\right) \cap \operatorname{Supp}_{l}^{K_{m}}\left(u^{\prime}\right)=\left\{\alpha_{2} \lambda_{0}\right\}
$$

a singleton as required.

Remark The simpler condition " p not a p-th power mod l " implies that π_{m-1} in not a p-th power $\bmod \lambda$, for some $\lambda \mid l$.

When $p=3$ or 5 , we now have the tools to prove $\mu(E)_{p}=0$ for infinitely many curves E satisfying our running hypotheses on $E[p]$, as in Conjecture 2. Our examples are essentially different in that no two curves we will produce have isomorphic p-torsion. We will find our curves in the Kubert families (see [5]) parametrizing curves with a point of order p.
$p=3$: Consider the family

$$
E_{t}: y^{2}+t y=x^{3}+x^{2}+t x
$$

whose discriminant and j-invariant are given by

$$
\Delta_{t}=-t^{3}(27 t-8), \quad j_{t}=\frac{(3 t-1)^{3}}{t^{3}(27 t-8)}
$$

The point $P=(0,0)$ is of order 3 on any E_{t}.
Choose $t \in \mathbb{Z}$ such that $l=27 t-8$ is a prime number, and such that 3 is not a cube mod l. There are infinitely many such t by the Čebotarev Theorem applied to the extension $K=\left(\mathbb{O}\left(\zeta_{27}, \sqrt[3]{3}\right)\right.$ and $\sigma \in G_{K / \mathbb{Q} \mathbf{Q}}$ satisfying $\left.\sigma\right|_{\mathbb{Q}_{2}\left(\zeta_{27}\right)}=-8 \in \mathbb{Z} / 27 \mathbb{Z}^{\times}$ and not fixing $\sqrt[3]{3}$.

Since $v_{l}\left(\Delta_{t}\right)=1$, the equation for E_{t} is minimal at l, and l is a prime of bad reduction. If the reduction at l is additive, the point of order 3 forces it to be of type $I V$ or $I V^{*}$, and μ has a puncture at l in either case. If the reduction is multiplicative, the numerator cannot cancel the l in the denominator (since $j\left(E_{t}\right)$ would then be integral at l, and the reduction would be potentially good), thus $c_{l}=-v_{l}\left(j_{t}\right)=1$.

Any other prime p of bad reduction divides t. Since t^{3} and $(3 t-1)^{3}$ are relatively prime in $\mathbb{Z}[x]$, we conclude that $3 \mid v_{p}\left(j_{t}\right) \leq 0$. Thus p is a prime of multiplicative reduction: if it were additive, it would again have to be of type $I V$ or $I V^{*}$, in which case we would have $j\left(E_{t}\right) \equiv 0(\bmod p)$, contradiction. Thus reduction is multiplicative, and $3 \mid c_{p}=-v_{p}\left(j\left(E_{t}\right)\right)$.

We conclude that the quasi-finite flat group scheme μ associated to E_{t} has precisely one puncture, at l, i.e., that its p-torsion conductor is $N=l$. Since $9 \| l-1$ and 3 is not a cube mod l, l satisfies all the conditions of Theorem 4, which guarantees $\mu\left(E_{t}\right)_{3}=0$. The infinitely many E_{t} 's we have thus produced have pairwise nonisomorphic 3-torsion, since the punctures occur at different primes l.
$p=5$: Consider the family

$$
E_{s, t}: y^{2}+(s-t) x y-s^{2} t y=x^{3}-s t x^{2}
$$

whose members have the point $(0,0)$ of order 5 , and whose discriminant and j-invariant are given by

$$
\Delta_{s, t}=-s^{5} t^{5}\left(s^{2}+11 s t-t^{2}\right), \quad j_{s, t}=\frac{\left(s^{4}+12 s^{3} t+14 s^{2} t^{2}-12 s t^{3}+t^{4}\right)^{3}}{s^{5} t^{5}\left(s^{2}+11 s t-t^{2}\right)}
$$

We now choose $s, t \in \mathbb{Z}$ so that $l=s^{2}+11 s t-t^{2}$ is a prime, $25 \mid l-1$, and such that 5 is not a 5th power mod l as follows. Consider the extension $L=Q\left(\zeta_{25}, \sqrt[5]{5}\right)$, and choose a rational prime l which splits completely in $\mathbb{O}_{2}\left(\zeta_{25}\right)$, but not in L. This clearly forces the last two conditions on l. As for finding $s, t \in \mathbb{Z}$ with $l=s^{2}+11 s t-t^{2}$, this is possible for any $l \equiv \pm 1(\bmod 5)$, since the strict class number of the order of $\mathbb{O}_{2}(\sqrt{5})$ of discriminant 125 is 1 .

Having chosen our s and t, we check that μ, the quasi-finite flat quotient of $\mathcal{E}_{s, t}[5]$, has a single puncture precisely at l. As $E_{s, t}$ has a point of order 5, all primes of bad reduction are necessarily multiplicative. Since $v_{l}\left(\Delta_{s, t}\right)=1, l$ is a prime of (stable) bad reduction. Therefore the l in the denominator of $j_{s, t}$ cannot cancel, and $c_{l}=$ $v_{l}\left(j_{s, t}\right)=1$. Any other bad prime p divides s or t, say s. If p were to divide the numerator in $j_{s, t}$, we would have have $p \mid t$ also, so $p \mid l$, a contradiction. Thus $5 \mid c_{p}=$ $-v_{p}\left(j_{s, t}\right)$, and μ has no puncture at p. Theorem 4 applies again and allows us to conclude that $\mu\left(E_{s, t}\right)_{5}=0$. Moreover, if for a $\left(s^{\prime}, t^{\prime}\right)$ chosen analogously we have $l^{\prime} \neq l, E_{s, t}[5] \not \equiv E_{s^{\prime}, t^{\prime}}[5]$, and we get an infinite supply of fundamentally distinct examples of curves with μ-invariant zero.

For example, $s=6, t=1$ will satisfy all our conditions. The corresponding curve

$$
E_{6,1}: y^{2}+5 x y-36 y=x^{3}-6 x^{2}
$$

has conductor 606, and Tamagawa numbers $c_{2}=c_{3}=5, c_{101}=1$.
A similar argument with $p=7$ is in principle possible, but runs into interesting difficulties, analytic in nature, concerning the representation of primes by cubic forms. For now, here are three curves with a rational point of order 7 which satisfy the conditions of Theorem 4 and thus have $\mu(E)_{7}=0$. The examples were chosen to have a relatively small puncture prime l, which is the last prime in the factorization of the (elliptic curve) conductor:

$$
\begin{aligned}
y^{2}-319 x y-49096 y & =x^{3}-12274 x^{2}, N_{E}=950266=2 \cdot 17 \cdot 19 \cdot 1471 \\
y^{2}-589 x y-419796 y & =x^{3}-46644 x^{2}, N_{E}=20510=2 \cdot 3 \cdot 13 \cdot 23 \cdot 2594 \\
y^{2}-155 x y+1872 y & =x^{3}+1872 x^{2}, N_{E}=20622=2 \cdot 3 \cdot 13 \cdot 2939
\end{aligned}
$$

A final note: The argument above works only with the quasi-finite flat group scheme $\mathcal{E}[p]$, so it is tempting to consider a slightly more general situation. Fix a field F, and consider a \mathbb{Z}_{p} extension F_{∞} / F. Take a quasi-finite flat group scheme $\mathcal{G}_{\mathcal{O}_{F}}$ living in a short exact sequence

$$
\begin{equation*}
0 \rightarrow \mathbb{Z} / p \mathbb{Z} \rightarrow \mathcal{G} \rightarrow \mu \rightarrow 0 \tag{19}
\end{equation*}
$$

with μ again a punctured over an ideal \mathcal{N}, all of whose prime factors are assumed finitely split in F_{∞}. As in Section 4, we can find a $\mathcal{K} \subseteq H_{f l}^{1}\left(\operatorname{Spec} \mathcal{O}_{F_{\infty}}, \mu\right)$ which is an extension of $\mathcal{O}_{F_{\infty}}^{\times} / \mathcal{O}_{F_{\infty}}^{\times p}$ by a finite group. As in the case of elliptic curves, the long exact sequence differential δ associated to (19) induces a pairing:

$$
\begin{aligned}
\lim _{\leftarrow} \mathcal{O}_{F_{n}}^{\times} / \mathcal{O}_{F_{n}}^{\times p} \times \mathcal{K} & \rightarrow \lim _{\leftarrow} H_{f l}^{1}\left(\operatorname{Spec} \mathcal{O}_{F_{n}}, \mu_{p}\right) \times H_{f l}^{1}\left(\operatorname{Spec} \mathcal{O}_{F_{\infty}}, \mu\right) \xrightarrow{i d \times \delta} \\
& \rightarrow \lim _{\leftarrow} H_{f l}^{1}\left(\operatorname{Spec} \mathcal{O}_{F_{n}}, \mu_{p}\right) \times H^{2}\left(\operatorname{Spec} \mathcal{O}_{F_{\infty}}, \mathbb{Z} / p \mathbb{Z}\right) \rightarrow \mathbb{Z} / p \mathbb{Z}
\end{aligned}
$$

where the last arrow is the limit of the canonical global duality pairing. Here is a natural question to consider: is this pairing always non-zero when the pullback of (19) to the generic point is non-split?

Acknowledgments I would like to thank my thesis adviser, Prof. Barry Mazur, for help and encouragement in pursuing this work.

References

[1] J. E. Cremona, Algorithms for Modular Elliptic Curves. Second edition. Cambridge University Press, Cambridge, 1997.
[2] M. J. Drinen, Finite submodules and Iwasawa μ-invariants. J. Number Theory 93(2002), 1-22.
[3] R. Greenberg, Iwasawa theory for elliptic curves. In: Arithmetic Theory of Elliptic Curves, Lecture Notes in Math. 1716, Springer, Berlin, 1999, pp. 51-144.
[4] R. Greenberg and V. Vatsal, On the Iwasawa invariants of elliptic curves. Invent. Math. 142(2000), 17-63.
[5] D. S. Kubert, Universal bounds on the torsion of elliptic curves. Proc. London Math. Soc. (3) 33(1976), 193-237.
[6] B. Mazur, Rational points of abelian varieties with values in towers of number fields. Invent. Math. 18(1972), 183-266.
[7] J. S. Milne, Étale Cohomology. Princeton Mathematical Series 33, Princeton University Press, Princeton, NJ, 1980.
[8] B. Perrin-Riou, Variation de la fonction L p-adique par isogénie. In: Algebraic Number Theory, Adv. Stud. Pure Math. 17, Academic Press, Boston, MA, 1989, pp. 347-358.
[9] K. Rubin, Euler systems and modular elliptic curves. In: Galois Representations in Arithmetic Algebraic Geometry, (A. Scholl and R. Taylor, eds.), London Math. Soc. Lecture Note Ser. 254, Cambridge University Press, Cambridge, 1998, pp. 351-367.
[10] P. Schneider, The μ invariant of isogenies. J. Indian Math. Soc. (N.S.) 52(1988), 159-170.
[11] V. Vatsal, Special values of anticyclotomic L-functions. Duke Math. J. 116(2003), 219-261.
[12] \longrightarrow Multiplicative-type subgroups of $J_{0}(N)$ and applications to elliptic curves, to appear in J. Inst. Math. Jussieu.

Department of Mathematics
McGill University
Montreal, QC
H3A 2T5
e-mail: mak@math.mcgill.ca

[^0]: Received by the editors August 5, 2003.
 AMS subject classification: 11R23.
 (C)Canadian Mathematical Society 2005.

