TWO-WEIGHTED INEQUALITIES FOR SINGULAR INTEGRALS

DAVID E. EDMUNDS AND VAKHTANG M. KOKILASHVILI

Abstract

We consider operators T of the form $T f=\left\{T_{j} f_{j}\right\}$, where $T_{j} f_{j}(x)=$ ($p . v$) $\int_{R^{n}} k_{j}(x-y) f_{j}(y) d y$. Under appropriate conditions on the k_{j}, two-weighted estimates for T are obtained, the weights being radial and suitably linked.

In this paper we prove two-weighted inequalities for vector-valued singular integrals. The description of the class of weight functions that provide the validity of a oneweighted inequality for Hilbert transforms was given in [6]. Subsequent generalizations for singular Calderon-Zygmund integrals can be found in [3], [7] and other papers. In [1], [9] similar questions are treated for vector-valued singular integrals.

The solution of a two-weighted problem for singular integrals has turned out to be more difficult. This problem is solved in [4] for the case of monotone weights. The present paper deals with a more general case.

A measurable function $w: R^{n} \rightarrow R^{1}$ which is positive almost everywhere is called a weight function; w is called radial if it is of the form $w(x)=f(|x|)$ for some f, and in such cases we shall for convenience often write $w(|x|)$ instead of the more correct $w(x)$. By $L_{w}^{p}\left(R^{n}\right)$ we denote the space of measurable functions $f: R^{n} \rightarrow R^{1}$ with finite norm

$$
\|f\|_{L_{w}^{p}}=\left(\int_{R^{n}}|f(x)|^{p} w(x) d x\right)^{\frac{1}{p}}
$$

Let us recall the definition of the Muckenhoupt class A_{p}. We say that $w \in A_{p}\left(R^{n}\right)(1<$ $p<\infty)$, if

$$
\sup \frac{1}{|Q|} \int_{Q} w(x) d x\left(\frac{1}{|Q|} \int_{Q} w^{-\frac{1}{p-1}}(x) d x\right)^{p-1}<\infty
$$

where the supremum is taken with respect to all balls Q in R^{n}.
Let $\mathbf{M} f$ denote the maximal function of a locally summable function $f: R^{n} \rightarrow R^{1}$ defined by

$$
\mathbf{M} f(x)=\sup \frac{1}{|Q|} \int_{Q}|f(y)| d y
$$

where the supremum is taken with respect to all balls Q containing the point x.
Theorem A [11]. The operator $\mathbf{M}: f \mapsto \mathbf{M} f$ is continuous in $L_{w}^{p}\left(R^{n}\right), 1<p<\infty$, if and only if $w \in A_{p}\left(R^{n}\right)$.

Further, we shall consider the convolution kernel $k(x)$ satisfying the conditions:
i) $|\hat{k}(x)| \leq L, x \in R^{n}$;
ii) $|k(x)| \leq L|x|^{-n}, x \in R^{n}$;
iii) $|k(x-y)-k(x)| \leq \omega\left(\frac{y y}{|x|}\right)|x|^{-n}$ for $|y| \leq \frac{|x|}{2}$.

Here \hat{k} denotes the Fourier transform of k, L is a constant and $\omega(t)$ is a nondecreasing function on $(0, \infty)$ such that $\omega(2 t) \leq c \omega(t)$ and

$$
\int_{0}^{1} \frac{\omega(t)}{t} d t<\infty
$$

Suppose $\left\{k_{j}(x)\right\}$ is a sequence of convolution kernels satisfying the conditions i), ii), iii) with a uniform constant L and a fixed ω independent of j.

For $f=\left\{f_{j}\right\}$ let $T f=\left\{T_{j} f_{j}\right\}$ where

$$
T_{j} f_{j}(x)=(p . v) \int_{R^{n}} k_{j}(x-y) f_{j}(y) d y
$$

Next, for $\theta, 1<\theta<\infty$, and a vector $\varphi=\left\{\varphi_{j}\right\}$ we put

$$
|\varphi|_{\theta}=\left(\sum_{j=1}^{\infty}\left|\varphi_{j}(x)\right|^{\theta}\right)^{1 / \theta}
$$

The following vector-valued one-weighted inequality for the operator T was proved in [1].

Theorem B. Let p, $\theta \in(1, \infty), w \in A_{p}$. Then there exists a positive constant c such that the inequality

$$
\int_{R^{n}}|T f|_{\theta}^{p} w(x) d x \leq c \int_{R^{n}}|f(x)|_{\theta}^{p} w(x) d x
$$

holds for every f for which $|f|_{\theta} \in L_{w}^{p}$.
Our further discussion will deal with two-weighted estimates for the operator T with radial weights.

We introduce
Definition 1. Let $1<p<\infty$ and let $p^{\prime}=p /(p-1)$. Denote by $a_{p}(n)$ the family of all pairs $\left(h_{1}, h\right)$ of nonnegative measurable functions on $(0, \infty)$ which satisfy the condition

$$
\sup _{t>0}\left(\int_{t}^{\infty} h_{1}(\tau) \tau^{n-n p-1} d \tau\right)\left(\int_{0}^{\frac{1}{2}} h^{1-p^{\prime}}(\tau) \tau^{n-1} d \tau\right)^{p-1}<\infty
$$

$b_{p}(n)$ will denote the family of all pairs of functions $\left(h_{1}, h\right)$ satisfying the condition

$$
\sup _{t>0}\left(\int_{0}^{\frac{t}{2}} h_{1}(\tau) \tau^{n-1} d \tau\right)\left(\int_{t}^{\infty} h^{1-p^{\prime}}(\tau) \tau^{-1-\frac{n}{p-1}} d \tau\right)^{p-1}<\infty
$$

We have

Theorem 1. Let $p, \theta \in(1, \infty)$, let σ and u be positive monotone functions defined on $(0, \infty)$, and suppose that the radial function $\rho(|x|) \in A_{p}$. We put $v=\sigma \rho, w=u \rho$; that is, $v(|x|)=\sigma(|x|) \rho(|x|)$ and $w(|x|)=u(|x|) \rho(|x|)$. If either σ and u are increasing and $(v, w) \in a_{p}(n)$, or σ and u are decreasing and $(v, w) \in b_{p}(n)$, then there exists a constant $c>0$ such that the inequality

$$
\int_{R^{n}}|T f(x)|_{\theta}^{p} v(|x|) d x \leq c \int_{R^{n}}|f(x)|_{\theta}^{p} w(|x|) d x
$$

holds whenever $|f|_{\theta} \in L_{w(x \mid)}^{p}$.
To prove the theorem we shall use the following analogue of the well-known Hardy inequality and some simple lemmas.

Theorem C. Let $1 \leq p \leq q<\infty$ and let $\alpha(t), \beta(t)$ be positive functions on $(0, \infty)$.
i) The inequality

$$
\left(\int_{0}^{\infty} \alpha(t)\left|\int_{0}^{t} F(\tau) d \tau\right|^{q} d t\right)^{q / p} \leq c_{1}\left(\int_{0}^{\infty}|F(t)|^{p} \beta(t) d t\right)^{1 / p}
$$

with a constant c_{1} independent of F holds if and only if the condition

$$
\sup _{t>0}\left(\int_{t}^{\infty} \alpha(\tau) d \tau\right)^{p / q}\left(\int_{0}^{t} \beta^{1-p^{\prime}}(\tau) d \tau\right)^{p-1}<\infty
$$

is fulfilled.
ii) The inequality

$$
\left(\int_{0}^{\infty} \alpha(t)\left|\int_{t}^{\infty} F(\tau) d \tau\right|^{q} d t\right)^{1 / q} \leq c_{2}\left(\int_{0}^{\infty}|F(t)|^{p} \beta(t) d t\right)^{1 / p}
$$

with a constant c_{2} independent of F holds if and only if

$$
\sup _{t>0}\left(\int_{0}^{t} \alpha(\tau) d \tau\right)^{p / q}\left(\int_{t}^{\infty} \beta^{1-p^{\prime}}(\tau) d \tau\right)^{p-1}<\infty .
$$

For $1 \leq p=q<\infty$ the above proposition is proved in [12], which also contains information on previous work in this direction. For subsequent generalizations see [2], [8], [10].

Lemma 1. Let $w=u \rho$ where $\rho(|x|) \in A_{p}$ for some $p, 1<p<\infty, u(t)$ increases on $(0, \infty)$ and

$$
\int_{0}^{t} w^{1-p^{\prime}}(\tau) \tau^{n-1} d \tau<\infty
$$

for each $t>0$. Suppose the kernel k satisfies the conditions i), ii) and iii).
Then the singular integral

$$
T \varphi(x)=\int_{R^{n}} k(x-y) \varphi(y) d y
$$

exists almost everywhere in R^{n} for any $\varphi \in L_{w(x \mid)}^{p}\left(R^{n}\right)$.
Proof. Fix arbitrarily a number $\alpha>0$. Suppose $S_{\alpha}=\left\{x:|x|>\frac{\alpha}{2}\right\}, \varphi_{1}(x)=$ $\varphi(x) \cdot \chi_{S_{\alpha}}$ and $\varphi_{2}(x)=\varphi(x)-\varphi_{1}(x)$. Since $u(t)$ is increasing on $(0, \infty)$, we have

$$
\int_{R^{n}}\left|\varphi_{1}(x)\right|^{p} \rho(|x|) d x=\int_{S_{a}}|\varphi(x)|^{p} \rho(|x|) d x \leq c \int_{R^{n}}|\varphi(x)|^{p} w(|x|) d x
$$

Since $\rho \in A_{p}$, by virtue of Theorem B (in the scalar case) we conclude that $T \varphi_{1}$ exists almost everywhere on R^{n}. Now we shall show that $T \varphi_{2}(x)$ converges absolutely for all x provided that $|x|>\alpha$. Note that for $|x|>\alpha$ and $|y| \leq \frac{\alpha}{2}$ we have $|x-y| \geq|x|-|y| \geq \frac{\alpha}{2}$. Further, application of Hölder's inequality gives

$$
\begin{aligned}
\left|T \varphi_{2}(x)\right| & \leq c \int_{R^{n} \backslash S_{\alpha}} \frac{|\varphi(y)|}{|x-y|^{n}} d y \leq\left(\frac{2}{\alpha}\right)^{n} \int_{R^{n} \backslash S_{\alpha}} \frac{|\varphi(y)| w^{\frac{1}{p}}(|y|)}{w^{\frac{1}{p}}(|y|)} d y \\
& \leq\left(\frac{2}{\alpha}\right)^{n}\left(\int_{R^{n}}|\varphi(y)|^{p} w(|y|) d y\right)^{\frac{1}{p}}\left(\int_{R^{n} \mid S_{\alpha}} w^{1-p^{\prime}}(|y|) d y\right)^{\frac{1}{p}}<\infty .
\end{aligned}
$$

Since α may be chosen arbitrarily small we conclude that $T \varphi_{2}$ converges absolutely almost everywhere on R^{n}.

Therefore $T \varphi$ exists almost everywhere in R^{n}.
LEMMA 2. Let the radial function $\rho \in A_{p}$ for some $p, 1<p<\infty$ and suppose that $0 \leq c_{1}<c_{2} \leq c_{3}<c_{4}$. Then we have the inequality

$$
\int_{c_{3} t}^{c_{4} t} \rho(\tau) \tau^{n-1} d \tau \leq c_{0} \int_{c_{1} t}^{c_{2} t} \rho(\tau) \tau^{n-1} d \tau
$$

with some constant c_{0} independent of $t \in(0, \infty)$.
Proof. We introduce the notation:

$$
\begin{aligned}
& \Gamma=\left\{x: c_{1} t<|x|<c_{2} t\right\} \\
& \Gamma_{1}=\left\{x: c_{3} t<|x|<c_{4} t\right\}
\end{aligned}
$$

and

$$
B=\left\{x:|x|<c_{4} t\right\} .
$$

By virtue of the definition of a maximal function for an arbitrary $x \in \Gamma_{1}$ and of the function $\varphi \in L_{\rho}^{p}$,

$$
\begin{equation*}
\mathbf{M} \varphi(x)>\frac{1}{|B|} \int_{B}|\varphi(y)| d y \chi_{\Gamma_{1}}(x) \geq \frac{c}{|\Gamma|} \int_{\Gamma}|\varphi(y)| d y \chi_{\Gamma_{1}}(x) \tag{1}
\end{equation*}
$$

Due to Theorem A we have

$$
\int_{R^{n}}(\mathbf{M} \varphi(x))^{p} \rho(x) d x \leq c \int_{R^{n}}|\varphi(x)|^{p} \rho(x) d x .
$$

Then (1) implies the estimate

$$
\int_{\Gamma_{1}}\left(\frac{1}{|\Gamma|} \int_{\Gamma}|\varphi(y)| d y\right)^{p} \rho(x) d x \leq c \int_{R^{n}}|\varphi(y)|^{p} \rho(y) d y
$$

The choice $\varphi(y)=\chi_{\Gamma}(y)$ in the above inequality shows that

$$
\int_{\Gamma_{1}} \rho(x) d x \leq c \int_{\Gamma} \rho(x) d x
$$

which implies the validity of the desired inequality.

LEmmA 3. Let the pair of radial functions $(v, w) \in a_{p}(n)$ where $v=\sigma \rho, w=u \rho$ and σ and v increase on $(0, \infty), \rho(|x|) \in A_{p}, 1<p<\infty$. Then there exists a constant $c>0$ such that for all $t>0$,

$$
\sigma(2 t) \leq c u(t)
$$

Proof. Obviously, due to the increase of the functions σ and u, we obtain

$$
\begin{equation*}
\int_{t}^{\infty} \sigma(\tau) \rho(\tau) \tau^{n-n p-1} d \tau \geq \sigma(t) \int_{t}^{\infty} \rho(\tau) \tau^{n-n p-1} d \tau \geq \sigma(t) \int_{t}^{2 t} \rho(\tau) \tau^{n-n p-1} d \tau \tag{2}
\end{equation*}
$$ and

$$
\begin{equation*}
\left(\int_{0}^{\frac{t}{2}} u^{1-p^{\prime}}(\tau) \rho^{1-p^{\prime}}(\tau) \tau^{n-1} d \tau\right)^{p-1} \geq \frac{1}{u\left(\frac{t}{2}\right)}\left(\int_{0}^{\frac{t}{2}} \rho^{1-p^{\prime}}(\tau) \tau^{n-1} d \tau\right)^{p-1} \tag{3}
\end{equation*}
$$

By Hölder's inequality we have

$$
\begin{equation*}
1 \leq c t^{-n p} \int_{t}^{2 t} \rho(\tau) \tau^{n-1} d \tau\left(\int_{t}^{2 t} \rho^{1-p^{\prime}}(\tau) \tau^{n-1} d \tau\right)^{p-1} \tag{4}
\end{equation*}
$$

Further note that the definition of the class A_{p} shows that $\rho \in A_{p}$ implies $\rho^{1-p^{\prime}} \in A_{p^{\prime}}$. By virtue of (4), Lemma 2, inequalities (2), (3) and the condition ($v, w) \in a_{p}(n)$ we now conclude that the inequalities

$$
\begin{aligned}
\frac{\sigma(t)}{u\left(\frac{t}{2}\right)} & \leq c \frac{\sigma(t)}{u\left(\frac{t}{2}\right)} t^{-n p} \int_{t}^{2 t} \rho(\tau) \tau^{n-1} d \tau\left(\int_{t}^{2 t} \rho^{1-p^{\prime}}(\tau) \tau^{n-1} d \tau\right)^{p-1} \\
& \leq c \frac{\sigma(t)}{u\left(\frac{t}{2}\right)} \int_{t}^{2 t} \rho(\tau) \tau^{n-n p-1} d \tau\left(\int_{t}^{2 t} \rho^{1-p^{\prime}}(\tau) \tau^{n-1} d \tau\right)^{p-1} \\
& \leq c \frac{\sigma(t)}{u\left(\frac{t}{2}\right)} \int_{t}^{2 t} \rho(\tau) \tau^{n-n p-1} d \tau\left(\int_{0}^{\frac{t}{2}} \rho^{1-p^{\prime}}(\tau) \tau^{n-1} d \tau\right)^{p-1} \leq c_{1}
\end{aligned}
$$

hold.
Proof of Theorem 1. First let σ and u be increasing. Suppose without loss of generality that the function $\sigma(t)$ can be represented as

$$
\sigma(t)=\sigma(0)+\int_{0}^{t} \varphi(u) d u
$$

where φ is a positive function. Then we shall have

$$
\begin{align*}
\int_{R^{n}}|T f(x)|_{\theta}^{p} v(|x|) d x & =\sigma(0) \int_{R^{n}}|T f(x)|_{\theta}^{p} \rho(|x|) d x+\int_{R^{n}}|T f(x)|_{\theta}^{p} \rho(|x|) d x\left(\int_{0}^{|x|} \varphi(t) d t\right) d x \tag{5}\\
& =I_{1}+I_{2} .
\end{align*}
$$

If $\sigma(0)=0$, then $I_{1}=0$. If $\sigma(0)>0$, then by Theorem B we obtain

$$
\begin{align*}
\sigma(0) \int_{R^{n}}|T f(x)|_{\theta}^{p} \rho(|x|) d x & \leq c \sigma(0) \int_{R^{n}}|f(x)|_{\theta}^{p} \rho(|x|) d x \\
& \leq c_{1} \int_{R^{n}}|f(x)|_{\theta}^{p} \rho(|x|) \sigma(|x|) d x \tag{6}\\
& \leq c_{2} \int_{R^{n}}|f(x)|^{p} \rho(|x|) u(|x|) d x .
\end{align*}
$$

Next, change of the order of integration and use of Minkowski's inequality give

$$
\begin{align*}
I_{2}= & \int_{R^{n}}|T f(x)|_{\theta}^{p} \rho(|x|)\left(\int_{0}^{|x|} \varphi(t) d t\right) d x=\int_{0}^{\infty} \varphi(\tau)\left(\int_{|x|>\tau}|T f(x)|_{\theta}^{p} \rho(|x|) d x\right) d \tau \\
\leq & c_{3} \int_{0}^{\infty} \varphi(\tau)\left(\int_{|x|>\tau}\left|\int_{|y|>\frac{\tau}{2}} k_{j}(x-y) f_{j}(y) d y\right|_{\theta}^{p} \rho(|x|) d x\right) d \tau \tag{7}\\
& +c_{3} \int_{0}^{\infty} \varphi(\tau)\left(\int_{|x|>\tau}\left|\int_{|y|<\frac{\tau}{2}} k_{j}(x-y) f_{j}(y) d y\right|^{p} \rho(|x|) d x\right) d \tau=I_{21}+I_{22} .
\end{align*}
$$

Again application of Theorem B and Lemma 3 gives

$$
\begin{aligned}
I_{21} & =\int_{0}^{\infty} \varphi(\tau)\left(\int_{|x|>\tau}\left|\int_{R^{n}} k_{j}(x-y) f_{j}(y) \chi_{\{y:|y|>\tau / 2\}}(y) d y\right|_{\theta}^{p} \rho(|x|) d x\right) d \tau \\
& \leq c_{\theta} \int_{0}^{\infty} \varphi(\tau)\left(\int_{|y|>\frac{\tau}{2}}|f(y)|_{\theta}^{p} \rho(|y|) d y\right) d \tau=c_{\theta} \int_{R^{n}}|f(y)|_{\theta}^{p} \rho(|y|)\left(\int_{0}^{2|y|} \varphi(\tau) d \tau\right) d y \\
& \leq c_{\theta} \int_{R^{n}}|f(y)|_{\theta}^{p} \rho(|y|) \sigma(2|y|) d y \leq c_{4} \int_{R^{n}}|f(y)|_{\theta}^{p} \rho(|y|) u(|y|) d y .
\end{aligned}
$$

Therefore

$$
\begin{equation*}
I_{21} \leq c_{4} \int_{R^{n}}|f(y)|_{\theta}^{p} w(|y|) d y \tag{8}
\end{equation*}
$$

Further, the property ii) of the kernels k_{j} enables us to obtain the estimate

$$
\begin{align*}
I_{22} & \leq c_{5} \int_{0}^{\infty} \varphi(t)\left(\int_{|x|>\tau} \frac{\rho(|x|)}{|x|^{n p}} d x\right)\left(\int_{|y| \leq \frac{\tau}{2}}|f(y)|_{\theta} d y\right)^{p} d \tau \\
& =c_{5} \int_{0}^{\infty} \varphi(2 s)\left(\int_{\gamma>2 s} \frac{\rho(\gamma)}{\gamma^{n p-n+1}} d \gamma\right)\left(\int_{|y| \leq s}|f(y)|_{\theta} d y\right)^{p} d s . \tag{9}
\end{align*}
$$

By the hypotheses of the theorem we have

$$
\begin{equation*}
\left(\int_{t}^{\infty} \frac{\sigma(\tau) \rho(\tau)}{\tau^{1+n(p-1)}} d \tau\right)\left(\int_{0}^{\frac{t}{2}} \frac{\tau^{n-1}}{w^{p^{\prime}-1}(\tau)} d \tau\right)^{p-1}<c_{6} \tag{10}
\end{equation*}
$$

After change of order of integration we obtain

$$
\begin{aligned}
\int_{2 t}^{\infty} \varphi(s)\left(\int_{2 s}^{\infty} \frac{\rho(\gamma)}{\gamma^{1+n(p-1)}} d \gamma\right) d s & \leq c_{7} \int_{2 t}^{\infty} \varphi(s)\left(\int_{2 s}^{\infty} \frac{\rho(\gamma)}{\gamma^{1+n(p-1)}} d \gamma\right) d s \\
& =c_{7} \int_{2 t}^{\infty} \frac{\rho(\gamma)}{\gamma^{1+n(p-1)}}\left(\int_{2 t}^{\gamma} \varphi(s) d s\right) d \gamma \\
& \leq c_{7} \int_{2 t}^{\infty} \frac{\rho(\gamma) \sigma(\gamma)}{\gamma^{1+n(p-1)}} d \gamma
\end{aligned}
$$

Therefore by (10) we have

$$
\int_{2 t}^{\infty} \varphi(s)\left(\int_{2 s}^{\infty} \frac{\rho(\gamma)}{\gamma^{1+n(p-1)}} d \gamma\right) d s\left(\int_{0}^{t} \frac{n^{n-1}}{w^{p^{\prime}-1}(\tau)} d \tau\right)^{p-1}<c_{8}
$$

Now, applying Theorem C to the right-hand side of (9) we find that

$$
\begin{equation*}
I_{22} \leq c_{9} \int_{R^{n}}|f(x)|_{\theta}^{p} w(|x|) d x \tag{11}
\end{equation*}
$$

Finally, from (5), (6), (7), (8) and (11) we conclude that the theorem is valid.
When σ and u are decreasing functions, the proof is conducted in a similar manner; one should use only condition ii) of Theorem C.

Let us consider a concrete singular integral, namely the Hilbert transform

$$
H f(x)=\int_{-\infty}^{\infty} \frac{f(y)}{x-y} d y
$$

In that case the conditions $a_{p}(1)$ and $b_{p}(1)$ are also necessary for the boundedness of the operator H from L_{w}^{p} to L_{v}^{p}. To be more precise, the following theorem is valid:

THEOREM 2. Let $1<p<\infty$. If the pair (v, w) satisfies the conditions of Theorem 1 for $n=1$, then we have the inequality

$$
\begin{equation*}
\int_{-\infty}^{\infty}|H f(x)|^{p} v(|x|) d x \leq c \int_{-\infty}^{\infty}|f(x)|^{p} w(|x|) d x, \quad f \in L_{w}^{p} \tag{12}
\end{equation*}
$$

Conversely, if (12) is fulfilled, then $(v, w) \in a_{p}(1) \cap b_{p}(1)$.
Proof. The first part of the theorem is a corollary of Theorem 1. Now let (12) be fulfilled: then by [13], $w^{1-p^{\prime}} \in L((\alpha, \beta))$ for arbitrary α and $\beta, 0<\alpha<\beta<\infty$. Fix arbitrarily α and $t, 0<\alpha<\frac{t}{2}$, and in (12) substitute the function

$$
f(y)= \begin{cases}w^{1-p^{\prime}}(y) & \text { for } \alpha<y<\frac{t}{2} \\ 0 & \text { otherwise }\end{cases}
$$

We obtain

$$
\begin{equation*}
\int_{-\infty}^{\infty}|H f(x)|^{p} v(|x|) d x \leq c \int_{\alpha}^{\frac{1}{2}} w^{1-p^{\prime}}(\tau) d \tau \tag{13}
\end{equation*}
$$

where the constant c does not depend on α and t.
On the other hand,

$$
\begin{align*}
\int_{-\infty}^{\infty}|H f(x)|^{p} v(|x|) d x & \geq \int_{t}^{\infty}\left|\int_{\alpha}^{\frac{1}{2}} \frac{w^{1-p^{\prime}}(y)}{x-y} d y\right|^{p} v(|x|) d x \tag{14}\\
& \geq \int_{t}^{\infty} \frac{v(x)}{x^{p}} d x\left(\int_{\alpha}^{\frac{1}{2}} w^{1-p^{\prime}}(y) d y\right)^{p}
\end{align*}
$$

Further, from (13) and (14) we obtain

$$
\int_{t}^{\infty} \frac{v(x)}{x^{p}} d x\left(\int_{\alpha}^{\frac{1}{2}} w^{1-p^{\prime}}(y) d y\right)^{p-1} \leq c_{1}
$$

Making α tend to zero, we conclude that $(v, w) \in a_{p}(1)$.
Now fix arbitrarily t and $\beta, 0<t<\frac{\beta}{2}$, and in (12) substitute the function

$$
f(y)= \begin{cases}(w(y) y)^{1-p^{\prime}} & \text { for } 2 t<y<\beta \\ 0 & \text { otherwise }\end{cases}
$$

Obtaining the estimates in the manner discussed above and making β tend to infinity, we find that $(v, w) \in b_{p}(1)$.

In what follows given any natural number m, Λ_{m} will denote the set of all measurable functions f for which

$$
\int_{-\infty}^{\infty}|f(x)|(1+|x|)^{m} d x<\infty
$$

and

$$
\int_{-\infty}^{\infty} f(x) x^{k} d x=0, \quad k=0,1,2, \ldots, m
$$

We have
Theorem 3. Let $1<p<\infty$. If the pair of functions (v, w) satisfies the condition of Theorem 1, then for arbitrary functions $f \in \Lambda_{m}$ for which $f P_{m} \in L_{w(|x|)}^{p}$ we have the inequality

$$
\int_{-\infty}^{\infty}|H f(x)|^{p}\left|P_{m}(x)\right|^{p} v(|x|) d x \leq c \int_{-\infty}^{\infty}|f(x)|^{p}\left|P_{m}(x)\right|^{p} w(|x|) d x
$$

where $P_{m}(x)$ is an arbitrary polynomial with complex-valued coefficients of degree $m+1$ and the positive constant c is independent of f.

Proof. The proof follows from Theorem 1 and the identity

$$
P_{m}(x) H f(x)=H\left(P_{m} f\right)(x), \quad f \in \Lambda_{m} .
$$

We illustrate Theorems 1 and 2 by giving examples of distinct weights v and w for which these theorems hold.

EXAMPLE 1. Let $0<\alpha \leq \beta<p-1$; define real-valued functions h_{1} and h on $(0, \infty)$ by

$$
h_{1}(t)= \begin{cases}t^{p-1} & \text { if } 0<t \leq 1 / 2 \\ 2^{\alpha-p+1} t^{\alpha} & \text { if } 1 / 2<t<\infty\end{cases}
$$

and

$$
h(t)= \begin{cases}t^{p-1} \log ^{p}(1 / t) & \text { if } 0<t \leq 1 / 2 \\ 2^{\beta-p+1} t^{\beta} \log ^{p} 2 & \text { if } 1 / 2<t<\infty,\end{cases}
$$

and define radial weights v, w by $v(|x|)=h_{1}(|x|), w(|x|)=h(|x|)$. Routine calculations show that the pair $\left(h_{1}, h\right)$ of increasing functions belongs to $a_{p}(1) \cap b_{p}(1)$. Thus Theorem 1 and the first part of Theorem 2 hold for the pair (v, w).

EXAMPLE 2. Here we let $0<\beta \leq \alpha<p-1$, define h_{1} and h by

$$
h_{1}(t)= \begin{cases}1 /\left(t \log ^{p}(1 / t)\right) & \text { if } 0<t \leq 1 / 2 \\ \left(2^{1-\alpha} / \log ^{p} 2\right) t^{-\alpha} & \text { if } 1 / 2<t<\infty,\end{cases}
$$

and

$$
h(t)= \begin{cases}t^{-1} & \text { if } 0<t \leq 1 / 2 \\ 2^{1-\beta} t^{-\beta} & \text { if } 1 / 2<t<\infty,\end{cases}
$$

and define the radial weights v, w by $v(|x|)=h_{1}(|x|), w(|x|)=h(|x|)$. Again it is easy to verify that the pair $\left(h_{1}, h\right)$ of decreasing functions belongs to $a_{p}(1) \cap b_{p}(1)$, and that consequently Theorem 1 and the first part of Theorem 2 hold for the pair (v, w).

References

1. K. F. Andersen and R. T. John, Weighted inequalities for vector valued maximal functions and singular integrals, Studia Math. 59(1980), 19-31.
2. J. S. Bradley, Hardy's inequalities with mixed norms, Canad. Math. Bull. (1) 21(1978), 405-408.
3. R. R. Coifman and C. Fefferman, Weighted norm inequalities for maximal functions and singular integrals, Studia Math. 51(1974), 241-250.
4. E. G. Gusseinov, Singular integrals in the spaces of functions summable with monotone weight, (Russian), Mat. Sb. 174 (1) 132(1977), 28-44.
5. S. Hofmann, Weighted norm inequalities and vector-valued inequalities for certain rough operators, Indiana Univ. Math. J. 42(1993), 1-14.
6. R. A. Hunt, B. Muckenhoupt and R. L. Wheeden, Weighted norm inequalities for the conjugate function and Hilbert transform, Trans. Amer. Math. Soc. 176(1973), 227-251.
7. M. Kaneko and S. Jano, Weighted norm inequalities for singular integrals, J. Math. Soc. Japan (4) 27(1975), 570-588.
8. V. M. Kokilashvili, On Hardy's inequalities in weighted spaces, (Russian), Bull. Acad. Sci. Georgian SSR (2) 96(1979), 37-40.
9. V. Kokilashvili, On weighted Lizorkin-Triebel spaces. Singular integrals, multipliers, imbedding theorems, (Russian), Trudy Mat. Inst. Steklov 161(1983), 125-149; English transl. Proc. Steklov Inst. Math. 3(1984), 135-162.
10. V. G. Maz'ya, Sobolev spaces, Springer, Berlin, 1985.
11. B. Muckenhoupt, Weighted norm inequalities for the Hardy maximal function, Trans. Amer. Math. Soc. 165(1972), 207-226.
12. Hardy's inequality with weight, Studia Math. (1) 44(1972), 31-38.
13. J. L. Rubio de Francia, Weighted norm inequalities and vector-valued inequalities. In: Lecture Notes in Math. 908, Springer-Verlag, Berlin, 1982, 86-101.

Centre for Mathematical Analysis and its Applications
University of Sussex
Brighton BN1 9QH
Sussex
United Kingdom
A. M. Razmadze Mathematical Institute

Rukhadze Str. 1
380093 Tbilisi
Republic of Georgia

