
A CENSUS OF SLICINGS 

W. T. T U T T E 

1. Introduction. A band is a closed connected set in the 2-sphere, 
bounded by one or more disjoint simple closed curves. 

Consider a band B with bounding curves Ju J2, . . . , Jk. On each curve Jt 

let there be chosen m^ > 0 points to be called vertices, with the restriction 
that the sum of the k integers mt is to be even. Write 

* 
(1) Z tnt = 2». 

Next consider a set of n disjoint open arcs in the interior of B which join the 
2n vertices in pairs and partition the remainder of the interior of B into 
simply connected domains. We call the resulting dissection of B a slicing with 
respect to the given set of vertices. The arcs are the internal edges of the slicing 
and the simply connected domains are its internal faces, or slices. 

The external edges of a slicing are the open segments into which the vertices 
separate the curves Ji.lini = 0 we count the complete curve Jt as a "singular" 
external edge. It is clear, however, that this happens only in the singular case 
(k = 1, n = 0). The external faces of a slicing are the components of the 
complement of B. 

In the non-singular case the number of external edges is 2n and the number 
of external faces is k. The number/of internal faces can be calculated from the 
Euler polyhedron formula. 

(2) f = n - k + 2. 

In the singular case n = 0 and k = 1. There is just one internal face, the 
interior of B, and just one external one. So formula (2) is still valid. 

Figure 1 shows a slicing of a region bounded by four simple closed curves. 
The external faces are shaded. 

Two slicings of B are equivalent if one can be transformed into the other by a 
topological mapping of R onto itself which leaves each vertex invariant. 

We propose the problem of determining the number of inequivalent slicings 
of a band corresponding to a given sequence of numbers m*. In what follows 
we dispose of the case in which the numbers mt are all even. We call this the 
case of even slicings. 

In this special case we write m* = 2nt for each i, and we denote the number 
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FIGURE 1. 

of inequivalent slicings with respect to the given set of vertices by 7(^1, «2, 
. . . , nk). This number is determined by the integers fit and is not otherwise 
dependent on B. The main theorem of this paper states that 

(1.1) 7(nh » „ . . . , nk) = (n _ k + 2){ U ff<!(ll< _ i ) . • 

where the ni are non-zero. If one of the integers nt is zero we have of course 
7(^1, n<i, . . . , nk) = 0, except that in the singular case 7(0) = 1. 

Formula (1.1) provides a new tool for the enumerator of planar maps. For 
example, if each external face of an even slicing is contracted to a point we get 
an Eulerian map, that is, a map in which each vertex is incident with an even 
number of edges (loops being counted twice). The reader is invited to use 
(1.1) to verify that the number of combinatorially distinct oriented* Eulerian 
maps having n edges and k > 3 labelled vertices vh 1/2, . . . , vk of specified 
valencies 2#i, 2TZ2, . . . , 2nk respectively is 

( t t - p ! n ( 2 n , - i ) i 
( » - * + 2)! U niUtit- 1)!* 

In the case k < 2 complications arise due to the possible existence of non-
trivial isomorphisms of an Eulerian map which leave all the vertices invariant 
and preserve the orientations of the regions. 

According to the above formula there are 9 oriented Eulerian maps corres
ponding to the case (tti = n2 = 2, w3 = 1). They are shown in Figure 2. 

*A map is "oriented" when its regions are consistently oriented. 
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FIGURE 2. 

2. A r e c u r s i o n f o r m u l a . Consider a band B with boundary curves 
Ji, J2, . . . , Jk- We can dissect it into 2-cells as follows. If k = 1 we select 
dist inct points v\ and W\, not necessarily vertices, on Jx and join them by an 
open arc L\ in the interior of B. If & > 1 we select points Vi £ J i and w2 G J2, 
and join them by an open arc L i in the interior of B. In the la t ter case J\ 
and J2 are different components of the boundary of B. We can therefore choose 
any point v2 ^ W2 on J2 and join it to any point w^ on J3 , or Wi 7e z/i on J"i 
if k = 2, by an open arc L 2 in the interior of B which does not meet L\. We 
continue in this way until finally we join vk Ç Jk to W\ 9^ V\ on J\ by an open 
arc Lk in the interior of B, the arcs Li , L2, . . . , Lk being disjoint. 

Let the two closed arcs in Jt joining vt and wt be denoted by Kt and K/. 
(1 < i < k.) We can adjust the notat ion so t h a t the simple closed curve made 
up of the arcs Lu Kj, has a residual domain D contained in B. Then the curve 
made up of the arcs Lu K/, has a residual domain D' contained in B. In 
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fact we have constructed a new slicing of B with the points Vu Wj as vertices, 
the arcs Lt as internal edges, the arcs Kj and K/ as external edges, and the 
domains D and D' as the only internal faces. 

It follows that we can replace B by the topologically equivalent and geo
metrically simple model of Figure 3. Here J\ is represented by a large square, 
and the other curves Jt are represented by small congruent squares lying inside 
Ji with their centres evenly spaced on a segment joining the midpoints V 
and W of two opposite sides of J\. The small squares have their sides parallel 
and perpendicular to the segment VW. V is taken as V\ and W as Wu 

The construction can of course be modified so as to make the outer square 
represent any desired boundary curve Ju and so as to make the representative 
squares of the other boundary curves lie in any desired order along VW. 

V--wf 

J ' 

D 
5 J3 J4. 

ux 

D' 

W= 60, 

FIGURE 3. 

It follows from elementary topological considerations that the number 
y (nu W2, . . . , nk) of §1 is a function of the numbers tiu n*, . . . ,nk only, and 
is independent of the order in which they are written. 

We proceed to establish a recursion formula for y(ttu n2, . . . , nk). We 
assume that 2nt points are distinguished as vertices on Jt. (1 < i < k.) 

Choose a vertex X on Jx. In any slicing of B, with respect to the given set 
of vertices, X will be incident with just one internal edge E. Let the other end 
of E be Y. Let the number of inequivalent slicings for which Y lies on Jt 

(1 < i < k) be fit. 
Consider the case in which Y is on Ju Distinguish an external edge A 

incident with X. Let A7 and A7' be the two closed arcs in Ji joining X and F, 
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N being the one containing A. The arc E separates the interior of Ju that is, 
the residual domain of J\ meeting B, into two simply connected domains R 
and Rf with boundaries E\J N and EKJ N' respectively. Thus E induces an 
ordered partition {P, P) of the class S = {J2, Js, . . . , Jk] into two comple
mentary subclasses P and P , the members of P being those curves Jt which are 
contained in R. 

From the model of Figure 3 we see that when X and F are given an arc E 
can be constructed to correspond to any assigned ordered partition {P, P) 
of S. Let t denote the number of vertices, other than X and F, on N. 

Then the corresponding number for N' is 2tii — t — 2. If P = {JS(D, JS{2), 
. . . , Js{r)} we make the abbreviation 

(3) y(q, P) = y(q, «,(!>, «,(2), . . . , »«(r)). 

We observe that E decomposes B into two bands W and W. The bounding 
curves of W are EKJ N and the members of P , while those of W are E\J N' 
and the members of P . By simple topological considerations any other edge E 
corresponding to the same ordered partition of S would determine a topo
logical^ equivalent decomposition of B. 

Any slicing of B with E as an internal edge must be completed by adjoining 
a slicing of W and a slicing of W, each with respect to the appropriate vertices 
of B other than X and F. It is thus necessary that t shall be an even number 
2/\ We deduce that 

(4) ft = £ "JC T0\ i'M»! - i - i- £)• 

Now suppose Y G ^2- We can use the model of Figure 3, with L\ — E, 
Vi = X, and w2 = F. We construct a segment Ni in £ , parallel to E and 
joining a point a on i £ / to a point & on i£Y. We thus mark off a strip R oî B 
bounded by E, Ni, and the closed arcs Xa and Yb of i£Y and Ko respectively. 
By taking N\ sufficiently near E we arrange that R has no vertices other than 
X and F in its boundary. 

We form a new band Br from B by uniting the interior of R with the open 
segments Xa and F6 and the external faces corresponding to J i and J 2 so 
as to form a new external face, with bounding curve J0 say. We assign to B' 
the same vertices as for B, with the omission of X and F. Given a slicing of 5 ' 
we can obtain one of B by uniting the interior of R with the open arc N\ and 
the adjacent internal face, taking E as an internal edge, and adjusting the 
external edges accordingly. Conversely any slicing of B with E as an internal 
edge gives rise to one of B'. Since there are 2n2 possible choices for F we 
deduce that 

(5) 02 = 2n2y(ni + n2 — 1, n3> «4, . • • , nk), 

provided that n\ > 0. If n\ = 0 we have of course 02 = 0. Similar formulae 
hold for /33, 04, . . . , ft. 
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Combining these results with (4) we obtain 

(2.1) y(nun2l . . . , « * ) 
TOI — 1 

= E E y(j,P)y{nl-j-l,P) 
P j = 0 

+ £ 2nTy{nl-^nr- 1 , 5 - {/,}), 
r=2 

provided Wi > 0. 
This formula makes possible the computation of Y(WI, n2, . . . , nfc) for small 

values of & and the n^ At an early stage of this research numerical values so 
obtained suggested the general formula (1.1). 

3. Generating functions. We now fix the numbers n2, nz . . . , nkl but 
allow Wj to vary. We introduce the generating function 

(6) G(P,x) = É y(nhP)xm-\ 
711=0 

where P runs through the subclasses of S = {72, ^3, . . . , /*}» and 

(7) m = ni + X) WJ-

Using this generating function we can rewrite (2.1) as 

(3.1) G(S, x) = x2 2 G(p> *)G(P, x) 
p 

+ Z 2», É 7(»i + n r - 1, S - {JV))*n_1 

when k > 1, and as 

(3.2) G(tf>, x) = x2{G(0, x)}2 + x-1 

when & = 1. From (3.2) we deduce 

(3.3) G ( < £ , x ) = 2 p { l - ( 1 - 4 * ) * 1 -

4. A combinatorial identity. We turn from the contemplation of 
equation (2.1) to forge the tool that will be needed for its solution. Let X, /*, 
/i»/2, . . . i/* be arbitrary functions (sufficiently often differentiate) of x. 
Let 5 denote the set {1, 2, . . . , s} of integers. We use the symbol P to denote 
a subset of 5 and we write P for its complementary subset. We write a{P) for 
the number of members of P , and we write (P) for the product of the functions 
ft with i e P . If a(P) = 0 we take (P) to be 1. 

We propose to establish the identity 
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(4.1) £ Da(p)-k{\(P)}.DaiP)-%(P)} 
P 

k-l k-l-a(P) / fP\ j \ - , 

= Z £ (-i)1(aCn.~/)z?-(|,)-'-1{2}-*w,(m<{x<p>}.^>} 

+ £ ""l" (- i ) ' (a ( p )" V ^ ^ l M ^ ^ * ' ! ^ » } . 

Here & and I are arbitrary positive integers such that 

(8) s > k + I - 1. 

The summations are taken over all relevant sets P. Thus the first summation 
on the right is over all P satisfying a(P) < k. 

The symbol D stands for differentiation with respect to x. In (4.1) it some
times occurs, operating on \(P) or /i(P), with a negative index. But the indices 
a(P) — I — i and a(P) — k — i are never negative, by (8) and the limitations 
i < k — 1 — a(P) and i < / — 1 — a(P) of the summations concerned. 
When D does occur with a negative index it is to be treated as an operation 
of repeated integration. To avoid difficulties with arbitrary constants we 
suppose that for each function X =-\(P) or n(P) concerned D~1(X) is fixed 
as a particular integral of X. Then D~2(X) is fixed as a particular integral 
of D~l(X), and so on as far as may be necessary. We shall in particular fix 
D~l(\') as X. 

We refer to the identity of (4.1) as H(s; k, I). 

LEMMA I. H(s; k, I) is true whenever s = k + I — 1. 

Proof. In this case we have for any P either a(P) < k or a(P) < I, but not 
both. Suppose first that a(P) < k. Then 

*~E<P) ( - i)i(a(p).~l)D"a!)-'~t{ir»a<»+t{\(p)}.n(p)} 

= *"g
<p)

 (_ iy(
k -17 "(p)) "1_£ )_ i (* - 1 - "(p) -

V . 7 ! ( / f e - l - « ( P ) - i ) ! 

i?a(p)-*{X(P)}Da(p)-!ÎM<-P)}, 

x £ ( - D \ ,_!_„„,_, / è _ 1 _ a ( P ) _ J -

since the sum 
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t-l-oW-, / k _ l _ a ( p ) _ j 

£ (-D* 
z=0 

is 1 if j = k - 1 - a(P), and is 0 if j < k - 1 - a(P). 
On the other hand the empty sum 

must be interpreted as 0. 
A similar argument applies if a(P) < I. It follows that each subset P makes 

equal contributions to the two sides of (4.1). The lemma follows. 

LEMMA II. Let s, k, and I be positive integers satisfying (8) and such that 
H(s; k, I) and H(s + 1 ; k + 1, /) are both true. Then H(s + 1 ; ky I) is true. 

Proof. We operate on H(s\ k, I) as follows. We introduce a new arbitrary 
function / s + 1 and replace each term X(P) occurring in H(s; k, I) by \fs+i(P). 
The identity remains valid since the change corresponds merely to a new 
choice of the arbitrary function A. 

Again we can rewrite H(s; k, I) using as suffices all the numbers 1 , 2 , . . . , 
5 + 1 except an arbitrarily chosen j , and operate as before with j replacing 
5 + 1. If this is done for each j , including 5 + 1, and the resulting identities 
are added the effect is to replace each sum 

S Da{Db{\(P)}Dc{fji(P)}} 
a(P)=t 

occurring in H(s; k, I) by the corresponding sum 

2^ D \D {\(fQ1fQ2 . • .fqt+l + fqjq^fqz • • •/fft+1 + • • • 
a(Q) = H-l 

+ /„/« ...Lfll+>)}DMQ)}1 
where Q = {qi, q2, . . . , qt+i] denotes a subset of Z = {1, 2, . . . , 5 + 1} and 
Q is its complementary subset in Z. But this sum is 

£ DaiDb+1{\{Q)}Dc{n(Q)}} - £ Da{D\\\Q)\Dc{^qc)\\. 
a(Q)=t+l a(Q)=H-l 

We thus derive from H(s; k, I) the following identity. 
Te k 

£ Da(Q)-k{\(Q)}D"^-!{^Q)} - £ 2?"W)-^1{X'«3>}Pa<3)"V<Q>} 
a(Q) = l a(Q) = l 

+ £ '~£° ' ( - 1)' (a{Q) ~.k~1) D"^-k-1-i{D{\(Q)}D--l+a^+t{f,(Q)}} 
a(Q) = 0 2=0 \ 2 / 

- £ !~£(<3) ( - iy(a(Q) ~.k~ 1)ir™-k~1-t{\'(Q)D-H-(S>+t{fi(Q)}}. 
a(Q) = 0 i=0 \ 2 / 
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On the left-hand side of this equation we include the terms for a(Q) = 0 
in the summations, subtracting them again afterwards. On the right-hand side 
we write separately the terms for i = k — a(Q) in the first summation, and 
in the second summation we replace 

by 

Da(Q)-*-i{x(Q)D-l+a^)+i{fji(Q)}} - D*w-*-i-i{ \(Q)D-l+a^)+i+1{n(Q)}}. 

We thus obtain 

(9) £ Da(Q)-k{\(Q)}Da(m-'{„(Q)} 
Q 

_ £ D^-'-'lX'iQ^D^-'MQ)} 
Q 

-D~k{ \}DS+1-'MZ)} 

+ zr*-1{\'iJD
s+I-!{M<z)} 

a(Q) = l i=0 \ I / 

a(Q) = l \& — a((J)/ 

l-l l-l-a(Q) / /^VN Z, l \ _ 

+ E E ( - l)\aW) ~. k ~ 1)D*(Q)-k-i{\(Q)D-l+aiQ)+i{»(Q)} 

l—l Z-l-a(Q) / / ^ \ 7, l \ _ 

- E E (- l)iaW) ~. ~ )Da(Q)-k-1-1{x(Q)D-l+a'Q)+i+1{l,{Q)}} 
a(Q) = 0 t=0 \ Î / 

(*+D-l (k+l)-a(Q)-l / /^x ]\ _ , 

- E E (-ma{Q\~l)Da{Q)-l-i{D-k-l+a(Q)+i{\'(Q)\.ft(Q)} 

- E i_g(0)(_ D«(«(O) - * - ^D^-^-ixwD-^^^mi 
a(Q) = 0 1=0 \ fc / 

The last two terms on the left of the preceding identity cancel. 
Consider the identity H(s + l;k + 1,/), which is valid by hypothesis. 

We apply it to the same functions as H(s; k, I), except t h a t / s + ^ i s adjoined 
and X' replaces X. Adding it to the identity (9) we obtain 

£ DaiQ)-*[\(Q)}Da(S)-l{vL(Q)} 
Q 

= E k'T!Q\-i){a(Q)-~l)Dalw-l-i{D-k+a^+i{MQ)}.^} 

- E (~ D'(5 + 1 ~ ^D^-^D-^W^Z)} 
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-k-liMz)} + i(-i)k+(s + l ~ l ~ j ) E ^s+1" 

+ E l~ZQ\-i)(aiQ)~k'1)Da{Q)-k-i\(Q)D-l+a^UQ)}} 
a(Q)=0 i=0 \ l / 

- D E (-i)Ha(<2) . "Mz^'-^-lx^zr '+^+'+Ve)}} 
a(Q)=0 i=0 \ I / 

+ E (- i){ s ~ '- + ^D^-'-iir^wuiZ)}. 
i=0 \ t- / 

In the fifth summation on the right-hand side replace i by v — 1 and separate 
out the term for which v = I — a(Q). The remainder of this summation can 
then be combined with the preceding summation, and the right-hand side 
becomes 

a(Q)=0 i=0 \ ^ / 

+ E (- W*+ ? " l . ~j) E ^S+1"*-'{XM(Z)Î 
J=0 \ # — J ' *(Q) = j 

- ( _ i ) * C + * ~ V + I " { X M < Z ) ! 

+ D E (-i)'(a(G,.~*)z?0(<,)-,"1{x<Q>ir^w)+<{^>}} 
a(Q)=0 i=0 \ fc / 

+ E ( - W / " \ ~j) E Z)S-*-H1!XM(Z)} 
J=0 V — 1 — J/a(Q)=j 

+ ( - i)*(5 + J " 1)DS+1-*-'{MZ)}. 

Rearranging we obtain 

(10) E DaU})-k{\(Q)}Dam-'{»(Q)} 
Q 

- E k'ZQ\~ Ma(Q)-~ l)Da^-'-iD-k+a(Q)+t{\(Q)}.^Q)} 
a(Q)=0 z=0 \ £ / 

a(Q)=0 i=0 \ 2 / 

= E (- W* + J " • " j ) E ^5+1-1-l\Mz)} 

+ E (- W / " î ~ $ E D^-*->\MZ)\ 
j=o V — 1 — j / a ( Q ) = j 

-^-(x„(z>,{Ê(-i)'«(:+;:^^+i) 

+ S<-H;7-liXT)}-
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Now 

/ s + l - l - j \ y, 
\ s - k - l + l / y ! 

is the coefficient of xlc~i in (1 + x)~ s +*+ i - 2 and 

er) J 

is the coefficient of xj in (1 + x)s+1. Hence 

v (- u*+>(5 + 1 ~ *-iV* + i 
£ / l) \s-k-l+l/\ j 

is the coefficient of xk in (1 + x ) ^ ' - 1 , which is 
k + I - 1 

A similar argument, in which k and / — 1 are interchanged shows that 

g(-1)-Ci7^i()er)=CT-Ti)=e+ri> 
Hence the right-hand side of (10) is identically zero. Since we can now 

recognize (10) as H(s + 1; k, I) the Lemma is established. 
We complete the proof of (4.1) as follows. If possible choose s, k, I and the 

functions X, n,fi so that the identity is false, and so that s — k — I + 1 has 
the least value consistent with this condition. 

By Lemma I we have 5 — k — / + 1 > 0. Hence the identities H(s — 1 ; 
k, I) and H(s; k + 1,1) are defined. They are valid by the choice of s, k, and /. 
Applying Lemma II with s replaced by 5 — 1 we find that H(s, k% I) is also 
valid. But this contradicts the choice of s, k, and /. This contradiction establishes 
the theorem. 

5. Enumeration of the even slicings. We write 

X = 2(1 - 4x)"3/2, 

(11) D-'M = ( 1 - 4 * ) - * , 

D~2M = - i ( i -4*)* . 

For n > 1 and C any constant we put 

(12) D~l{Cxn(l - 4x)"3/2} = Vctn(1 - 40"8/2*. 
«Jo 

We also make the abbreviation 

0 3 ) CM = n\{n - I ) ! ' 
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LEMMA III. If n is any positive integer, then 

= - \D-2{\}D{c(n)xn) + }J)-1{\}c(n)xn - XD"1{Xc(n)xr?}. 

Proof* We need to prove that 
oo 

(14) nY, c(n + * - l)xB+i_2 = (1 - 4x)_1wc(w)xn-1 

+ 2(1 - 4x)-2c(n)xn - 4(1 - 4x)~3/2 f *c(«)^(l - 40~8 '2*. 
•/o 

Putting 

P(n) = É c(n + * - l)xw+i"2 

we can rewrite (14) as 

(15) P(n) = ^ (1 - 4x)-3/2 W _ 1 ( l - 4x)è + 2xn(l - 4x)"* 

- 4 JV(1 - 40"8/2*}. 

We assume w > 2, and integrate by parts twice in (15). The right-hand side 
then simplifies to 

(16) M(n) = (n - l)c(»)(l - 4x)_3 /2 f V 2 ( l - 4*)**. 

Now it is easily verified that 

(17) (2» + 3) f V ( l - 4 0 1 * = - \ocn{\ - 4x)3/2 + \n f f _ 1 ( l - 4/)1*. 
«/ o «/o 

It follows that 

(18) M(n + 2) = - c(n + l)xn + M(n + 1). 

But by the definition of Pin) we have 

(19) P(n + 2) = - cin + l)xn + P(n + 1). 

By (16) we have 

M{2) = c(2)(l - 4x)~3/2 f *(1 - 4 0 ^ , 

which reduces to 2(1 — 4x) - 3 / 2 — 2, of which P(2) is the power series expan
sion. Since P(2) = M(2) it follows from (18) and (19) that P(n) = ilf (») 
for all n > 2. 

*The author wishes to thank the referee for this proof, which is considerably shorter than 
the original. 
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If n = 1 the right-hand side of (15) reduces to 2(1 — 4x)_3/2, of which the 
left-hand side, P ( l ) , is the power series expansion. Hence Lemma III is valid 
for n > 1. 

We now return to the function G (S, x) defined in §3. We make a minor 
change of notation by taking 5 to represent the set {1, 2, . . . , k — 1} of 
integers instead of the set {J2, Jz, . • . , Ju\ of bounding curves. Correspondingly 
a symbol P denoting a set [Jsa)> • • • > Js(r)} of curves (with each s(i) > 2) 
will now be interpreted as the subset {s(l) — 1, . . . , s(r) — 1} of S. We 
write 

(20) U = c(nH1)x
ni+1, ( 1 < i < k - 1), 

and we define (P) as in §4. 

THEOREM. If k > 1 a»d /Ae integers nh n2, . . . , w/c are a// positive, then 

where n — n\ + n<i + . . . + nk. 

Proof. We have the expansion 

2(1 - 4x)-3 / 2 = £ • ^ * -

f=i H ( r - 1)!" 

Hence, in the case k > 2 the theorem can be rewritten as 

(21) G(S, x) = x*-3D*-3{\(S>}. 

If possible choose A so that the theorem fails for some set of values of the nu 

and so that it has the least value consistent with this condition. We then have 
k > 2, for when k — 1 the theorem can be verified by applying the binomial 
theorem to (3.3). From (3.1) we have 

G(S,x)( l - 2x2G(<j>,x)) = x2 X) G(P,x)G(P,x) 
o(P) = l 

+ 2 £ », £ 7(»i + », - 1, S - {J ~ I})*""1, 
, = 2 n i = l 

where » = »i + n2 + . . . + nk. Hence by (3.3), 

x~k+\l - 4x)*G(S,x) - E DaiP)-2{\(P)}Daœ)-2{\(P)} 
a ( P ) - l 

= 2*~*+3 £ », Ê / « / " I + L ' f r i + % - l ) * ^ - 1 ^ - {j - 1}> 
,«2 m=i (w — k + Z)\ 

k ( 00 ) 

= 2 £ Z ? H « , £ c(»x + n, - \)xni+ni-\S - {j - 1})\ 

= 2 £ Dk-*{ ( - XD-^XJPI/,} + W-'Mft - XZ)-1{X/i})(5 - {«}>}, 
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by Lemma III, 

= 2Z>*-4 |- W-2{X}D{(S)\ + (k- 1)XZ?_1{XK5) 

= 2 P * - 4 | - D{XZ)-2{X}<5)} + (* - 3)XZ)-1{X}(5) 

- Exzr1{x/(|(5-(i|)}) 

since D{XD~2{\}} = -D{ (1 - 4X)"1} = - 4 ( l - 4 x ) ~ 2 = -2\D~1{\}. (It may 
happen that the index in £)fc-4 is negative.) We now have 

(22) aT*+3(l -4*)*G(S,*) 

= £ z?a(p)-2{x<p>}z)°(?>-2{x(P)j 
a ( F ) - l 

- 2-D*-3{zr2{X}X(S>} + 2(jfe - 3)£>*-4{Z)-1{X}X(5)} 

- 2 E Z?*-4{Z)-1{X/<}X<5 - {*}>}. 

We now dispose of the special cases k = 2 and & = 3. If k = 2 we have, 
by (22), 

x( l - 4x)*G(S, *) 

= -2D-1{i>-2{X}X(5)} - 2D-2{D-1{\}\(S)} - 2!>-2{Z)-1{X(5))X} 

= -2D-l{.D-2{X}X<S>} - 2D-l{D-1{\}D-l{\(S)\} 

= -2D-2{X}Z?-1{X<5)} 

= ( l -4x)*D- '{X<S) | , 

whence (21) follows for this case. (Any arbitrary constants introduced in 
these transformations affect only terms of degrees 0 and 1 in the expansions. 
Terms of these degrees balance in the final equation, by (12).) 

If k = 3 we have instead 

(1 - 4x)*G(S,x) 

= 2D-'{Xf1}D-'{\f2} - 2D->{\}\(S) - 2D-'{D^{\f1}\f2} 

-2P-1{^-1{X/2}X/1} 

= -2D~2{\}\(S) 

= (1 - 4x)*A<S), 

and again (21) is verified. 
In the remaining case k > 4. Then we may set the integers k and / of (4.1) 
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equal to 2 and substitute the present k — 1 for s. Taking y, = X we then 
obtain 

£ DaiP)-2{\(P)}Daœ)-2{\(P)} 
p 

= 2 z f (- îif _ 3 : a(i>)VM,i-iirw,'+(()i(p»)i(p>j 
a(P)=0 i=0 \ l / 

= 2£>*-3{zr2f\}A(S)} - 2(k - 3)Z)*-4{JD-1{XiX(5)î 

+ 2j:Dk-t{D'1{\fi}\(S-{i})}. 

Combining this with (22) we have 

ar*+8(i _ 4x)^G(5, x) 

= -2P-2{X}^~3{X(5)}, 

G(5, x) = x*-3£>*-3{X(S)}. 

This completes the proof of the theorem, since the definition of k is now 
contradicted. Accordingly formula (1.1) is established. 

6. Odd slicings. The case in which some of the integers m* of §1 are odd 
seems to be more difficult. It is still possible to obtain recursion formulae like 
(2.1), and there are apparently relevant generalizations of (4.1). For example, 
only minor modifications of the proof of (4.1) are required to show that the 
formula remains valid when the summations are restricted to subsets P with 
an odd (or even) number of elements. Using the generalized formulae the 
author has found that if only two of the mt are odd then the number of slicings 
is still given by the right-hand side of (1.1) provided that we replace the factor 

(2nt)l (2ft,+ 1)1 
nt\(nt-l)\ °y W)2 

whenever mt is an odd number 2ui + 1. But this rule does not apply when 
four odd numbers occur. In the case (mi = 3, m2 — m3 = ni± = 1), for 
example, the number of slicings is 

3* ( 1' V 

Added in proof. The identity H(s\ k, I) can be deduced from Lagrange's 
Theorem. For example, to prove H(s; 1,1) we write F(x) = D~l(\), G(x) 
= D~l(ix) and define £ by £ = a + #<£(£), where </>(x) = urfi + ^2/2 + • . • 
+ usfs. We then equate the coefficient of U1U2 . . . us in the product of the 
expansions of F(Ç) and G(%) to the corresponding coefficient in the expansion 
of the function F(£)G(£) of £. 
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