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Abstract. Bott^Samelson varieties are an important tool in geometric representation theory
[1, 3, 10, 25]. They were originally de¢ned as desingularizations of Schubert varieties and share
many of the properties of Schubert varieties. They have an action of a Borel subgroup, and
the projective coordinate ring of a Bott^Samelson variety splits into certain generalized
Demazure modules (which also appear in other contexts [22, 23]).
Standard Monomial Theory, developed by Seshadri and the ¢rst author [15, 16], and recently

completed by the second author [20], gives explicit bases for the Demazure modules associated
to Schubert varieties. In this paper, we extend the techniques of [20] to give explicit bases for
the generalized Demazure modules associated to Bott^Samelson varieties, thus proving a
strengthened form of the results announced by the ¢rst and third authors in [12] (see also [13]).
We also obtain more elementary proofs of the cohomology vanishing theorems of Kumar [10]
and Mathieu [25]; of the projective normality of Bott^Samelson varieties; and of the Demazure
character formula.
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1. Basis Theorem

In this section we state the main results which we prove in the rest of the paper.

1.1. DEMAZURE MODULES

Let G be a reductive algebraic group of rank n over an algebraically closed ¢eld k, g
its Lie algebra, and UðgÞ its universal enveloping algebra. (To avoid technicalities,
we deal with ¢nite-dimensional g, but our results extend straightforwardly to
symmetrizable Kac^Moody algebras.) Choose a Cartan subgroup H � G, and a
Borel subgroup B � H. For i ¼ 1; . . . ; n, we then have positive and negative simple
root vectors Ei and Fi generating g; the Cartan subalgebra h; the Borel subalgebra
b generated by Ei and h; the simple roots ai and coroots a_i ¼ ½Ei;Fi�; the fundamental
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weights $i with h$i; a_j i ¼ dij and the weight lattice X ¼
Ln

i¼1Z$i; and the simple
re£ections si :X!X ; l 7! lhl; a_i iai, generating the Weyl group W .
An element l 2 X is a one-dimensional representation l: h! k, and it extends

to a one-dimensional b-module denoted kl. For a dominant weight
l 2 Xþ :¼

Ln
i¼1Zþ$i, we let Vl denote the Weyl module of highest weight vector

vl with b � vl ¼ lðbÞ vl for b 2 b. (That is: over the rational numbers, Vl;Q is the
irreducible GQ-module; Vl;Z � Vl;Q is the smallest Z-submodule containing vl
and closed under the operations Eli =l! and F

l
i =l! for lX 0, i 2 ½1; n�; and in general

Vl ¼ Vl;k :¼ Vl;Z �Z k.) We also have the dual module V�
l . For k of characteristic

zero, Vl and V�
l are irreducible G-modules.

Given an arbitrary word, meaning a sequence i ¼ ði1; . . . ; irÞ with ij 2 f1; 2; . . . ; ng;
as well as a multiplicity list m ¼ ðm1; . . . ;mrÞ with mj 2 Zþ; we let

l1 :¼ m1$i1 ; . . . ; lr ¼ mr$ir :

We de¢ne the generalized Demazure module Vi;m as a certain B-submodule of the
tensor product Vl1 � � � � � Vlr :

Vi;m :¼ ui1� ðvl1 � ui2� ðvl2 � � � � � uir1� ðvlr1 � uir� ðvlr ÞÞ � � �ÞÞ;

where ui ¼
L

lX 0 kF
l
i =l! denotes the hyperalgebra of a single negative root vector.

(By convention, if r ¼ 0, so that i is the empty word, we set Vi;m ¼ k0, the trivial
one-dimensional B-module.) The dual B-module V�

i;m is a quotient of
V�

l1� � � � � V
�
lr . We will explain in Section 1.4 how these modules arise from

Bott^Samelson varieties.
The ordinary Demazure module VlðwÞ � Vl is essentially a special case. Given

w 2W , choose the word i so that w ¼ si1 � � � sir is a reduced decomposition, and hence

VlðwÞ :¼ ui1� � � uir� vl:

Given a weight l ¼ l1$1 þ � � � þ ln$n, choose multiplicities ðm1; . . . ;mrÞ as follows.
Suppose the rightmost occurrence of i ¼ 1 in the word i is at position k: that is,
ik ¼ 1; ij 6¼ 1 for j > k. Then let mk ¼ l1. (If i ¼ 1 does not occur in i, proceed to
the next step.) Next let k0 be the rightmost occurrence of i ¼ 2 in i, and let
mk0 ¼ l2. Proceed in this way for each i, then let mj ¼ 0 if it has not already been
de¢ned. Finally, let l0 ¼

P
i 62i li$i, where the sum runs over those i which do not

occur anywhere in i. Then VlðwÞ ffi kl0 � Vi;m, with wðl
0
Þ ¼ l0.

This paper revolves around the following problem.

PROBLEM. Find explicit bases for the generalized Demazure module Vi;m and its
dual V�

i;m.

From now on, we will assume i and m are ¢xed, so that we can refer to ij, or r, or
l1; . . . ; lr without ambiguity.

294 VENKATRAMANI LAKSHMIBAI, PETER LITTELMANN AND PETER MAGYAR

https://doi.org/10.1023/A:1014396129323 Published online by Cambridge University Press

https://doi.org/10.1023/A:1014396129323


1.2. STANDARD TABLEAUX

We recall the machinery of Lakshmibai^Seshadri paths ([17, 18]) needed to index our
bases of Vi;m.
Let XR :¼ X �Z R be the real form of the weight lattice. A path is a

piecewise-linear map p: ½0; 1� ! XR (up to reparametrization) with pð0Þ ¼ 0. For
a weight l 2 X , we let pl denote the straight-line path: plðtÞ :¼ tl; and p1 � p2
denotes the concatenation of two paths. The weight of a path is its endpoint,
wtðpÞ :¼ pð1Þ.
Let Wl �W be the stabilizer of a weight l 2 X , and use > to denote the

Chevalley^Bruhat order on W and on the coset space W=Wl. Let l 2 Xþ be a
dominant weight. An LS-chain of shape l is a pair of lists

ðt1 > � � � > tq; 0 ¼ a0 < a1 < � � � < aq ¼ 1Þ;

where tj 2W=Wl and aj 2 Q, such that for each j there exists a chain in the
Bruhat order tj ¼ s0 > s1 > � � � > sp ¼ tjþ1 with ‘ðskþ1Þ ¼ ‘ðskÞ þ 1 and
ajðskþ1l sklÞ 2

Ln
i¼1Zai for each k. An LS-chain corresponds to a path

p : ½0; 1� ! XR, whose linear pieces are de¢ned by

pðtÞ ¼
Xk1
j¼1

ðaj  aj1Þtjlþ ðt ak1Þtkl for ak1W tW ak:

We call a path an LS-path if it can be so constructed from a (necessarily unique)
LS-chain.We will frequently refer to LS-paths by their de¢ning LS-chains, and abuse
notation by writing: p ¼ ðt1 > � � � > tq; a0 < � � � < aqÞ.
The lowering root operators fi act on a path p in the usual way [18]. Since we will

only consider fi acting on an LS-path or a concatenation of LS-paths, we may
equivalently de¢ne these operators as in [17]. That is, let Q be the minimum value
of the function t 7! hpðtÞ; a_i i for t 2 ½0; 1�. Let t1 be the largest t for which this
minimum Q is attained, and let t2 2 ½0; 1� be the smallest t > t1 where the function
attains Qþ 1 (if there exists any such t). Now split our path p into three segments
p ¼ p1 � p2 � p3, corresponding to t 2 ½0; t1�, t 2 ½t1; t2�, and t 2 ½t2; 1�. De¢ne the
root operator

fiðpÞ :¼ p1 � sip2 � p3;

where sip2 is the path t 7! siðp2ðtÞÞ. If there exists no t2 as above, then fiðpÞ is
unde¢ned.
We may also de¢ne the raising root operators ei analogously, so that ei re£ects the

portion of p between t01 and t
0
2, where t

0
2 is the smallest t for which hpðtÞ; a

_
i i attains its

minimum Q, and t01 is the largest t < t02 where the function attains Qþ 1 (if there
exists such t). We thus have eiðfiðpÞÞ ¼ p whenever fiðpÞ is de¢ned, and
wtðfipÞ ¼ wtðpÞ  ai, wtðeipÞ ¼ wtðpÞ þ ai.
Recall our notation l1 ¼ m1oi1 ; . . . ; lr ¼ mroir for our ¢xed data i;m. A tableau or

LS-monomial of shape ðl1; . . . ; lrÞ is a concatenationP ¼ p1 � � � � � pr, where pj is an
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LS-path of shape lj. A given tableau can be divided in only one way into such a
concatenation of LS-paths of the proper shapes. Indeed, all LS-paths of shape lj
have length jljj (in the W -invariant metric); so if we divide the path P into pieces
of length jl1j; . . . ; jlrj, and successively translate the division points to the origin,
we obtain the unique LS-path factors p1; . . . ; pr.
We will usually refer to the tableau P by the corresponding r-tuple of LS-chains,

and write: P ¼ ðp1; . . . ; prÞ. If we list all the Weyl group cosets in all the chains
p1; . . . ; pr, we obtain a long list which we denote

P ¼ ðt11; t12; . . . ; t1p1 ; t21; . . . ; trpr Þ;

where tjp is a coset moduloWlj in the LS-chain pj . When convenient we will reindex
this long list as P ¼ ðt1; t2; . . . ; tNÞ.
Denote by ½1; r� the set of integers f1; 2; . . . ; rg. For any subset of indices

J ¼ fa < b < � � �g � ½1; r�, we have a subword iðJÞ ¼ ðia; ib; . . .Þ of our ¢xed word
i ¼ ði1; . . . ; irÞ. We also de¢ne wðiÞ ¼ si1si2 � � � sir 2W , so that wðiðJÞÞ ¼ sia sib � � �,
the Weyl group element corresponding to the subword iðJÞ. We say that i is reduced
if r ¼ ‘ðwðiÞÞ, the Bruhat length; and similarly for the subword iðJÞ. Further, we write
J ðjÞ :¼ J \ ½1; j�, so that wðiðJðjÞÞÞ is an initial subword of wðiðJÞÞ. If iðJÞ is reduced,
then so is iðJ ðjÞÞ.
Let P be a tableau of shape ðl1; . . . ; lrÞ, considered as a sequence ðp1; . . . ; prÞ of

LS-chains pj, producing the long list of cosets P ¼ ðt11; . . . ; trprÞ.

DEFINITION.We sayP is a liftable-standard tableau (or just liftable) if there exists
a long chain of position-sets ðJ11 � � � � � JrprÞ such that for all j; p, the subword iðJ

ðjÞ
jp Þ

is reduced and

wðiðJ ðjÞjp ÞÞ � tjp modulo Wlj :

Now consider the tableau P as a concatenation of LS-paths p1 � � � � � pr.

DEFINITION. We say a tableau P is a constructable-standard tableau (or is
constructable) if it can be written as

P ¼ f l1i1 ðp
l1 � f l2i2 ðp

l2 � � � � f lrir ðp
lrÞ � � �ÞÞ

for some l1; . . . ; lr 2 Zþ.

Note that for any l1; . . . ; lr 2 Zþ, the path P de¢ned by the previous formula is a
concatenation of LS-paths of the correct shapes, and is thus a tableau, which is
constructable-standard by the de¢nition. (See [18, ‰‰ 2.6 and 4.2].)
Given an arbitrary path P of shape ðl1; . . . ; lrÞ, we may test whether it is a

standard tableau as follows. De¢ne the highest raising etopðPÞ :¼ elðPÞ, where l
is maximal such that elðPÞ is de¢ned. Let etopi1 ðPÞ ¼ p01 � � � � � p

0
r (division into pieces

of length jl1j; . . . ; jlrj). If p01 6¼ pl1 , then P is not standard. Otherwise, let
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P0 ¼ p02 � � � � � p
0
r and let e

top
i2 ðP

0Þ ¼ p002 � � � � � p
00
r . If p

00
2 6¼ pl2 , then P is not standard.

If we can continue in this way, raising by eij and removing intial factors p
lj , until

we obtain the one-point path (of length 0), then P is standard; otherwise it is not.

EXAMPLE. Let G ¼ GL3, i ¼ ð1; 2; 1; 2Þ a non-reduced word, m ¼ ð2; 1; 0; 1Þ,
X ¼ Ze1 �Ze2, $1 ¼ e1, $2 ¼ e1 þ e2, l1 ¼ 2e1, l2 ¼ e1 þ e2, l3 ¼ 0, l4 ¼ e1 þ e2.
A typical LS-path of shape l1 is: p ¼ ðs1 > e; 0 < 1

2 < 1Þ ¼ peð2Þ � peð1Þ, a
concatenation of two length-one segments. (For legibility we write eð1Þ; eð2Þ instead
of e1; e2; and pm denotes a straight-line path.)
Now consider the tableau P ¼ peð2Þ � peð1Þ � peð1Þþeð3Þ � peð2Þþeð3Þ: Dividing P into

segments of lengths 2; 1; 0; 1, we get the LS-path factors of shapes l1; . . . ; l4:
P ¼ p1 � p2 � p3 � p4, where:

p1 ¼ peð2Þ � peð1Þ ¼ ðs1 > e; 0 < 1
2 < 1Þ;

p2 ¼ peð1Þþeð3Þ ¼ ðs2; 0 < 1Þ;

p3 ¼ p0 ¼ ðe; 0 < 1Þ; the one point path;

p4 ¼ peð2Þþeð3Þ ¼ ðs2s1; 0 < 1Þ:

This path has the lifting: J11 ¼ f1; 2; 3; 4g, J12 ¼ f2; 3; 4g, J21 ¼ f2; 3; 4g, J31 ¼ f3; 4g,
J41 ¼ f3; 4g; since:

wðiðJ ð1Þ11 ÞÞ ¼ wði1Þ ¼ s1 � t11Wl1 ;

wðiðJ ð1Þ12 ÞÞ ¼ wð;Þ ¼ e � t12Wl1 ;

wðiðJ ð2Þ21 ÞÞ ¼ wði2Þ ¼ s2 � t21Wl2 ;

wðiðJ ð3Þ31 ÞÞ ¼ wði3Þ ¼ s1 � e � t31Wl3 ;

wðiðJ ð4Þ41 ÞÞ ¼ wði3i4Þ ¼ s1s2 � t41Wl4 :

Furthermore, P is constructable, since:

P ¼ f1ð p2eð1Þ � f2ð peð1Þþeð2Þ � f1f2ðpeð1Þþeð2ÞÞ Þ Þ

¼ f1ð pl1 � f2ð pl2 � f1ð pl3 � f2ðpl4 Þ Þ Þ Þ

THEOREM 1. A tableauP is liftable if and only if it is constructable. We call suchP
a standard tableau of shape ðl1; . . . ; lrÞ.

Any set T of paths possesses a natural structure of crystal graph: namely, the
graph with vertex set T , and with i-colored edges fP; fiPg (whenever both P
and fiP lie in T ). For example, the crystal graph of an ordinary Demazure module
VlðwÞ is associated to the set of tableaux ff l1i1 � � � f

lr
ir p

l j l1; . . . ; lrX 0g, where
w ¼ si1 � � � sir (reduced). Many important crystal graphs reduce to this basic case.
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THEOREM 2. The crystal graph on the set fPg of standard tableaux of shape
ðl1; . . . ; lrÞ is isomorphic (as an edge-colored graph) to a disjoint union of crystal
graphs of ordinary Demazure modules. For m 2 Xþ a dominant weight, the same
is true of the set of paths fpm�Pg, where P runs over the standard tableaux of shape
ðl1; . . . ; lrÞ.

This is a combinatorial version of excellent ¢ltration for the B-modules V�
i;m and

k�m�V
�
i;m. (See Section 2.4.)

1.3. STANDARD MONOMIAL BASES

We use tableaux to index bases of B-modules, starting with the Weyl modules Vl,
then proceeding to Vi;m.
For any Weyl module Vl, the second author has constructed [20] a basis fvpg

indexed by LS-chains p of shape l, in which vp is a weight vector with weight
wtðpÞ. (See Section 3.1 below for details.) The basis fvpg, inspired by the work of
Raghavan and Sankaran [26], is highly non-canonical, depending on several
arbitrary choices. However fvpg is related to most ‘reasonable’ bases of Vl by a
triangular matrix. Actually, we shall ¢nd it more convenient to pair fvlg with bases
of the dual module V�

l .
To be more speci¢c, de¢ne the following lexicographic partial order on LS-chains.

Given p ¼ ðt1 > � � � ; 0 < a1 < � � �Þ and y ¼ ðs1 > � � � ; 0 < b1 < � � �Þ, we say p<y if
t1<s1 (in Bruhat order); or t1¼s1, a1<b1; or t1¼s1, a1¼b1, t2<s2; etc. Note
that the highest weight path is minimal in this order, and a path is large in this order
if it is far from the highest weight path. We can extend this to tableaux by de¢ning
ðp1; . . . ; prÞ < ðy1; . . . ; yrÞ to mean: p1 < y1 (in the above order); or p1 ¼ y1 and
p2 < y2; etc.
Given a basis fppg of V�

l indexed by LS-chains of shape l, we say fppg is triangular
to fvpg if

pp ¼ v�p þ
X
y>p

/v�y

where / indicates an appropriate scalar coef¢cient (possibly different in each term).
That is, hpp; vpi ¼ 1, and hpy; vpi ¼ 0 for all yXj p: A certain basis fppg de¢ned in
[20] obeys this triangular property for all groups G, as do most of the other known
bases of Weyl modules, at least for classical groups G (types An, Bn, Cn, Dn).

THEOREM 3. The following bases of V�
l are triangular to fvpg, for the speci¢ed

classes of reductive groups:

(a) Littelmann’s canonically de¢ned LS-path basis [20], for all G;
(b) Lusztig’s dual canonical basis [21] (= Kashiwara’s upper crystal basis [6, 8]), for

classical G;
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(c) Lakshmibai’s standard PBW basis [11], for classical G.
(d) Lakshmibai-Seshadri’s standard monomial basis [15, 16] , for classical G.

Proof. For (a), see [20]. It is established in [24, 26] that, for the fundamental
representations V�

$i
, the bases (a), (b), and (d) coincide. But this implies the

triangularity for an arbitrary V�
l . The triangularity between (b) and (c) follows from

[11]. &

We expect that bases (b)^(d) possess the triangularity property for all G (including
the Kac^Moody case).
Any such system of bases fppg for each V�

l gives a basis of V
�
l1� � � � � V

�
lr whose

indexing set consists of all tableaux of shape ðl1; . . . ; lrÞ. The standard tableaux pick
out a subset of this basis which restricts to a basis of the quotient V�

i;m.

THEOREM 4. For every l 2 Xþ, let fppg be a basis of V�
l which is triangular to fvpg.

For P ¼ ðp1; . . . ; prÞ a tableau of shape ðl1; . . . ; lrÞ, de¢ne

pP :¼ pp1 � � � � � ppr 2 V
�
l1 �� � �� V

�
lr :

Then fpPg, whereP runs over the standard tableau of shape ðl1; . . . ; lrÞ, restricts to a
basis of V�

i;m. We call this a standard monomial basis of V
�
i;m.

Since we may assume pP to have weight wtðPÞ, we can use the combinatorics of
tableaux to compute the character of Vi;m. Let R ¼ Z½X � ¼

L
l2X Zel be the group

ring of the weight lattice X . The Weyl group acts Z-linearly on characters by
wðelÞ ¼ ewðlÞ. We may de¢ne the Demazure operator Li : R! R by

Lið f Þ :¼
f  eai sið f Þ
1 eai

;

which can be interpreted uniquely as an element of R. We may also characterizeLi as
the unique linear operator with L2i ¼ Li and

LiðelÞ ¼ el þ elai þ el2ai þ � � � þ esil:

for any l 2 X with hl; a_i iX 0.

THEOREM 5. The character of the B-module Vi;m is

Li1ðe
l1Li2 ðe

l2 � � �Lirðe
lrÞ � � �ÞÞ:

Our strategy of proof for the above theorems is as follows. Theorem 1 is an
elementary combinatorial fact, proved in Section 2.2. Also in Section 2.3 we prove
that the Demazure formula computes the formal character of the set of standard
tableaux, and we prove Theorem 2 in Section 2.4, all by the combinatorics of paths.
Next we prove Theorem 4 in two steps. First, in Section 3 we show that the set
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fpPg is linearly independent in V�
i;m, so that

dimV�
i;mX dimSpanhpPi ¼ # standard tableaux:

Then in Section 4 we compare the combinatorial Demazure formula with the
geometric version to conclude

# standard tableauxX dimV�
i;m;

which proves the Theorem. Also, Theorem 5 follows in the course of this proof, as
does Theorem 6 below.

1.4. BOTT^SAMELSON VARIETIES

We now give a Borel^Weil-type result for producing our Demazure modules inside
the projective coordinate rings of certain varieties. We will prove this, along with
the corresponding analog of Bott’s vanishing theorem. (These theorems were
originally proved in our case in [25] and [10].)
Recall our ¢xed word i ¼ ði1; . . . ; irÞ from Section 1.1, and our Borel subgroup B of

G. For each i let Pi � B be the minimal parabolic subgroup withWeyl group hsii, and
de¢ne the Bott^Samelson variety as the quotient

Zi :¼ ðPi1� � � � �PirÞ =B
r;

where Br acts on the right by:

ðp1; . . . ; prÞ � ðb1; . . . ; brÞ :¼ ðp1b1; b11 p2b2; . . . ; b
1
r1prbrÞ:

This is a smooth algebraic variety of dimension r. (If r ¼ 0 and i is the empty word,
we let Zi be a point.)
For l 2 X , let el denote the multiplicative character of B associated to l, and let

k�ðl1;...;lrÞ be the one-dimensional representation of B
r de¢ned by

ðb1; . . . ; brÞ
1
� k :¼ el1ðb1Þ� � �elrðbrÞk:

De¢ne a line bundle on Zi by

Li;m :¼ ðPi1�� � ��PirÞ �
Br
k�ðl1;...;lrÞ

so that we identify

ð~pp; kÞ ! ð~pp � ~bb; ~bb1 � kÞ

for ~pp 2 Pi1�� � ��Pir , ~bb 2 B
r, and k 2 k. Unraveling the de¢nitions, we may
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concretely describe the space of regular global sections of this bundle as:

H0ðZi;Li;mÞ ¼ f : Pi1 � � � ��Pir ! k
8 bj 2 B; pj 2 Pij

f ððp1; . . . ; prÞ � ðb1; . . . ; brÞÞ ¼
el1 ðb1Þ � � � elrðbrÞf ðp1; . . . ; prÞ

������
8<:

9=;;

where f denotes a polynomial function on the linear algebraic group Pi1�� � �� Pir .
The Borel subgroup acts on Zi and Li;m by left multiplication: for b 2 B,

b � ðp1; . . . ; prÞ :¼ ðbp1; p2; . . . ; prÞ and b � ðp1; . . . ; pr; kÞ :¼ ðbp1; p2; . . . ; pr; kÞ:

The space H0ðZi;Li;mÞ of regular global sections of Li;m over Zi is naturally a
B-module under translation.
Our analysis extends to certain varieties desingularized by Bott^Samelson

varieties, called con¢guration varieties in [22, 23]. For a given m ¼ ðm1; . . . ;mrÞ,
the line bundle Li;m is ample (resp. semi-ample) when all mj > 0 (resp. mjX 0).
In the latter case, de¢ne Zi;m as the image of the natural map
Zi ! P�H0ðZi;Li;mÞ. This variety is singular in general, and can be of smaller
dimension than Zi. If we take i, m so that kl0 � Vi;m ffi VlðwÞ is a Demazure module
(see Section 1.1), then Zi;m ffi B � wB � G=B, a Schubert variety.

THEOREM 6. The B-module of regular global sections is isomorphic to the dual of a
generalized Demazure module:

H0ðZi;Li;mÞ ffi V�
i;m:

Also, Zi is projectively normal with respect to the bundle Li;m, and HiðZi;Li;mÞ ¼ 0
for iX 1. Furthermore, all the above statements hold for Zi;m in place of Zi.

We give the proof in Section 4.2.

1.5. THE SYMPLECTIC GROUP

In [13], we work out the above constructions at length in the case of the general linear
group G ¼ GLnþ1. (Our treatment there is more elementary, avoiding the
technicalities of the basis fvPg.) In this section, we give the example of the symplectic
group G ¼ Sp2n, in the spirit of De Concini [2]. (The orthogonal case is similar, but
slightly more complicated.)
In general, the main obscurity in the above constructions is that most bases fppg of

V�
l are dif¢cult to write explicitly, so that writing the corresponding basis fpPg ofV

�
i;m

is equally dif¢cult. However for G a classical group, it is easier to construct bases of
the fundamental representations V�

$i
, and to obtain from these a standard monomial

basis fppg of the quotient ðV�
$i
Þ
�m

! V�
m$i

¼ V�
li . (See [15, 16].) Thus we will obtain
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bases of V�
i;m via the composite restriction map:

r : ðV�
$i1
Þ
�m1�� � ��ðV�

$ir
Þ
�mr ! V�

l1�� � ��V
�
lr ! V�

i;m

This is the formulation announced in [12].
Now, for i 2 ½1; 2n�, let us denote �ii :¼ 2nþ1i and jij :¼ minði; �iiÞ. The standard

basis of k2n is fe1; . . . ; e2ng ¼ fe1; . . . ; en; e�nn; . . . ; e�11g. Let G ¼ Sp2nðkÞ be the linear
isometries of the symplectic form hei; e�jji ¼ he�jj; eii ¼ dij, hei; eji ¼ he�ii; e�jji ¼ 0 for
i; j 2 ½1; n�. That is, G ¼ fA 2 GL2n j AEAt ¼ Eg, where E is the matrix with
ij-coordinate hei; eji for i; j 2 ½1; 2n�.
We may write the weight lattice as X ¼

Ln
i¼1Zei; with simple roots

a1 ¼ e1  e2; . . . ; an1 ¼ en1  en, an ¼ 2en; fundamental weights
$i ¼ e1 þ e2 þ � � � þ ei; and simple coroots a_1 ¼ e�1  e�2; . . . ; a

_
n1 ¼ e�n1  e�n,

a_n ¼ e�n. An element of the Weyl groupW may be indexed by a signed permutation:
a map w : ½1; n� ! ½1; 2n� ¼ f1; . . . ; n; �nn; . . . ; �11g such that jwj : i 7! jwðiÞj is a
permutation of ½1; n�. Such a w acts on X by wðeiÞ :¼ ewðiÞ, where we write
e�ii :¼ ei for i 2 ½1; n�.
We can realize the fundamental representationsV�

$i
inside the coordinate ring k½G�

of polynomial functions on the af¢ne variety G. (The group acts on functions via left
translation: ðg�f ÞðAÞ :¼ f ðg1AÞ for f 2 k½G�, g;A 2 G.) That is, we have

V�
$i
ffi Spanh pt j t � ½1; 2n�; #t ¼ i i;

where pt ¼ ptðAÞ is the minor of the matrix A on the ¢rst i columns and on the rows t.
To use the above model, it is most convenient to index the basis of the

fundamental-weight modules V$i not by LS-paths, but by certain lattice paths,
concatenations of coordinate steps

pi :¼ peðiÞ; p�ii :¼ peðiÞ

for i 2 ½1; n�. A subset t ¼ ftð1Þ< � � �<tðiÞg � ½1; 2n� corresponds to the lattice path
pðtÞ :¼ ptð1Þ�� � � � ptðrÞ. We write:

p½1; i� :¼ pð½1; i�Þ ¼ p1 � p2 � � � � � pi:

Any path obtained from p½1; i� by repeated application of the lowering operators
f1; . . . ; fn is of the form pðtÞ for some t, and we say such paths pðtÞ (or subsets
t) are lattice-standard of shape $i. A basis for V�

$i
is given by

fpt j t lattice-standardg. This basis has the triangularity property of Theorem 3.
For more details, see [2].
Similarly, a pathP is lattice-standard for V�

i;m if it can be constructed by the usual
formula, with the pli replaced by dominant lattice-paths:

P ¼ f l1i1 ð p½1; i1�
�m1�f l2i2 ð p½1; i2�

�m2�� � � f lrir ðp½1; ir�
�mrÞ � � �ÞÞ;

where p½1; i��m :¼ p½1; i��� � ��p½1; i� (m factors). Every such path is a concatenation of
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lattice-standard tableaux for fundamental weights

P ¼ pðtð11ÞÞ�pðtð12ÞÞ�� � ��pðtð1m1ÞÞ�pðtð21ÞÞ�� � ��pðtðrmrÞÞ;

where tðjmÞ � ½1; 2n�, #tðjmÞ ¼ ij for 1W jW r, 1WmWmj. A basis of V�
i;m is given by

frð ptð11Þ � � � � � ptðrmrÞ Þ j ðt
ð11Þ; . . . ; tðrmrÞÞ is lattice-standardg;

the restriction of standard tensor-monomials via the map r. Alternatively, we can
realize V�

i;m inside k½G�, with a basis of monomials in the minors pt

V�
i;m ffi Spankfptð11Þ � � � ptðrmrÞ j ðt

ð11Þ; . . . ; tðrmrÞÞ is lattice-standardg:

EXAMPLE. Let G ¼ Sp4, i ¼ ð2; 1; 2Þ, m ¼ ð1; 1; 1Þ. For conciseness, we denote the
lattice-path pa � pb � pc � � � � by the list abc � � �. The lattice-standard tableaux for
V�

$1
are f1; 2; �22; �11g, meaning fp1; p2; p�22; p�11g; with crystal graph: 1!

f1
2!

f2 �22!
f1 �11. For

V�
$2
, the lattice-standard tableaux are: f12; 1�22; 2�22; 2�11; �22�11g, meaning

fp1�p2; p1�p�22; . . .g; with crystal graph: 12!
f2
1�22!

f1
2�22!

f1
2�11!

f2 �22�11.
For V�

i;m, we can construct the 17 lattice-standard tableaux of the form
P ¼ f #2 ð12 � f

#
1 ð1 � f

#
2 12ÞÞ in steps, starting from the right end of the expression

for P:

f12g !
f #2
f12; 1�22g !

1�
f121; 11�22g !

f #1
f112; 11�22; 212; 21�22; 22�22; 22�11g

!
12�
f12112; 1211�22; 12212; 1221�22; 1222�22; 1222�11g

!
f #2
f12112; 1211�22; 12212; 1221�22; 1222�22; 1222�11; 1�22112; 1211�22; 1�22212;

1�22�2212; 1�22�221�22; 1�2221�22; 1�2222�22; 1�22�222�22; 1�2222�11; 1�22�222�11; 1�22�22�22�11g:

A list like 1�22�222�11 represents the lattice-path P ¼ p1�p�22�p �22�p2�p�11, which can
be divided into lattice-standard paths for fundamental weights as:
P ¼ pð1�22Þ � pð�22Þ � pð2�11Þ. To illustrate the action of the lowering operator f1, we write
under each tableau the value of hpj; a_1 i ¼ 1; 0, or þ1 for each coordinate step pj ,
and we emphasize the step which is £ipped by f1 (that is, the step where the path
rises for the last time from the minimum value of hpðtÞ; a_1 i ):

1 2 1 1 2

þ  þ þ þ
!
f1 1 2 2 1 2

þ   þ þ
!
f1 1 2 2 2 2

þ    þ

!
f1 1 2 2 2 1

þ    
!
f1
undefined

The 17 standard tableaux index a basis for V�
i;m, which we can realize inside k½G�,

the coordinate ring of G � GL4. That is, k½G� is the polynomial ring k½xij�i;j2½1;4�,
where X ¼ ðxijÞ a generic matrix, modulo the ideal generated by the supra-diagonal
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coordinates of XEXt  E: that is, modulo the polynomials

 x41x12  x31x22 þ x21x32 þ x11x42; x41x13  x31x23 þ x21x33 þ x11x43;

 x41x14  x31x24 þ x21x34 þ x11x44  1;

 x42x13  x32x23 þ x22x33 þ x12x43  1;

 x42x14  x32x24 þ x22x34 þ x12x44; x43x14  x33x24 þ x23x34 þ x13x44:

(This ideal has a small square-free Gr€obner basis in the degree-lex order, so it is
reduced.) For example, the tableau 1�22�222�11 corresponds to the following polynomial
in k½G�:

p1�22�222�11 ¼ p1�22p�22p2�11 ¼ ðx11x32  x31x12Þ � x31 � ðx21x42  x41x22Þ:

(Recall �22 ¼ 3, �11 ¼ 4.)

2. Combinatorics of Tableaux

In this section, we regard the word i ¼ ði1; . . . ; irÞ as given, and for J � ½1; r�, we
abbreviate wðiðJÞÞ as wðJÞ. For example, swðJÞ means s � wðiðJÞÞ.

2.1. THE MAIN LEMMA

LEMMA 7. Consider a long list of Weyl group cosets

ðt11; . . . ; trpr Þ ¼ ðt1; . . . ; tNÞ

possessing a lifting

ðJ11 � � � � � Jrpr Þ ¼ ðJ1 � � � � � JN Þ;

meaning that each subword iðJðjÞjp Þ is reduced and tjp � wðJ
ðjÞ
jp Þ mod Wlj . Suppose that

for some consecutive elements tjp ¼ tK1, tj0p0 ¼ tK, tj00p00 ¼ tKþ1, and for some simple
re£ection s we have either:

(a) swðJ ðjÞK1Þ < wðJ ðjÞK1Þ and stK X tK ; or

(b) swðJ ðj
00Þ

Kþ1Þ > wðJ ðj
00Þ

Kþ1Þ and stK W tK :

Then the long list of cosets

ðt1; . . . ; tK1; stK ; tKþ1; . . . ; tNÞ

also possesses a lifting ð ~JJ1 � � � � � ~JJN Þ, with (respectively):

(a0) swð ~JJ ðj
0Þ

K Þ < wð ~JJ ðj
0Þ

K Þ; or

(b0) swð ~JJ ðj
0Þ

K Þ > wð ~JJ ðj
0Þ

K Þ:

Proof (cf. [19, Pf of Thm 10.1]). We will prove the lemma under assumption (a).
For (b), replace < by > and K  1 by K þ 1. First suppose swðJ ðj

0Þ

K Þ < wðJ ðj
0Þ

K Þ: Then
we must have stK ¼ tK , and we may take ~JJk ¼ Jk for all k.
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On the other hand, suppose swðJðj
0Þ

K Þ > wðJðj
0Þ

K Þ: We have

swðJðjÞK1Þ < wðJ ðjÞK1ÞXwðJðjÞK Þ;

and by the Zigzag Lemma [5, Proposition 5.9], swðJ ðjÞK ÞWwðJðjÞK1Þ: Thus by the
subword de¢nition of Bruhat order, there is a reduced J 0K � J

ðjÞ
K1 with

wðJ 0K Þ ¼ swðJ
ðjÞ
K Þ: Furthermore for all L > K there are reduced subwords

J 0L � J
ðjÞ
K1 with wðJ

0
LÞ ¼ wðJ

ðjÞ
L Þ; and we may take the sets J

0
L to be decreasing as

L increases. Now de¢ne eJJL ¼ JL for L < K and eJJL ¼ ðJL n ½1; j�Þ [ J 0L for LXK .
Now

wðeJJ ðj0ÞK Þ ¼ wðJ 0K ÞwðJK\½jþ1; j
0�Þ ¼ s � wðJ ðjÞK Þ � wðJK\½jþ1; j

0�Þ;

and by our supposition the latter product is reduced (length of product = sum of
lengths). Hence eJJ ðj0ÞK is a reduced word, and wðeJJðj0ÞK Þ ¼ swðJðj

0Þ

K Þ � stK . Similarly the
appropriate initial segment of eJJL for any other L is a reduced lifting of tL.
Therefore ðeJJ1 � � � � �eJJNÞ is a lifting of ðt1; . . . ; stK ; . . . ; tNÞ as required. Property
ða0Þ follows from the above along with our supposition. &

2.2. ROOT OPERATORS

LEMMA 8. Let i 2 ½1; n�.

(a) If P is a liftable tableau, and eiðPÞ exists, then eiðPÞ is liftable.
(b) If P is a liftable tableau, and eiðPÞ, fiðPÞ both exist, then fiðPÞ is liftable.
(c) IfP is a liftable tableau with respect to i, and fi1ðPÞ exists, where i1 is the ¢rst letterof

i, then fi1 ðPÞ is liftable.

Proof. It is clear by [18] that eiðPÞ, fiðPÞ are always tableaux if they are de¢ned, so
in each case we need only show liftability.
(a) Suppose

P ¼ ðt11; . . . ; trpr Þ ¼ ðt1; . . . ; tNÞ

with lifting

ðJ11 � � � � � JrprÞ ¼ ðJ1 � � � � � JNÞ:

It is easily seen (cf. [17, Proposition 4.2]) that

eiðPÞ ¼
ðt1; . . . ; tK1; stK ; . . . ; stL; tLþ1; . . . tNÞ or
ðt1; . . . ; tK1; tK ; stK ; . . . ; stL; tLþ1; . . . tN Þ

�
for some indices 1WKWLWN with

stK W tK ; . . . ; stLW tL and stLþ1 > tLþ1:

We must show that this list of cosets has a lifting.
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First, suppose L 6¼ N, so that tLþ1 ¼ tj00p00 exists, and let tL ¼ tj0p0 . Then
swðJj

00

Lþ1Þ > wðJj
00

Lþ1Þ and stLW tL, so we can apply Lemma 7(b) to the lifting
ðJ1 � � � �Þ at positions L, Lþ1. Using condition ðb0Þ we can repeat this at positions
L1, L, and so on leftward, thus producing a lifting of eiðPÞ.
On the other hand, suppose L ¼ N. If swðJ ðj

0Þ

L Þ > wðJ ðj
0Þ

L Þ, then tN ¼ stN , and we
may again repeatedly apply the Lemma starting at positions N1, N. If
swðJ ðj

0Þ

N Þ < wðJ ðj
0Þ

N Þ, we cannot directly apply the Lemma, but instead take
~JJN � JN so that wð ~JJ ðj

0Þ

N Þ ¼ swðJ ðj
0Þ

N Þ. Then ðJ1 � � � � � JN1 � ~JJNÞ is a lifting of
ðt1; . . . ; tN1; stN Þ, to which we can apply the Lemma starting at positions N1,
N. In each case, we produce a lifting of eiðPÞ.
(b) We have

fiðPÞ ¼
ðt1; . . . ; tK1; stK ; . . . ; stL; tLþ1; . . . tN Þ or
ðt1; . . . ; tK1; stK ; . . . ; stL; tL; tLþ1; . . . tN Þ

�
for 1WKWLWN with

stK1 < tK1 and stK X tK ; . . . ; stLX tL:

Since eiðPÞ also exists, we must have K > 1, so that we may repeatedly apply
Lemma 7(a) analogously to the previous argument, starting at positions K1, K
and proceeding rightward to produce a lifting of fiðPÞ.
(c) Let JK ¼ Jj0p0 . As before, if K > 1 or swðJ ðj

0Þ

1 Þ < wðJ ðj
0Þ

1 Þ, we use Lemma 7(a)
immediately. Otherwise if K ¼ 1 and swðJðj

0Þ

1 Þ > wðJðj
0Þ

1 Þ, take ~JJ1 ¼ J1 [ f1g (reduced):
this gives a lifting ð ~JJ1 � J2 � � � � � JNÞ of ðst1; t2; . . . ; tN Þ, to which we apply
Lemma 7(a). &

Proof of Theorem 1. We use induction on r, the number of letters of the word
i ¼ ði1; . . . ; irÞ. For r ¼ 0 and i the empty word, the only constructable or liftable
tableau is the trivial path p0. Now assume the Theorem for the word ði2; . . . ; irÞ.
Constructable ) liftable. Suppose P ¼ f l1i1 ðp

l1 � f l2i2 ðp
l2 � � �ÞÞ is constructable. By

induction P0 ¼ f l2i2 ðp
l2 � � �Þ is liftable. Then pl1 �P0 is clearly also liftable, and so

is P ¼ f l1i1 ðp
l1 �P0Þ by Lemma 8(c).

Liftable ) constructable. Suppose P ¼ ðp1; . . . ; prÞ has lifting ðJ11 � � � �Þ. Since
wðJ ð1Þ1p Þ ¼ si1 or id, the cosets modWl1 in the LS-chain p1 must be
p1 ¼ ðsi1 ; . . . ; si1 ; id; . . . ; idÞ. Thus we may write e

top
i1 ðPÞ ¼ e

l1
i1 ðPÞ ¼ ðpl1 ; p02; . . . ; p

0
rÞ

for some l1, since if the initial segment were not pl1 , we could apply ei1 once more
(Section 1.2). But P0 ¼ ðp02; . . . ; p

0
rÞ is liftable by Lemma 8(a), and is therefore

constructable by induction. Hence P ¼ f l1i1 ðp
l1 �P0Þ is also constructable. &

2.3. DEMAZURE OPERATORS

We show that the number of liftable tableaux is given by the Demazure character
formula. This is the combinatorial version of Theorem 5. For a set T of tableaux,
de¢ne the formal character (or multi-variate generating function)
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charðT Þ :¼
P

P2T e
wtðPÞ: For i 2 ½1; n�, a tableauP0 with eiðP0Þ unde¢ned is called an

i-head. An i-string is the set S of all tableaux generated under fi by some i-head P0:
S ¼ fP0; fiðP0Þ; f 2i ðP0Þ; . . . ; f li ðP0Þg, where l is maximal with f li ðP0Þ de¢ned. In fact
l ¼ hwtðP0Þ; a_i iX 0. (See [18].) Thus any i-string S with head P0 has
character

charðSÞ ¼ ewtðP0Þ þ ewtðP0Þai þ � � � þ esi wtðP0Þ:

Suppose a set of tableau T is a disjoint union of i-heads and i-strings. Let

f #i T :¼ ff li ðPÞ j P 2 T ; lX 0g:

Then it is clear that charð f #i T Þ ¼ Liðchar T Þ:

LEMMA 9. Let T be the set of standard tableau of shape ðl2; . . . ; lrÞ. Then the set of
concatenations pl1 � T is a disjoint union of i1-heads and i1-strings.
Proof. Let p1 ¼ pl1 , e ¼ ei1 , f ¼ fi1 . First we show: if p1 �P 2 p � T with

eðp1 �PÞ de¢ned, then eðp1 �PÞ, f ðp1 �PÞ 2 p1 � T . By [18, ‰ 2.6] we have
eðp1 �PÞ ¼ p1 � ðePÞ or ðep1Þ �P; but ep1 is unde¢ned, so the ¢rst alternative must
hold. Also eP 2 T by Lemma 8(a), so eðp1 �PÞ 2 p1 � T .
Next we show that if p1 �P 2 p1 � T with eðp1 �PÞ and f ðp1 �PÞ are both de¢ned,

then f ðp1 �PÞ 2 p1 � T . First, recall that the operator e re£ects a part of p1 �P
before the ¢rst minimum point of the function t 7! hðp1 �PÞðtÞ; a_i, and the operator
f re£ects a part of p1 �P after the last minimum point of the function. Thus f acts on
the path at a later point than e acts.
Now consider f ðp1 �PÞ ¼ ð f p1Þ �P or p1 � ð fPÞ. We know that

eðp1 �PÞ ¼ p1 � ðePÞ, so that e acts after the ¢rst segment of p1 �P; and f acts later
than e. Thus we must have the second alternative: f ðp1 �PÞ ¼ p1 � ð fPÞ. But
fP 2 T by Lemma 8(b), so f ðp1 �PÞ 2 p1 � T . &

COROLLARY 10. The formal character of the set of standard tableaux of shape
ðl1; . . . ; lrÞ is

Li1ðe
l1Li2 ðe

l2 � � �Lirðe
lrÞ � � �ÞÞ:

Proof. Let T be the set of standard tableaux for the ði2; . . . ; irÞ. The set of standard
tableaux for ði1; . . . ; irÞ is T 0

¼ f #i1 ðp
l1 � T Þ, so that char T 0

¼ Li1ðe
l1char T Þ. The

result now follows by induction. &

2.4. COMBINATORIAL EXCELLENT FILTRATION

The ordinary Demazure modules VlðwÞ and their duals play a central role in the
theory of B-modules. For example, consider the twisted dual Demazure module
k�m � V

�
n ðyÞ for dominant weights m; n 2 X

þ. It was conjectured by A. Joseph and
proved by O. Mathieu [25] (in the general case, and by P. Polo in some special cases)

STANDARD MONOMIAL THEORY FOR BOTT^SAMELSON VARIETIES 307

https://doi.org/10.1023/A:1014396129323 Published online by Cambridge University Press

https://doi.org/10.1023/A:1014396129323


that this module has an excellent ¢ltration, namely a ¢ltration by B-modules whose
quotients are isomorphic to V�

l ðwÞ for various l 2 X
þ, w 2W . This implies that

k�m � V
�
n ðyÞ inherits the favorable homological properties of the V

�
l ðwÞ. More

generally, Mathieu proved that twists of our generalized Demazure modules
k�m � V

�
i;m have excellent ¢ltration. For a survey, see [27].

In this section, we prove Theorem 2, which is a combinatorial analogue of
Mathieu’s result. We ¢rst formulate and prove a more precise result for the special
case of a twisted ordinary Demazure module k�m � V

�
n ðyÞ. (Note that we do not

distinguish between tableaux for this module and for its dual.)
LetCðl;wÞ denote the crystal graph on the set ff #i1 � � � f

#
ir p

lg of standard tableaux for
VlðwÞ, where w ¼ si1 � � � sir is any reduced decomposition. This set of tableaux is
known to be independent of the choice of reduced decomposition. In fact, it is
precisely the set of LS-paths p ¼ ðt1 > � � � ; 0 < a1 � � �Þ such that wX t1Wl. See
[7, 17].
Further, let Cðm; n; yÞ be the crystal graph on the set fpm�pg, where p runs over

standard tableaux for VnðyÞ. Recall that each edge in a crystal graph is assigned
a color i ¼ 1; . . . ; n. We will show that for dominant m; n, the Cðm; n; yÞ is isomorphic
as an edge-colored graph to a disjoint union of various Cðl;wÞ. There is one such
component Cðl;wÞ for each path pm�p which is dominant, i.e., which stays
completely within the dominant Weyl chamber: that is, hmþ pðtÞ; a_i iX 0 for all
t 2 ½0; 1� and all i. The l corresponding to a dominant path is its weight:
l ¼ wtðpm�pÞ ¼ mþ wtðpÞ. To compute the corresponding w requires some
de¢nitions.
The second part of the following lemma is due to Deodhar [14, Lemma 11.1].

LEMMA 11 (i) For u;w 2W, the set fu0w j u0W ug has unique maximal and minimal
elements.
(ii) Let W 0 �W be the parabolic subgroup generated by some subset of the simple

roots. For zW y 2W, the set fu0z j u0 2W 0; u0zW yg has a unique maximal element.
Proof. For a set A �W , we write w ¼ maxA if w 2 A and wX y for all y 2 A (that

is, w is the unique Bruhat-maximal element of A). Similarly for minA. We will
repeatedly use the Zigzag Lemma [5, ‰ 5.11]:

If xW y, then sxW maxðy; syÞ and minðx; sxÞW sy,

where s is any simple re£ection, and similarly for xs and ys.
(i) Induction on ‘ðuÞ. The case ‘ðuÞ ¼ 0 is trivial. Take su > u, and assume

u0wW u1w for all u0W u. We claim u00wW maxðu1w; su1wÞ for all u00W su, so that
maxðu1w; su1wÞ is the unique maximum of fu00w j u00W sug.
From the subword de¢nition of Bruhat order, any u00W su has either: u00W u, so

that u00wW u1w; or su00W u, so that su00wW u1w, and u00w ¼ sðsu00wÞW
maxðu1w; su1wÞ by the Zigzag Lemma. This proves the claim.
The proof that fu0w j u0W ug has a unique minimum is almost the same: Again take

su > u. If u0wW u0w for all u0W u, then minðu0w; su0wÞW u00w for u00W su.

308 VENKATRAMANI LAKSHMIBAI, PETER LITTELMANN AND PETER MAGYAR

https://doi.org/10.1023/A:1014396129323 Published online by Cambridge University Press

https://doi.org/10.1023/A:1014396129323


(ii) We follow Deodhar [14, Lemma 11.1], correcting several misprints. We denote
ðW 0zÞW y :¼ fu0z j u0 2W 0; u0zW yg. Also letWmin �W be the set of minimal coset
representatives of W 0nW , and write y ¼ wy0 with w 2W 0 and y0 2Wmin. Suppose,
without loss of generality, that z ¼ z0 2Wmin (since ðW 0uzÞW y ¼ ðW 0zÞW y for
any u 2W 0). Now we proceed by induction on ‘ðy0Þ. For ‘ðy0Þ ¼ 0, we have
y0 ¼ z0 ¼ e, and maxðW 0zÞW y0w ¼ w. Next suppose ‘ðy0Þ > 0, and choose a simple
root s with y0 < y0s. Note that y0s 2Wmin, since otherwise there is a simple root
s0 2W 0 with ‘ðs0y0sÞ ¼ ‘ðy0Þ  2 ¼ ‘ðs0y0Þ  3. Note also that wy0s < wy0, since:
‘ðwy0sÞ ¼ ‘ðwÞþ‘ðy0sÞ ¼ ‘ðwÞþ‘ðy0Þ1 ¼ ‘ðwy0Þ  1.
Case (a): z0s < z0. The facts noted above for y0 also hold for z0. We have

z0s ¼ minðz0s; z0ÞW y0s, and by induction we may let w0z0s ¼ maxðW 0z0sÞWwy0s.
Then we claim w0z0 ¼ maxðW 0z0ÞWwy0 . First, w0z0sWwy0s, so
w0z0W maxðwy0s;wy0Þ ¼ wy0. Now suppose uz0Wwy0 for u 2W 0. Then
uz0s ¼ minðuz0s; uz0ÞWwy0s and by de¢nition of w0, we have uz0sWw0z0s. Thus
uWw0 and uz0Ww0z0.
Case (b): z0s > z0 and z0s 2Wmin. We have z0 ¼ minðz0; z0sÞW y0s, so by

induction we may let w0z0 ¼ maxðW 0z0ÞWwy0s. We claim w0z0 ¼ maxðW 0z0ÞWwy0 .
First, w0z0Wwy0 just as before. Also note that, as before, for any u 2W 0 we have
uz0s > uz0. Now suppose uz0Wwy0 for u 2W 0. Then uz0 ¼ minðuz0s; uz0ÞWwy0s
and by de¢nition of w0, we have uz0Ww0z0.
Case (c): z0s > z0 and z0s 62Wmin. First note: there exists a simple root s0 2W 0 with

s0z0s < z0s, so ‘ðs0z0sÞ ¼ ‘ðz0Þ; but sz0X z0, so sz0s0X minðz0; z0s0Þ ¼ z0.
Hence, sz0s0 ¼ z0. Now, as in case (b), we may let w0 ¼ maxðW 0z0ÞWwy0s.
De¢ne w00 :¼ maxðw0;w0s0Þ. Then we claim w00 ¼ maxðW 0z0ÞWwy0 . First,
w00z0 ¼ maxðw0z0;w0z0sÞW maxðwy0;wy0sÞ ¼ wy0. Now suppose uz0Wwy0 for
u 2W 0. If us0 < u, then uz0 > us0z0 ¼ uz0s and us0z0 ¼ minðuz0; uz0sÞWwy0s, so
by the de¢nition of w0, we have us0z0Ww0z0. Hence uWw00, and uz0Ww00z0. On
the other hand, if us0 > u, then uz0 ¼ minðuz0; uz0sÞWwy0s, so by the de¢nition
of w0, we have again uz0Ww0z0Ww00z0. &

Now, given m; n; y as above, and a path p: ½0; 1� ! XR, letW ðtÞ :¼ StabW ðmþ pðtÞÞ
denote the stabilizer of the point mþ pðtÞ 2 XR. This is the parabolic subgoup ofW
generated by the simple re£ections si such that mþpðtÞ lies on the corresponding
wall of the dominant Weyl chamber. Let ½0; 1� ¼ I1 t � � � t Iq be the decomposition
of ½0; 1� into the minimal number of disjoint intervals such that W ðtÞ is constant
for all t in each interval Ij. We enumerate the intervals so that for j < j0, the t in
Ij are smaller than those in Ij0 .
For an LS-path p ¼ ðt1> � � � ; 0<a1< � � �Þ with pm � p dominant, we let

l ¼ mþ wtðpÞ, and we de¢ne wðpÞ (modulo Wl) inductively as follows. Intuitively,
we start with w ¼ id; then we travel along the path pm�p from its endpoint l to
m, and every time we hit a wall, we multiply w by the corresponding re£ection if
this makes w longer. However, at the end of our trip, if m itself is on a wall, we
only multiply by the corresponding re£ection s if s times the initial direction of
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p is smaller than y. Formally, we de¢ne:

wq :¼ maxðW ðIqÞÞ; wq1 :¼ maxðW ðIq1Þ�wqÞ; . . . ; w2 :¼ maxðW ðI2Þ�w3Þ;

w1 :¼ maxfuw2 j uW u1g; wðpÞ :¼ w1:

Here u1 :¼ maxfu 2W ðI1Þ j ut1W yWng. We explain why u1 is well-de¢ned. The path
pm � p has a segment in direction t1ðnÞ from m into the fundamental chamber. Thus if
si 2W ðI1Þ ¼Wm, we have htðnÞ; a_i iX 0, and sit1X t1Wn. That is, we may take t1 to
be minimal in the coset W ðI1Þt1, so that we may use the Lemma to de¢ne
u1t1 ¼ maxfu0t1 j u0 2W ðI1Þ; u0t1W yg. (Note: In the Kac^Moody setting, in which
W may be in¢nite, we can show thatW ðIjÞ is always ¢nite, and the above de¢nition
of wðpÞ is still valid.)
The following result is a re¢nement of the Littlewood^Richardson rule of [17].

PROPOSITION 12. The crystal graph of km � VnðyÞ has as its connected components
the crystal graphs of ordinary Demazure modules VlðwÞ. Speci¢cally, it is the disjoint
union:

Cðm; n; yÞ ¼
a
p

CðmþwtðpÞ;wðpÞÞ;

running over all standard tableaux p for VnðyÞ such that pm�p is dominant.
Proof. (a) First the containment �. Fix a path p ¼ ðt1 > � � � > tq;

0 < a1 < � � � < aq ¼ 1Þwith with yX t1Wl, and pm � p dominant. We must show that
for some (and hence for any) reduced word wðpÞ ¼ si1 � � � sir , the path f

l1
i1 � � � f

lr
ir ðp

m � pÞ,
if de¢ned, is of the form pm � y with y ¼ ðs1 > � � � ; 0 < b1 < � � �Þ and yX s1Wl. We
may choose our reduced word compatible with the partial products wk in the
de¢nition of wðpÞ. That is, for any p, we have wkX sip � � � sir Xwkþ1 for some k.
Claim: f lpip � � � f

lr
ir ðp

m � pÞ ¼ pm � yp for some yp with ypðtÞ ¼ pðtÞ for t 2 I1 t � � � t Ik.
This follows by descending induction on p. Indeed, assume the claim for a given
p (with p > 1), and suppose wk > sip � � � sir Xwkþ1. Then on t 2 I1 t � � � t Ik, the
function t 7! hmþ ypðtÞ; a_ip1i ¼ hmþ pðtÞ; a_ip1i is non-negative, and it attains its
minimum value 0 at the right endpoint of Ik. Hence by de¢nition, the operator
f lp1ip1 does not change the path pm � yp within the interval t 2 I1 t � � � t Ik, and the
claim holds for p 1.
Finally, yX s follows immediately from the claim and the de¢nition of u1.
(b) Now the opposite containment �. Consider any path pm�y (not necessarily

dominant), and consider the unique dominant path pm � p such that
f l1i1 � � � f

lr
ir ðp

m � pÞ ¼ pm�y for some reduced word si1 � � � sir ¼: w and lj > 0. We must
show that wðpÞXw.
If pm � y is itself dominant, there is nothing to prove. Otherwise, let Ikþ1, kX 1, be

the interval where mþ yðtÞ ¢rst exits the fundamental chamber. We will use
decreasing induction on k to show the stronger statement wkX si1 � � � sir .
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By the de¢nition of the lowering operators, we have mþ yðtÞ ¼ mþ pðtÞ for tW
the ¢rst point of exit of pm � y from the fundamental chamber. Thus, for t 2 Ik,
mþ yðtÞ lies on all the walls which are crossed in interval Ikþ1. Thus there exists
a product emaja � � � e

m1
j1 of ej with sj 2W ðIkÞ, such that pm � y0 :¼ emaja � � � e

m1
j1 ðp

m � yÞ
lies inside the dominant chamber for t 2 I1 t � � � t Ikþ1. By induction,
pm � y0 ¼ f lpip � � � f

lr
ir ðp

m � pÞ, where wkþ1X sip � � � sir . We thus have pm � y ¼
f m1j1 � � � f maja f

lp
ip � � � f

lr
ir ðp

m � pÞ; where wkX sj1 � � � sja sip � � � sir , provided only that k > 1.
If k ¼ 1, we may assume that u1X sj1 � � � sja , and the conclusion again follows. &

EXAMPLES. We write ðt1a1t2a2 � � �Þ for an LS-chain ðt1> � � � ; 0<a1< � � �Þ of Vn, so
a chain ðt1; 0<1Þ with extremal weight t1ðnÞ is written simply ðt1Þ.
(i) G ¼ SL3, m ¼ 2$2, n ¼ $1 þ$2, y ¼ s1s2. There are four components of

Cðm; n; yÞ: p¼ðs1s2Þ, Cð$2; idÞ; p¼ðs1s2 12 s2Þ, Cð2$1; idÞ; p¼ðs1Þ, Cð$1þ2$2; idÞ;
p¼ðidÞ, Cð$1þ3$2; s2Þ. Note that for p¼ðs1Þ we have W ðI1Þ ¼ hs2i, but
s2t1Wj y, so wðpÞ ¼ id.
(ii) G ¼ SL3, m ¼ 2$1, n ¼ 2$1 þ 3$2, y ¼ s1s2. The path p¼ðs1s2 25 s1

2
3 eÞ

corresponds to Cð2$1þ$2; s1s2Þ. Note that y ¼ f2f1f2ðpm � pÞ 2 Cðm; n; yÞ, but this
is no contradiction, since y ¼ f1f 22 ðp

m � pÞ.

Proof of Theorem 2. This follows immediately by the de¢nition of constructable-
standard tableaux and repeated application of the previous Proposition.

2.5. RAGHAVAN^SANKARAN OPERATORS

We de¢ne certain raising operators on liftable tableaux, different from the
root operators above, which we will need in our proof of Theorem 4. (Cf. [26], [20,
‰ 4].)
Given a tableau P and a simple re£ection s, de¢ne bssðPÞ as follows. Let

P ¼ ðt1; . . . ; tN Þ. If for some 1WKWN we have

t1X st1; . . . ; tK X stK ; tKþ1 < stKþ1;

takebssðPÞ to have the same rational numbers in its LS-chains asP has, but change the
cosets to

bssðPÞ ¼ ðst1; . . . ; stK ; tKþ1; . . . ; tN Þ:

(In case stK ¼ tKþ1 and these cosets form part of the same LS-chain, for consistency
of notation we must combine these two into a single segment: that is, omit tKþ1
and its corresponding rational number.)

PROPOSITION 13. If P is a liftable tableau, thenbssðPÞ is also a liftable tableau.
Proof. First we show that bssðPÞ is a tableau. Suppose the coset tK in the

de¢nition of bssðPÞ occurs in the jth LS-chain pj of P: that is, tK ¼ tjp. ThenbssðPÞ ¼ ðbssðp1Þ; . . . ;bssðpjÞ; pjþ1; . . . ; prÞ. We thus need to show that if
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p ¼ ðt1 > � � � > tq; 0 < a1 < � � �Þ is an LS-chain, then bssðpÞ ¼ ðst1 > � � � >

stL > tLþ1 > � � � > tq; 0 < a1 � � �Þ is also an LS-chain.
If L ¼ q, thenbssðpÞ ¼ etopðpÞ, where e is the raising root operator corresponding to

s. If L < q, let p0 ¼ ðt1 > � � � > tLþ1; 0 < a1 < � � � < aL < 1Þ, which is an LS-chain
by [17, Lemma 3.1]. Then once againbssðp0Þ ¼ etopðp0Þ, so thatbssðp0Þ is an LS-chain,
and this easily implies thatbssðpÞ is also an LS-chain. ThereforebssðPÞ is a tableau.
Now to see thatbssðPÞ is liftable, we use Lemma 7(b) repeatedly, starting with the

positions L, Lþ1 (or N1, N if L ¼ N) and proceeding leftward. (Cf. the proof
of Lemma 8(a).) &

3. Linear Independence

3.1. LS-PATH BASIS

In order to show the independence of the set fpPg of standard monomials in V�
i;m, we

¢rst establish independence for a set fvPg in Vi;m which we call the LS-path basis.
First we recall the analogous basis fvpg of Vl referred to in Theorem 3. Letbssi be the

operators of Section 2.5. Note that wtbssiðpÞ ¼ wt p lai for l 2 Zþ. For an LS-chain
p of shape l, de¢ne integers l1ðpÞ, l2ðpÞ, . . . by

l1ðpÞ ¼
wt p wtbssi1ðpÞ

ai1
; l2ðpÞ ¼

wtbssi1ðpÞ  wtbssi2bssi1 ðpÞ
ai2

; . . . :

That is, wt p wtbssi1ðpÞ ¼ l1ðpÞai1 , etc. Note that this depends on our ¢xed word
i ¼ ði1; . . . ; irÞ. For ðl1; . . . ; lrÞ ¼ ðl1ðpÞ; . . . ; lrðpÞÞ, de¢ne

vip ¼ F
l1
i1 � � �F

lr
ir �vl 2 Vl;

where Fi 2 g are negative root vectors. Now, let wmaxðiÞ be the unique
Bruhat-maximal element in the set fwðJÞ j J � ½1; r�g; that is, wmaxðiÞ is the Weyl
group element generated by a longest reduced subword of i. (See [13, Lemma 1].)
Our de¢nition of fvpg is a slight generalization of [20, De¢nition 3], since i need
not be reduced. Recall [20, Theorem 2]:

PROPOSITION 14. Let w ¼ wmaxðiÞ. The set fvipg, where p runs over all LS-chains
p ¼ ðt1 > t2 > � � � ; 0 < a1 < � � �Þ with w > t1, forms a basis of VlðwÞ.

We shall need one technical property of the vp.

LEMMA 15. Let p0 ¼bssiðpÞ, l ¼ ðwt p wt p0Þ=ai, and y0 < p0 in the lexicographic
order on LS-chains (Section 1.3). Suppose either of the following holds: (i)
kW l; or (ii) the Raghavan^Sankaran operator coincides with ordinary re£ection:
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p0 ¼bssiðpÞ ¼ siðpÞ. Then
Fki ðvy0 Þ ¼

vp; if y0 ¼ p0 and k ¼ l;X
y<p

/vy; otherwise;

(

where y runs over LS-chains less than p.
Proof. The ¢rst case of the conclusion, Fki ðvy0 Þ ¼ vp, follows directly from the

de¢nition of vp. The second case of the conclusion follows easily from either
hypothesis together with [20, Lemma 3(ii)]. &

Now we extend the above construction to generalized Demazure modules. For a
tableau P of shape ðl1; . . . ; lrÞ, we have bssi1 ðPÞ ¼ pl1 �P0 for some tableau P0 of
shape ðl2; . . . ; lrÞ; andbssi2 ðP0Þ ¼ pl2 �P00, etc. Then de¢ne integers

L1ðPÞ ¼
wtP wtbssi1 ðPÞ

ai1
; L2ðpÞ ¼

wtP0  wtbssi2 ðP0Þ

ai2
; etc:

(Recall that wtP denotes the endpoint ofP considered as a path, i.e., the sum of the
weights of the LS-chains in P.)
Now for ðL1; . . . ;LrÞ ¼ ðL1ðPÞ; . . . ;LrðPÞÞ, let

vP ¼ F
L1
i1 ðvl1 � F

L2
i2 ðvl2 � � � �F

lr
ir ðvlrÞ � � �ÞÞ:

The fvPg coincide with the fvpg in the case where Vi;m is an ordinary Demazure
module VlðwÞ.

3.2. INDEPENDENCE OF fppg

Let wj ¼ wmaxðij; . . . ; irÞ, the longest Weyl group element which can be generated
from a tail subword of i. Then clearly Vi;m � Vl1 ðw1Þ �� � �� Vlr ðwrÞ. We will write
vðjÞp ¼ vðij ;...;irÞp : By Proposition 14, the vectors

fvð1Þp1 �� � �� v
ðrÞ
pr g;

where each pj ¼ ðt1 > � � �Þ varies over all LS-chains with wj > t1, form a basis of
Vl1 ðw1Þ �� � �� Vlr ðwrÞ.

PROPOSITION 16. For a standard tableauP ¼ ðp1; . . . ; prÞ, let us write vP 2 Vi;m in
terms of the above basis of Vl1 ðw1Þ �� � �� Vlr ðwrÞ. Then we have the triangular
relation:

vP ¼ vð1Þp1 �� � �� v
ðrÞ
pr þ

X
Y<P

/ vð1Þy1
�� � �� vðrÞyr ;

where Y ¼ ðy1; . . . ; yrÞ runs over all tableaux less than P in lexicographic order.
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Proof. (cf. [20, Proof of Lemma 3]). We use induction on r, the number of letters in
i. For r ¼ 1, there is nothing to prove. Now suppose rX 2, and we know the
Proposition for the word ði2; . . . ; irÞ. Let s ¼ si1 and take P

0 ¼bssðPÞ, where
P ¼ ðp1; . . . ; prÞ; P0 ¼ ðbssðp1Þ; . . . ;bssðpjÞ; pjþ1; . . . ; prÞ;

and

pl1 ¼bssðp1Þ ¼ sðp1Þ; bssðp2Þ ¼ sðp2Þ; . . . ;bssðpj1Þ ¼ sðpj1Þ:
By induction, we may assume

vP0 ¼ vl1 � vŝsðp2Þ �� � �� vŝsðpkÞ �� � �� vpr þ
X
Y<P0

/ vl1 � vy2 �� � �� vyr ;

where Y ¼ ðpl1 ; y2; . . . ; yrÞ. Then

vP ¼ F
l1
i1 ðvP0 Þ;

where l1 ¼ h1 þ � � � þ hk for

h1 ¼
wt p1  wt sðp1Þ

ai1
; . . . ; hk1 ¼

wt pk1  wt sðpk1Þ
ai1

; hk ¼
wt pk  wtbssðpkÞ

ai1
:

The terms of vP are obtained by distributing the l1 operations F
l1
i1 arbitrarily among

the r factors of each term in vP0 .
We ¢nd the maximal term in vP by repeatedly applying Lemma 15. By hypothesis

(ii) of the Lemma, the maximal ¢rst factor of a term in vP is Fh1i1 ðvsðp1ÞÞ ¼ vp1 ;
the maximal second factor is vp2 ; and so on through the ðk 1Þth factor. Now,
assuming the previous maximal factors have been achieved, we apply hypothesis
(i) of the Lemma to ¢nd that the maximal kth factor is Fhki1 ðvŝsðpkÞÞ ¼ vpik . But then
all l1 operations Fi1 have been used, and the subsequent terms are unchanged from
vP0 . &

Recall that the set fpPg insideV�
i;m consists of monomials in any basis fppg of theV

�
l

which is triangular with respect to fvpg.

COROLLARY 17. (i) The set fvPg, whereP runs over the standard tableaux of shape
ðl1; . . . ; lrÞ, is linearly independent in Vi;m.
(ii) The set fpPg, where P runs over the standard tableaux of shape ðl1; . . . ; lrÞ,

restricts to a linearly independent set in V�
i;m.

Proof. Part (i) follows immediately from the triangularity of the set fvPg with
respect to the basis fvð1Þp1 �� � �� v

ðrÞ
pr g. Part (ii) follows similarly, using in addition

the triangularity of fppg with respect to fvpg. &
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4. Spanning

The independence of the set fpPg in V�
i;m, along with the Demazure formula for

standard tableaux (Section 2.3), gives a lower bound for the dimension of V�
i;m.

In this section, we use geometry to ¢nd an upper bound for this dimension which
coincides with the lower bound, showing that fpPg is a basis.

4.1. THE DEMAZURE MODULE AS A SPACE OF SECTIONS

We relate the generalized Demazure module Vi;m and the Bott^Samelson variety Zi
via a succession of three mappings (see [23]). First, letUi denote the one-dimensional
unipotent subgroup of G whose Lie algebra is kFi. We have an embedding

f1: Ui1 � � � � �Uir ! ðPi1 � � � � � PirÞ=B
r ¼ Zi

whose image de¢nes a Zariski-dense open cell in Zi.
Second, let bPPi � B be the maximal parabolic subgroup whose Weyl group is

generated by all the simple re£ections except si. Let GrðiÞ ¼ Grði;GÞ :¼ G=bPPi be
the G-Grassmannian, and de¢ne the multiple G-Grassmannian

GrðiÞ :¼ Grði1Þ � � � � �GrðirÞ;

on which G acts diagonally (simultaneously on each factor). The Bott^Samelson
variety embeds B-equivariantly into this space:

f2: Zi ,! GrðiÞ
ðp1; . . . ; prÞ 7! ðp1bPPi1 ; p1p2bPPi2 ; . . . ; p1p2� � �prbPPir Þ:

(The con¢guration variety Zi;m can be realized as the projection of Zi � GrðiÞ to
those factors of GrðiÞ for which mj > 0.)
Third, for a weight l ¼ m$i, de¢ne a line bundle onGrðiÞ as Ll :¼ G �

bPPi k�l; so that
L$i is the minimal ample line bundle on GrðiÞ. We thus obtain a line bundle
Li;m :¼ Ll1 � � � � � Llr on GrðiÞ, which is very ample (resp. semi-ample) precisely
when all mj > 0 (resp. all mjX 0). The restriction of Li;m to Zi � GrðiÞ is easily seen
to be isomorphic to the line bundle Li;m on Zi de¢ned in Section 1.4. Recall that
we may identify H0ðGrðiÞ;LlÞ ffi V�

l , so that GrðiÞ ! PðH0ðGrðiÞ;LlÞ
�
Þ ffi PðVlÞ,

gbPPi 7! g�vl. Thus we have the natural map

f3: GrðiÞ ! PðVl1 �� � �� VlrÞ

ðg1bPPi1 ; . . . ; grbPPirÞ 7! g1�vl1 � . . .� gr�vlr :

Now, composing f3 ( f2, we have a map

Zi ! PðVl1 �� � �� VlrÞ;

whose image is by de¢nition Zi;m. If we compose all three mappings f3 ( f2 ( f1, we
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see that:

PðVl1 �� � �� Vlr Þ � SpankhZi;mi

¼ SpankhUi1ðvl1�Ui2 ðvl2�� � �Uirvlr � � �ÞÞ i

¼ Pð ui1ðvl1� ui2ðvl2�� � � uir vlr � � �ÞÞ Þ
¼ PðVi;mÞ

That is, we have the map f ¼ f3 ( f2: Zi ! PðVi;mÞ whose image spans PðVi;mÞ.
Dually, we have the injective linear map f�, which factors as:

V�
i;m ,! H0ðZi;m;Li;mÞ ,! H0ðZi;Li;mÞ:

4.2. GEOMETRIC DEMAZURE FORMULA

We now use Demazure’s character computations with P1-¢brations [3] to ¢nish our
proof of Theorems 4, 5, and 6, on the model of [20, ‰ 8].
Our proof proceeds by induction on r, the number of letters in i. For r ¼ 0, all

statements are trivial. Now let rX 1, i ¼ i1, and i0 ¼ ði2; . . . ; irÞ, m0 ¼ ðm2; . . . ;mrÞ.
From the de¢nitions, we easily see that H0ðZi;Li;mÞ ¼ H0ðPi=B; EÞ, where

E ¼ Pi �
B
ðk�l1�H

0ðZi0 ;Li0;m0 ÞÞ ¼ Pi �
B
ðk�l1�V

�
i0;m0 Þ;

a vector bundle over Pi=B. (The last equality is by induction.) Now restrict the
Pi-action on this vector bundle to an action ofGi ffi SL2, the group whose Lie algebra
is generated by Ei;Fi. Take Bi ¼ B \ Gi, so that Pi=B ffi Gi=Bi ffi P1.
The inclusion vl1�Vi0;m0 � Vi;m dualizes to a short exact sequence of Bi-modules

0! Ker! V�
i;m ! k�l1�V

�
i0;m0 ! 0, which leads to a long exact sequence in

cohomology of bundles over P1:

� � � ! HiðP1;Gi�
Bi
KerÞ ! HiðP1;Gi�

Bi Vi;mÞ ! HiðP1; EÞ ! � � �

Since Vi;m is a Gi-module, it induces a trivial vector bundle, and H1ðP1,
Gi �

Bi Vi;mÞ ¼ 0. Since trivially H2ðP1;Gi�
Bi
KerÞ ¼ 0, we thus get:

HiðP1; EÞ ¼ 0 for i > 0:

From the Leray spectral sequence of the ¢bration Zi ! Pi=B, and induction, it
follows that HiðZi;Li;mÞ ¼ 0 for i > 0.
Now, the character ring of Gi is Ri ffi k½x�, a polynomial ring in one variable, with

the quotient map R! Ri, el 7! xhl;a
_
i i. From elementary computations with

SL2-bundles we have Demazure’s formula [3] for the Gi-character chari of the
cohomology of E, in terms of the ¢ber of E above eBi 2 Gi=Bi:

chari H0ðP1; EÞ  chari H1ðP1; EÞ ¼ Li chariðEjeBi Þ;

where Li : Ri ! Ri is the map induced from Li : R! R. But the negative H1 term
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vanishes, and by specializing the polynomials to x ¼ 1 we ¢nd

dimH0ðZi;Li;mÞ ¼ dimH0ðP1; EÞ

¼ Li chariðk�l1 � Vi0;m0 Þjx¼1
¼ Li1ðe

l1Li2 ðe
l2 � � �ÞÞjel¼1;

where the last equality is by induction. However, we also know:

dimH0ðZi;Li;mÞX dimH0ðZi;m;Li;mÞ by Section 4:2

X dimV�
i;m by Section 4:2

X dimSpanhpP j P a standard tableaui

¼ #fstandard tableauxg by Corollary 17

¼ Li1ðe
l1Li2 ðe

l2 � � �ÞÞjel¼1 by Corollary 10

Comparing expressions, we conclude that all the above inequalities are in fact
equalities, meaning

H0ðZi;Li;mÞ ffi H0ðZi;m;Li;mÞ ffi V�
i;m ¼ SpanhpPi;

and the Demazure character formula holds for all four of these spaces. This implies
the projective normality of Zi and Zi;m with respect to Li;m by [4, Ch II, Ex 5.14].
Finally, the vanishing of the higher cohomology of Li;m over Zi;m follows from a

standard argument involving the map f : Zi ! Zi;m (see, e.g. [20, ‰ 8], [22, Prop-
osition 28]). UsingH0ðZi;m;Li;mÞ ¼ H0ðZi;Li;mÞ, and the normality of Zi;m, we apply
Kempf’s Lemma [9] to deduceHiðZi;m;Li;mÞ ¼ HiðZi;Li;mÞ for all i > 0. But we have
already shown that the right hand side vanishes.
This completes the proof of Theorems 4, 5, and 6.
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