CHROMATIC NUMBER AND
 TOPOLOGICAL COMPLETE SUBGRAPHS

G. A. Dirac

(received May 13, 1965)

1. Introduction and terminology. A graph with $\mathrm{m}(\geq 1)$ vertices, each pair of distinct vertices connected by an edge, and also a graph obtained from such a graph by the process of subdividing edges through the insertion of new vertices of valency 2 , will be denoted by $\ll \mathrm{m}, 0 \gg$. A graph obtained from a graph with $m(\geq 2)$ vertices in which each pair of distinct vertices are connecte \bar{d} by an edge, by deleting $n(\leq m-1)$ edges incident with one and the same vertex, and also a graph obtained from such a graph by the process of subdividing edges through the insertion of new vertices of valency 2 , will be denoted by $\ll m, n \gg$. Vertices with valency ≥ 3 are called branchvertices of the $\ll \mathrm{m}, \mathrm{n} \gg$. An $\ll \mathrm{m}, \mathrm{o} \gg$ is known as a topological complete graph with m vertices; a <<3,o>> is a circuit. It is known that every 4 -chromatic graph contains a $\ll 4,0 \gg$ as a subgraph [1] and that every graph without multiple edges with $N \geq 4$ vertices and $2 N-2$ edges contains a $\ll 4,0 \gg$ [2], but so far only conjectures exist concerning conditions for the existence of <<m,o>> with $m \geq 5$. For example, G. Hajos conjectured that every k-chromatic graph contains a $\ll k, 0\rangle>$, and I conjectured that every graph without multiple edges with $\mathrm{N} \geq 5$ vertices and $3 \mathrm{~N}-5$ edges contains a $\ll 5,0 \gg$.

In this paper the method of distance-classes with respect to a selected vertex, recently used by K. Wagner to establish a general homomorphism theorem [3], will be employed to prove the following

THEOREM. If $k(m, n)$, where m and n are integers and $0 \leq n \leq m-3$, is such that every $k(m, n)$-chromatic graph contains an $\ll \mathrm{m}, \mathrm{n} \gg$, then every $(2 \mathrm{k}(\mathrm{m}, 0)-1)$-chromatic graph

Canad. Math. Bull. vol. 8, no. 6, 1965.
contains an $\ll \mathrm{m}+1, \mathrm{~m}-3 \gg$, and for $1 \leq n \leq m-3$ every ($2 \mathrm{k}(\mathrm{m}, \mathrm{n})-1$)-chromatic graph contains an $\langle<\mathrm{m}, \mathrm{n}-1\rangle>$. Every 7 -chromatic graph contains a $\ll 5,1 \gg$ and every 13 -chromatic graph contains a $\langle<5,0\rangle>$. Corresponding to any integers m, n, with $0 \leq n, m-3$ there exists a finite $k(m, n)$. Every $[k(m+1, n)-1]$-chromatic graph contains an $\langle<m, n \gg$.
2. Distance classes in a connected graph. Let γ be a connected graph and let A_{0} be a vertex of γ. If A is any vertex of γ other than A_{0}, then the number of edges contained in a path connecting A_{o} and A having least possible number of edges is called the distance between A_{0} and A, and any such path is called a geodesic. For $i=1,2,3, \ldots$ Iet V_{i} denote the set of vertices of γ whose distance from A_{o} is i and let γ_{i} denote the subgraph of γ consisting of V_{i} and the edges of γ joining two vertices of V_{i}. The vertices of γ other than A_{0} are clearly partitioned into the distance-classes $\mathrm{V}_{1}, \mathrm{~V}_{2}, \mathrm{~V}_{3}, \ldots$ We say that V_{i} and $\mathrm{V}_{\mathrm{i}+1}$ are neighbouring distance classes, and so are A_{0} and V_{1}. It is easy to see that:
(1) Any edge of γ either joins two vertices in the same distance class or it joins two vertices in neighbouring distance classes;
(2) Each vertex of γ is connected to A by a geodesic, and each edge of a geodesic joins two vertices belonging to neighbouring distance classes, and no two vertices of a geodesic belong to the same distance class.

The union of p distinct paths such that one vertex, called the focus, is end-vertex of all the paths, and any two of the paths have the focus and nothing else in common, is called a p-pencil, the vertices of valency 1 are called end-vertices of the pencil. 1-pencils and 2 -pencils are paths.
(3) Any two distinct vertices in the same distance-class V_{i} are connected by a path contained in γ of which no edge and no vertex except its end-vertices belongs to γ_{i}.

For each of the two vertices is connected to A_{0} by a geodesic, and the union of two such geodesics contains a path with the required property, by (2).
(4) Any three distinct vertices in the same distanceclass V_{i} are the end-vertices of a 3-pencil contained in γ of which no edge and no vertex except its end-vertices belongs to $\gamma_{i}{ }^{\text {. }}$

For each of the three vertices is connected to A_{0} by a geodesic and the union of three such geodesics contains a 3 -pencil with the required property, by (2).

We deduce from (3) and (4) that
(5) If γ_{i} contains an $\ll \mathrm{m}, 0 \gg$ with $m \geq 3$ then γ contains an <<m+1, $m-3 \gg$, and if γ_{i} contains an $\ll m, n \gg$ with $1 \leq n \leq m-3$ then γ contains an $\langle<m, n-1 \gg$.

For let M_{1}, M_{2}, M_{3} be any three branch-vertices of an $\ll m, 0 \gg$ in γ_{i}. By (4), γ contains a 3-pencil with end-vertices M_{1}, M_{2}, M_{3} having nothing but M_{1}, M_{2}, M_{3} in common with the $\ll m, 0 \gg$. The union of the $\ll m, 0 \gg$ and the 3 -pencil is an $\ll m+1, m-3 \gg$, the focus of the 3 -pencil being the ($m+1$)-th branch vertex. In the second case let N_{1} and N_{2} be two branch-vertices of the $\ll m, n \gg$ having valency $<m-1$ in the $\ll m, n \gg$. By (3), N_{1} and N_{2} are connected by a path contained in γ having nothing but N_{1}, N_{2} in common with the $\ll m, n \gg$. The union of the $\ll m, n \gg$ and the path is an $\ll m, n-1 \gg$. (5) is now proved.
K. Wagner [3] pointed out that
(6) If the chromatic number of γ is at least $2 k-1$ then at least one of $\gamma_{1}, \gamma_{2}, \gamma_{3}, \cdots$ has chromatic number $\geq k$.

For otherwise colouring the vertices of $\gamma_{1}, \gamma_{3}, \gamma_{5}, \ldots$ from the stock of colours $1, \ldots, k-1$ and A_{0} and the vertices of $\gamma_{2}, \gamma_{4}, \gamma_{6}, \ldots$ from the stock $k, \ldots, 2 k-2$ would, by (1), furnish a colouring of γ with at most $2 k-2$ colours.
3. The proof of the theorem completed. Suppose that γ is ($2 \mathrm{k}(\mathrm{m}, 0)-1)$-chromatic. By (6) at least one of $\gamma_{1}, \gamma_{2}, \gamma_{3}, \ldots$ has chromatic number $\geq k(m, 0)$ and therefore contains an $\ll \mathrm{m}, 0 \gg$. Hence by (5), γ contains a $\ll \mathrm{m}+1, \mathrm{~m}-3 \gg$. Similarly, for $1 \leq n \leq m-3$ every $(2 k(m, n)-1)$-chromatic graph contains an <<m,n-1>>. Therefore, since every 4 -chromatic graph contains a $\ll 4,0 \gg$ [1], it follows that every 7 -chromatic graph contains a $\langle<5,1\rangle>$, and consequently every 13-chromatic graph contains a $\langle<5,0\rangle>$. Hence every 25 -chromatic graph contains a $\langle<6,2\rangle>$, every 49-chromatic graph contains a <<6,1>> and every 97-chromatic graph contains a <<6, $0 \gg$ etc.; corresponding to any integers m, n with $0 \leq n \leq m-3$ there exists a finite integer $k(m, n)$ such that every $k(m, n)$-chromatic graph contains a $\ll m, n \gg$. Needless to say, the bounds obtainable by this method are very far from best possible.

Let δ denote any $[k(m+1, n)-1]$-chromatic graph. Take a vertex not in δ and join it by an edge to every vertex of δ. The graph so obtained is $\mathrm{k}(\mathrm{m}+1, \mathrm{n})$-chromatic and therefore contains a $\ll m+1, n\rangle>$, hence δ contains a $\ll m, n \gg$.

REFERENCES

1. G. A. Dirac, A property of 4-chromatic graphs and some remarks on critical graphs. Journal London Math. Soc. 27 (1952), 87. Bernhardine ZeidI, Über 4- und 5-chrome Graphen, Monatsh. Math. 62 (1958), 212.
2. G. A. Dirac, In abstrakten Graphen vorhandene vollstandige 4-Graphen und ihre Unterteilungen, Math. Nachrichten, 22 (1960), 61.
3. K. Wagner, Beweis einer Abschwáchung der Hadwiger Vermutung, Math. Annalen 153 (1964), 139.

University of Dublin, Eire

