
J. Fluid Mech. (2023), vol. 963, A34, doi:10.1017/jfm.2023.272

Asymptotic theory of Mack-mode receptivity in
hypersonic boundary layers due to interaction of
a heating/cooling source and a freestream
sound wave

Lei Zhao1, Jianhong He1 and Ming Dong2,3,†
1Department of Mechanics, Tianjin University, Tianjin 300072, PR China
2State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences,
Beijing 100190, PR China
3Sino-Russian Mathematics Center, Peking University, Beijing 100871, PR China

(Received 23 August 2022; revised 25 March 2023; accepted 26 March 2023)

In this paper, we study the local receptivity of the inviscid Mack modes in hypersonic
boundary layers induced by the interaction between a surface heating or cooling source
(HCS) and a freestream acoustic wave. The asymptotic analysis reveals that among
the three distinguished layers, i.e. the main, wall and Stokes layers, the leading-order
receptivity is attributed to the interaction of the HCS-induced mean-flow distortion
and the acoustic signature in the wall layer; the second-order contribution appears
in the Stokes layer; the third-order contribution appears in both the main and wall
layers. Interestingly, at a moderate Reynolds number, the third-order contribution to the
receptivity efficiency may be quantitatively greater than the second-order one, but this
does not lead to breakdown of this asymptotic theory. Assuming the HCS intensity to
be sufficiently weak, the asymptotic predictions are made for four representative cases
involving different Mach numbers and wall temperatures, which are compared with
the results obtained by the finite-Reynolds-number theory based on either the extended
compressible Orr–Sommerfeld equations or the harmonic linearised Navier–Stokes
(HLNS) calculations. Taking into account the first three orders of the receptivity efficiency,
the asymptotic predictions are confirmed to be sufficiently accurate even when the
Reynolds number is a few thousands, and the agreement with the finite-Reynolds-number
calculations is better when the wall temperature of the base flow approaches the
adiabatic wall temperature. The HLNS calculations are also conducted for moderate HCS
intensities. It is found that the nonlinearity does not affect the receptivity coefficient much
even when the temperature distortion of the HCS reaches 80 % of the temperature at the
wall.
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1. Introduction

To predict accurately the transition from laminar flow to turbulence in high-speed
boundary layers is a crucial issue in aircraft designs because the surface drag and heat
flux differ markedly in laminar and turbulent phases. In practical applications, idealised
(smooth and isothermal) walls are rarely seen, and surface inhomogeneity, such as
roughness, appears frequently. For a hypersonic flight under cruise conditions, different
parts of the flight surface may show different temperatures due to the diverse thermal
conductivity of their materials, leading to the appearance of an array of heating or cooling
sources. Moreover, surface ablation may also appear due to the strong aerodynamic
heating, which could enhance the intensity of a heating or cooling source (HCS). Another
motivation of the present study is from the viewpoint of the laminar flow control. In order
to reduce the total friction and heat flux, to maintain the laminar phase longer or to delay
the transition onset is favourable. An HCS may be a potentially efficient strategy for the
laminar flow control, and a systematic study of its impact on transition is needed.

The laminar–turbulent transition is affected crucially by environmental perturbations.
For low environmental perturbations, the transition follows a natural route (Morkovin
1969; Kachanov 1994), for which the accumulation of the instability modes plays the
dominant role. Thus a rational transition prediction requires comprehensive descriptions
of three factors, namely, (i) the initial amplitude, (ii) the linear evolution, and (iii) the
nonlinear threshold of the instability modes. The second factor is a linear process;
for a smooth wall, it can be described by either the linear stability theory under the
parallel flow assumption (Mack 1987) or the linear parabolised stability equation, which
takes into account the first-order derivative with respect to the streamwise coordinate
(Chang & Malik 1994; Herbert 1997). When the instability modes are accumulated to
finite amplitudes (say O(1 %) of the oncoming stream U∞), the nonlinear interaction
among different Fourier components leads to breakdown of the laminar flow in a rather
short streamwise distance, following a few resonance regimes, such as the fundamental,
subharmonic and oblique-breakdown regimes (Hader & Fasel 2019; Jiang et al. 2020;
Hatman, Hader & Fasel 2021). Thus the transition onset (the third factor) is usually set
to be the location where the dominant instability mode reaches O(1 %U∞), and now the
question is how to prescribe the initial amplitude of the dominant instability mode (the
first factor).

The initial amplitude of an instability mode relies on both the property of the
external perturbation and the efficiency of the receptivity process. For a compressible
configuration, the external perturbations could be acoustic, vortical or entropy
disturbances, which excite boundary-layer instabilities through different receptivity
mechanisms. Additionally, even for a fixed external perturbation, the receptivity process
can occur either from the leading edge, where the mean flow varies rapidly, or from
a downstream location where an imperfection exists, which are referred to as the
leading-edge receptivity and the local receptivity, respectively.

The first leading-edge receptivity theory was developed by Goldstein (1983), who, using
the asymptotic matching technique, formulated the generation of the Tollmien–Schlichting
(TS) waves in incompressible boundary layers by freestream disturbances. It shows
how the long-wavelength freestream perturbations generate TS waves of much shorter
wavelength. However, for hypersonic boundary layers, the scenario is completely different.
Solving the compressible Orr–Sommerfeld (OS) equations, one can obtain, among others,
two distinguished discrete modes, whose phase speeds, in the low-frequency limit, connect
to those of the freestream fast acoustic wave 1 + 1/M and slow acoustic wave 1 − 1/M,
respectively, where M denotes the Mach number. Therefore, they are referred to as the
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Mack-mode receptivity due to HCS–sound interaction

fast and slow modes, respectively (Fedorov 2011). The slow mode would evolve directly
to the unstable Mack first mode in a downstream region. Because the fast (slow) mode
has the same phase speed as the freestream fast (slow) acoustic wave, it can be excited
in the sharp-leading-edge region due to a so-called synchronisation regime (Fedorov
& Khokhlov 1991, 2001). Moreover, as they propagate downstream, the phase speeds
of the fast and slow modes approach each other. The synchronisation mechanism also
appears when the fast mode crosses the unity-phase-speed line (synchronisation with the
freestream vortical and entropy disturbances), and when the fast and slow modes intersect
(synchronisation of the fast and slow modes). The implication is that the second Mack
mode – the most unstable mode for hypersonic configurations – could also be excited by
the aforementioned synchronisation mechanisms. The theoretical prediction was applied to
the leading-edge receptivity to three-dimensional acoustic waves (Fedorov 2003a), which
agrees with the Mach 5.92 flat-plate experimental results of Maslov et al. (2001) for
relatively small oblique angles. Goldstein & Ricco (2018) later pointed out that for higher
oblique angles, the instability mode is of a viscous nature, which should be described
by the triple-deck formalism (Smith 1989). They also constructed a theory to predict the
leading-edge receptivity for greater oblique angles. The synchronisation mechanisms for
the inviscid Mack receptivity were confirmed numerically by Ma & Zhong (2003, 2005)
and Zhong & Wang (2012). If, however, the leading edge is not sharp, then the effects
on receptivity of the bow-shaped shock and the entropy layer forming above the boundary
layer in the leading-edge region have to be taken into account. Early numerical simulations
(Kara, Balakumar & Kandil 2011; Lei & Zhong 2012) reported that the receptivity for a
blunt cone is much less efficient than that for a sharp cone. For the receptivity of the
second mode in a hypersonic blunt-cone boundary layer, Wan, Su & Chen (2020) reported
a non-synchronisation scenario, indicating that the entropy-layer disturbances excited by
freestream slow acoustic waves play the dominant role in the generation of the second
mode.

The local receptivity appears when the freestream perturbations are scattered by
the rapidly distorted mean flow induced by surface imperfections downstream of the
leading-edge region. The earliest local receptivity theory was developed separately by
Ruban (1984) and Goldstein (1985) for the excitation of the TS waves in subsonic boundary
layers by freestream acoustic waves. Under the high-Reynolds-number asymptotic
analysis, both the mean-flow distortion and the TS instability are described by the
triple-deck formalism, and the receptivity is due to the interaction between the mean-flow
distortion and the acoustic-driven Stokes-layer wave in the lower deck. Such a framework
was extended substantially to the receptivity due to roughness–vorticity interaction (Duck,
Ruban & Zhikarev 1996; Wu 2001) and roughness–entropy interaction (Ruban, Kershari
& Kravtsova 2021). Alternatively, at a finite Reynolds number, the local receptivity can
be described by the extensive use of the OS equation. As demonstrated by Choudhari
& Streett (1992) and Crouch (1992), the acoustic signature, the roughness-induced
mean-flow distortion and their interaction are all governed by the OS and Squire equations
with different boundary conditions. For the receptivity calculation, the OS operator
becomes singular if the wavenumber and frequency satisfy the instability dispersion
equation, and use of the residue theorem leads to the quantitative description of the
receptivity efficiency. The Ruban–Goldstein receptivity theory was confirmed later by
direct numerical simulations De Tullio & Ruban (2015), and by the harmonic linearised
Navier–Stokes (HLNS) calculations (Raposo, Mughal & Ashworth 2019). The latter was
later applied to the roughness–acoustic receptivity in boundary layers over subsonic
aerofoils (Raposo et al. 2021). Remarkably, a strong receptivity regime in supersonic
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boundary layers was reported by Liu, Dong & Wu (2020); namely, if the incident angle
of the freestream acoustic wave is around a particular value such that its streamwise phase
speed is quasi-zero, then the perturbation velocity of the acoustic signature in the near-wall
viscous layer could be amplified by a factor of O(Re1/8) compared to its freestream value,
leading to an extra amplification of the receptivity efficiency in comparison with the
Ruban–Goldstein regime, where Re is the Reynolds number, with the length scale being
the distance to the leading edge.

However, the local receptivity of the inviscid Mack modes in supersonic or
hypersonic boundary layers is completely different from the TS receptivity. Based on the
bi-orthogonal eigenfunction system of the compressible OS equations, Fedorov (2003b)
calculated the receptivity efficiency due to scattering of the freestream acoustic waves
by a wavy wall or a localised roughness element at a finite Reynolds number, which
reported a relatively strong coupling coefficient appearing near the synchronisation point
of the fast and slow modes. Dong, Liu & Wu (2020) developed an asymptotic theory of
the Mack receptivity due to roughness–acoustic interaction in the large-Reynolds-number
asymptotic framework, uncovering that the leading-order receptivity is attributed to the
distortion of the acoustic signature in the Stokes layer by the curved wall, while the
second-order contribution is from the nonlinear interaction of the mean-flow distortion
and the acoustic signature in the main and wall layers. However, this conclusion may
not be generic, because such a leading-order contributor could be absent if the surface
imperfection does not induce any geometric deformation of the wall. In this paper, we
will choose a streamwise-localised HCS instead of the surface roughness, and uncover the
mechanism of its interaction with the freestream acoustic waves to generate inviscid Mack
modes in hypersonic boundary layers.

A surface HCS may affect transition to turbulence through two mechanisms: (1) a local
scattering mechanism, for which it interacts with the oncoming boundary-layer instability
modes, leading to the change of the downstream instability amplitudes; (2) a local
receptivity mechanism, for which it interacts with the freestream perturbations, leading to
the excitation of the instability modes. Both mechanisms would affect the accumulation of
the Mack instability in hypersonic boundary layers, leading to the change of the transition
onset. The former mechanism was revealed recently by Zhao & Dong (2022) using the
large-R asymptotic approach. In that paper, the change of the instability amplitude was
quantified by a transmission coefficient, following Wu & Dong (2016b), Dong & Zhang
(2018) and Dong & Zhao (2021), which was predicted theoretically by an asymptotic
model. The asymptotic predictions were verified by the HLNS calculations. In the HLNS
approach, the perturbations are assumed to be infinitesimal, and the Fourier transform is
performed with respect to time, whose solutions were confirmed to be sufficiently accurate
as compared to the direct numerical simulations (Zhao, Dong & Yang 2019). In this paper,
we are going to study the local receptivity due to the HCS–acoustic interaction using the
asymptotic approach and the finite-Reynolds-number calculations.

The rest of the paper is structured as follows. The physical model and governing
equations are introduced in § 2. In § 3, we present the asymptotic theory for the Mack-mode
receptivity due to scattering of the acoustic wave by a heating/cooling source, including
the scaling estimate (§ 3.1) and the formulations of the mean-flow distortion (§ 3.2), the
acoustic signature (§ 3.3), the Mack instability (§ 3.4), their interaction in different layers
(§ 3.5) and the receptivity efficiency (§ 3.6). To confirm the accuracy of the receptivity
theory, we carry out two types of calculations at finite Reynolds numbers, namely,
the extended OS approach and the HLNS approach, which are introduced in §§ 4.1
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U∞

Reflected acoustic waveIncident acoustic wave

Mack instability
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θ

δ o
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d∗

Figure 1. Side-view sketch of the physical model, where the red region denotes the HCS. In the spanwise
direction, the HCS is distributed periodically, and the two-dimensional HCS for which its spanwise wavelength
is infinity is also included.

and 4.2, respectively. The numerical results are presented in § 5, and finally, concluding
remarks and discussion are in § 6.

2. Mathematical description

2.1. Physical model
The physical model to be studied is a semi-infinite flat plate with a streamwise localised
and spanwise periodically distributed HCS (the two-dimensional (2-D) streamwise
localised source is also included), which is inserted into a perfect-gas hypersonic stream,
as shown in figure 1. The plate is assumed to be isothermal except at the HCS. The
distance from the leading edge of the plate to the centre of the HCS is L. The maximum
temperature deviation at the HCS from the base state (wall temperature away from the
HCS) is denoted by Θ∗

m, which determines the intensity of the mean-flow distortion and
is positive (negative) for a heating (cooling) source. In what follows, we use an asterisk
to represent the dimensional quantities. The flow is described in Cartesian coordinates
(x∗, y∗, z∗), with its origin located at the HCS centre. The reference length is selected as
the characteristic boundary-layer thickness at the HCS centre for the case Θ∗

m = 0, denoted
by δ = √

ν∞L/U∞, where, in what follows, the subscript ∞ denotes the quantities of the
oncoming stream, and U and ν are the velocity and kinematic viscosity, respectively. The
dimensionless coordinate system and time are (x, y, z) = (x∗, y∗, z∗)/δ and t = t∗U∞/δ.
The velocity field (u, v, w), density ρ, temperature T and pressure p are normalised by
their freestream quantities U∞, ρ∞, T∞ and ρU2∞, respectively. The Reynolds and Mach
numbers are defined as

R = U∞δ/ν∞ =
√

U∞L/ν∞, M = U∞/a∞, (2.1a,b)

where a denotes the sound speed. It is assumed that R � 1 and M > 1 in this paper.
A three-dimensional plane acoustic wave is introduced from the freestream, with

dimensionless frequency ω and incident angle

θ = cos−1
[
αa,r/

√
α2

a,r + γ 2
a,r + β2

a,r

]
, (2.2)

where αa,r, γa,r and βa,r are the dimensionless streamwise, wall-normal and spanwise
wavenumbers, respectively. We focus on the spatially evolving case, for which ω, γa and βa
are real, whereas αa = αa,r + i αa,i is complex with a small damping rate due to viscosity
(αa,i > 0).
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2.2. Governing equations
For a perfect gas with a constant ratio of specific heat γ , the dimensionless Navier–Stokes
(NS) equations are (Zhao & Dong 2020, 2022; Dong & Zhao 2021)

∂ρ

∂t
+ ∇ · (ρu) = 0,

ρ
∂u
∂t

+ ρ(u · ∇)u = −∇p + 1
R

∇ · (2μe) + 1
R

∇
[(

μ0 − 2
3

μ

)
∇ · u

]
,

ρ
∂T
∂t

+ ρ(u · ∇)T = (γ − 1)M2
[
∂p
∂ t̄

+ (u · ∇)p
]

+ ∇ · (μ ∇T)

Pr R
+ (γ − 1)M2Φ

R
,

γ M2p = ρT,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.3)
where the strain rate tensor e and the dissipation function Φ are expressed as

eij = 1
2

(
∂ui

∂xj
+ ∂uj

∂xi

)
, Φ = 2μe : e +

(
μ0 − 2

3
μ

)
(∇ · u)2, (2.4a,b)

Pr is the Prandtl number, μ = μ(T) is the dimensionless dynamic viscous coefficient,
and μ0 = μ∗

0/μ∞ is the dimensionless second viscosity. Here, we choose the Sutherland
viscosity law

μ(T) = (1 + C̄)T3/2

T + C̄ , (2.5)

with C̄ = 110.4 K/T∞, and take γ = 1.4, Pr = 0.72 and μ0 = 0.
The wall away from the HCS is assumed to be isothermal, Tw ≡ T∗

w/T∞, and at the
HCS, a certain temperature deviation, whose amplitude is measured by Θm = Θ∗

m/T∗
w,

appears. Thus the wall temperature of the mean flow is taken to be

T̄(x, 0, z) = Tw (1 + Θm f (x, z)) , (2.6)

where f denotes the temperature distribution, which is zero except at the HCS. Note that
if Θm = O(1), then the difference between the temperature at the HCS and that at the
otherwise wall is comparable with Tw. The streamwise and spanwise length scales d∗ of
the HCS are assumed to be comparable with the local boundary-layer thickness δ.

3. Asymptotic description for HCS–acoustic interaction

The total flow field can be decomposed as a sum of the background base flow Φ0, the local
mean-flow distortion Φ̄ and an unsteady perturbation Φ̃, namely,

Φ = Φ0( y) + Φ̄(x, y, z) + Φ̃(x, y, z, t), (3.1)

where Φ = (u, v, w, ρ, T, p)T, and Φ0 ≡ (UB, O(R−1), 0, T−1
B , TB, 1/(γ M2))T denotes

the compressible Blasius solution as in Wu & Dong (2016a). Because the streamwise
length scale of the base flow Φ0 is O(R), which is much greater than that of the HCS, i.e.
O(1), the non-parallelism of the base flow is negligible up to the first three orders for the
receptivity description; see the scaling estimate in § 3.1.
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Mack-mode receptivity due to HCS–sound interaction

3.1. Scaling estimate
As pointed out by Bogolepov (1977), Choudhari & Duck (1996) and Dong et al. (2020),
in the limit of R → ∞, the mean-flow distortion induced by surface roughness with a
width comparable with δ and a height comparable with R−1/3δ shows a double-deck
structure, a main layer where y = O(1) and a wall layer where y = O(R−1/3); the same
structure appears for the mean-flow distortion induced by an HCS with similar width.
However, being different from the roughness configuration, the compressible effect of
the HCS-induced distortion in the wall layer is non-negligible. The intensity of the
HCS (which is also the magnitude of the temperature distortion) is of the same order
as its maximum deviation from the base state, O(Θm) (note that we have assumed
Tw = O(1)); then the temperature and density distortions are O(Θm), the streamwise and
spanwise velocity distortions are O(R−1/3Θm), and the transverse velocity distortion is
only O(R−2/3Θm) (from balance of the continuity equation). Noting that the streamwise
length scale of the HCS is taken to be O(1), the wall layer communicates with the
main layer by producing an outflux velocity, which is O(R−2/3Θm). As a response, the
main-layer distortion of all the velocity components, temperature, density and pressure is
of the same order of magnitude, i.e. O(R−2/3Θm). The detailed mathematics will be shown
in § 3.2.

The acoustic signature in the boundary layer also shows a double-deck structure, which
also includes the main layer where y = O(1). However, being different from the mean-flow
distortion, an even thinner Stokes layer where y = O((ωR)−1/2) appears in the near-wall
region (note that ω = O(1) here). The main-layer behaviour is governed by the Rayleigh
equation, for which the viscosity is neglected. In this layer, the perturbation velocities,
pressure, density and temperature are of the same order of magnitude, say O(Ea). The
underneath Stokes layer appears to ensure that the no-slip condition is satisfied at the
wall, in which all the perturbations except the transverse velocity remain of the same
magnitude; the transverse velocity perturbation is changed to O((ωR)−1/2Ea). Therefore,
in order to predict the receptivity efficiency due to the HCS–acoustic interaction, all
the aforementioned three distinguished layers need to be taken into account. Assuming
the amplitude of the incident acoustic wave and the intensity of the HCS to be Ea and
Θm, respectively, we can estimate that the magnitudes of the excited perturbation of the
transverse velocity in the main, wall and Stokes layers are O(R−2/3ΘmEa), O(R−1/3ΘmEa)
and O(R−1/2ΘmEa), respectively (a detailed proof will be provided in § 3.5). Therefore,
the leading-order receptivity is determined by the interaction in the wall layer, the
second-order receptivity is determined by the Stokes-layer interaction, and the main-layer
interaction appears only in the third-order receptivity. Note that it will be shown later that
the higher-order wall-layer interaction also appears in the third-order receptivity, indicating
that the third-order receptivity is determined by both the main-layer and wall-layer
interactions. It also needs to be noted that even at third order, the non-parallelism of
the Blasius solution is still negligible. A sketch of the interaction regime is provided in
figure 2(a), and the detailed mathematics will be presented in § 3.5.

To this end, we are able to compare the present receptivity regime with that induced by
the roughness–sound interaction (Dong et al. 2020), whose scaling interaction is sketched
in figure 2(b). In the latter regime, the three distinguished layers also appear, but the
leading-order receptivity appears in the Stokes layer, which is O(hEa) and is attributed
to the distortion of the acoustic signature by the curved wall, where h ≤ O(R−1/3) denotes
the height of the roughness; the second-order receptivity appears in both the wall and
main layers, which is O(R−1/3hEa) and is attributed to the nonlinear interaction between
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Figure 2. Sketch of the scaling estimate of the receptivity mechanism: (a) HCS–acoustic receptivity;
(b) roughness–acoustic receptivity.
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the mean-flow distortion and acoustic signature. Comparing the two regimes, we draw the
following conclusions. (1) The leading-order contributors, O(R−1/3ΘmEa) for the HCS
cases, and O(hEa) for the roughness cases, are essentially comparable, because for a
nonlinear HCS and a nonlinear roughness element, we have assumed Θm = O(1) and
h = O(R−1/3), respectively. (Note that the linear assumptions are made when Θm 	 1
and h 	 R−1/3.) (2) The leading-order contributors are driven by different mechanisms in
different asymptotic layers. (3) The third-order contributor of the HCS cases is equivalent
to the second-order contributor of the roughness cases, because they are both O(R−1/3)
smaller than the leading-order contributor and are driven by the same mechanism. (4) The
second-order contributor of the HCS cases does not have a corresponding contributor in
the roughness–acoustic receptivity.

3.2. HCS-induced mean-flow distortion
The streamwise length scale of the HCS is taken to be comparable with the local
boundary-layer thickness. Actually, the asymptotic theory is valid for Θm ≤ O(1), but
numerical techniques are required to solve the nonlinear compressible boundary-layer
equations when Θm = O(1). For convenience of the asymptotic analysis, we assume
the amplitude of the temperature of the HCS to be small, i.e. Θm 	 1. The cases for
Θm = O(1) will be visited by employing the HLNS approach in § 5.5.

For demonstration, we assume the shape function of the temperature HCS to be

f (x, z) = f0(x) cos(kzz), with f0(x) =
{

1, |x| ≤ d/2,

0, otherwise, (3.2)

where d = O(1) characterises the width of the HCS, and kz is the spanwise wavenumber
of the HCS. The HCS is 2-D if kz = 0. Note that the choice of f0(x) here is only for
demonstration, and in reality, the distribution at the two ends of the HCS, x = ±d/2,
should be rounded. Indeed, the amplitude of the excited instability mode relies on the
Fourier transform of the distribution function only, and the choice of f0(x) does not affect
the following analysis.

The mean flow distorted by the HCS exhibits a double-layered structure, as sketched in
figure 2(a). For convenience, we introduce a small parameter

ε = R−1/3 	 1. (3.3)

3.2.1. Wall-layer solution
In the thin wall layer where y ∼ ε, we introduce an O(1) coordinate

Y = ε−1y. (3.4)

Since Θm 	 1, the flow quantities can be expressed in terms of asymptotic series:

(Ū, V̄, W̄, P̄, T̄, R̄) =
(

ελY, 0, 0,
1

γ M2 , Tw(1 + ελTY), T−1
w (1 − ελTY)

)

+ Θm

2
(εŪ0, ε

2V̄0, εW̄0, ε
2T−1

w P̄0, Tw(T̄0 + εT̄1), T−1
w (R̄0 + εR̄1))eikzz + · · · + c.c.,

(3.5)

where c.c. denotes the complex conjugate, λ ≡ UB,y(0), and λT ≡ TB,y(0)/Tw.
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For Θm 	 1, the HCS-induced distortion Φ̄0 is to be solved in the spectrum space. We
introduce the Fourier transform with respect to x:

Φ̂†(kx, y) = F [Φ̄(x, y)] ≡ 1√
2π

∫ ∞

−∞
Φ̄(x, y) e−ikxx dx. (3.6)

Noticing that the mean-flow distortion is proportional to the spectrum of the shape function
of the HCS, f̂0(kx) = F [ f0(x)], we introduce

Φ̂(kx, y) = Φ̂†(kx, y)/f̂0(kx). (3.7)

For the shape function (3.2), we have

f̂0(kx) = i√
2πkx

(e−ikxd/2 − eikxd/2). (3.8)

Substituting into the governing equations (2.3) and collecting the leading-order terms, we
arrive at the linear system

ikx(Û0 + λYR̂0) + V̂ ′
0 + ikzŴ0 = 0, (3.9a)

ikxλYÛ0 + λV̂0 + ikxP̂0 = Cw(Û′′
0 + λμT0T̂ ′

0), (3.9b)

P̂′
0 = 0, ikxλYŴ0 + ikzP̂0 = CwŴ ′′

0 , (3.9c,d)

ikxλYT̂0 = Cw

Pr
T̂ ′′

0 , T̂0 = −R̂0, (3.9e, f )

ikxλYT̂1 − Cw

Pr
T̂ ′′

1 = ikxλλTY2T̂0 + 2λTCwμT0

Pr
T̂ ′

0, T̂1 = −R̂1, (3.9g,h)

where Cw = μwTw, with μw = μ(Tw). Throughout this paper, a prime denotes the
derivative with respect to its argument, a hat represents the Fourier transformed quantity.
Also, kx represents the streamwise wavenumber, and

μT0 =
(

dμ

dT

)
w

Tw

μw
= 3

2
− Tw

Tw + C̄ . (3.10)

This linear system is an extension of (5.3) in Dong et al. (2020) to the
compressible-wall-layer configuration, and the boundary conditions remain the same.
First, the no-slip, isothermal conditions are imposed at the wall. Second, for the cases with
the HCS width comparable with boundary-layer thickness, the wall layer communicates
with the main layer through an outflux velocity, and the displacement effect of the
perturbation streamwise velocity as in the triple-deck theory becomes negligibly weak.
The second boundary condition can also be found in Neiland et al. (2008) for the roughness
configuration, with its height and width being O(1) and O(R−1/3), respectively. Therefore,
the boundary conditions read

Û0(0) = V̂0(0) = Ŵ0(0) = T̂1(0) = 0, T̂0(0) = 1, (3.11a–e)

(Û0, Ŵ0, T̂0, T̂1) → 0 as Y → ∞. (3.11f –i)

Solving (3.9e) with boundary conditions (3.11e,h), we obtain

T̂0(Y) = Ai(σ̄Y)/Ai(0), (3.12)

where Ai is the Airy function of the first kind, and σ̄ = (ikxλPr/Cw)1/3. Differentiating
(3.9d) with respect to Y , we arrive at an Airy equation of Ŵ ′

0, whose solution satisfying
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the boundary condition (3.11g) reads

Ŵ0(Y) = − ikzπP̂0

σ 2Cw
Gi(σY) + C0 Ai(σY), (3.13)

where σ = (ikxλ/Cw)1/3, Gi(ξ) = π−1 ∫∞
0 sin(t2/3 + ξ t) dt, and C0 is a constant.

Applying the no-slip boundary condition (3.11c), we obtain

C0 = ikzπP̂0

σ 2Cw

Gi(0)

Ai(0)
≈ 0.5774 ikzπP̂0

σ 2Cw
. (3.14)

Differentiating (3.9b) with respect to Y and substituting (3.9a), we obtain

Û′
0 = Ai(σY)

(
C1 − π

σ

∫ Y

0
Bi(σY) g(Y) dY

)
+ Bi(σY)

(
C2 + π

σ

∫ Y

0
Ai(σY) g(Y) dY

)
,

(3.15)

where Bi is the Airy function of the second kind, C1 and C2 are two constants to be
determined, and

g(Y) = k2
z P̂0λπ

σ 2C2
w

(0.5774 Ai(σY) − Gi(σY)) + λσ
3(1 − μT0 Pr)

Ai(0)
Y Ai(σ̄Y). (3.16)

From the boundary condition (3.11f ), we know that the exponentially growing part Bi(σY)

must be dropped in the limit of Y → ∞, which leads to

C2 = −π

σ

∫ ∞

0
Ai(σY) g(Y) dY ≈ 0.03563 k2

z P̂0λπ
2

σ 4C2
w

− 0.2588 πλ(1 − μT0 Pr)(1 − Pr1/3)

1 − Pr
.

(3.17)

Applying (3.9b) at the wall, we obtain

C1 = ikxP̂0

σ Ai′(0) Cw
− Bi′(0) C2

Ai′(0)
− λPr1/3 μT0

Ai(0)
≈ − ikxP̂0

0.2588 σCw
+

√
3C2 − λPr1/3 μT0

0.3550
.

(3.18)

Integrating (3.15) and applying the boundary condition (3.11f ), we obtain

C1

σ

∫ ∞

0
Ai(Y) dY − π

σ

∫ ∞

0
Ai(σY)

(∫ Y

0
Bi(σY) g(Y) dY

)
dY

+
∫ ∞

0
Bi(σY)

(
C2 + π

σ

∫ Y

0
Ai(σY) g(Y) dY

)
dY = 0. (3.19)

Solving numerically (3.17), (3.18) and (3.19), we can obtain C1, C2 and P̂0.
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Integrating the continuity equation (3.9a), we obtain the transverse velocity distortion

V̂0 = −
∫ Y

0
[ikx(Û0 − λYT̂0) + ikzŴ0] dY. (3.20)

In the limit of Y → ∞,

(Û0, V̂0, Ŵ0) → (Ĉu/Y, Ĉ, Ĉw/Y) + · · · , (3.21a–c)

where

Ĉu = k2
z P̂0

k2
xλ

, Ĉw = −kzP̂0

kxλ
, Ĉ = − ikxP̂0

λ

(
1 + k2

z

k2
x

)
. (3.22a–c)

Here, Ĉ appears as the outflux from the wall layer to the main layer. It is seen that an HCS
plays an equivalent role as a roughness element by inducing an outflux to the main layer.
Especially for a 2-D HCS case (kz = 0), we find that both Ĉu and Ĉw are zero.

Additionally, the second-order temperature distortion reads

T̂1 = Ai(σ̄Y)

(
C̄1 −

∫ Y

0

π Bi(σ̄Y) ḡ(Y)

σ̄

)
+ Bi(σ̄Y)

(
C̄2 +

∫ Y

0

π Ai(σ̄Y) ḡ(Y)

σ̄
dY
)

,

(3.23)

where C̄1 and C̄2 are constants, and

ḡ(Y) = − Pr
σ̄ 2Cw

[
ikxλλTY2T̂0 + 2λTCwμT0

Pr
T̂ ′

0

]
. (3.24)

From the upper boundary condition, we obtain

C̄2 = −π

σ̄

∫ ∞

0
Ai(σ̄Y) ḡ(Y) dY, (3.25)

whereas from the lower boundary condition, we obtain

C̄1 = −C̄2 Bi(0)/Ai(0). (3.26)

3.2.2. Main layer
The outflux V̄ = ε2ΘmV̄0 from the wall layer is O(ε2Θm), which is actually the magnitude
of the mean-flow distortion in the main layer. The analysis of the mean-flow distortion in
the main layer is the same as in § 5.1.2 of Dong et al. (2020), and the asymptotic scalings
can also be found in Neiland et al. (2008). The velocity field, density, temperature and
pressure of the mean flow in this layer are expressed as

ϕ̄ =
(

UB, 0, 0,
1

TB
, TB,

1
γ M2

)
+ ε2ΘmĈ (Uw1, Vw1, Ww1, Rw1, Tw1, Pw1)

eikzz

2
+ · · · + c.c.,

(3.27)

where Ĉ = Ĉ(kx) has been defined in (3.21). Substituting into the NS equations (2.3)
and retaining the O(ε2Θm) terms, we obtain governing equations for Φw1 = (Vw1, Pw1),
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which, under Fourier transform Φ̂w1(kx, y) = F [Φw1(x, y)], are expressed as

LR(dy;ω = 0, kx, kz) Φ̂w1 = 0, (3.28)

where LR is the Rayleigh operator

LR(dy;ω, α, β) = I
d
dy

−
(

iαU′
B/S0 [−M2S2

0 − TB(α2 + β2)]/S0
−S0/TB 0

)
, (3.29)

with S0 = i(αUB − ω). The lower and upper boundary conditions read

V̂w1(0; kx) = 1, kyP̂w1 + kxV̂w1 → 0 as y → ∞, (3.30a,b)

where ky = ±[k2
x(M

2 − 1) − k2
z ]1/2, with the negative and positive signs being selected

for kx > 0 and kx < 0, respectively. The upper boundary condition represents a Mach wave
radiating to the potential flow.

3.3. Acoustic signature
As sketched in figure 2, the boundary-layer response of freestream acoustic waves exhibits
a double-layered structure: an inviscid main layer with y = O(1), and a viscous Stokes
layer with y = O(R−1/2). In the main layer, the perturbation is expressed as

ϕ̃a = Ea ϕ̂a0( y) Ea e−iωt + · · · + c.c., (3.31)

where ϕ = (v, p)T, Ea denotes its amplitude, and Ea = ei(αax+βaz), with αa and βa
representing the streamwise and spanwise wavenumbers of the acoustic wave, respectively.
The acoustic signature is governed by the unsteady Rayleigh equations LRϕ̂a0 = 0. The
other quantities of the acoustic signature are expressed as

ûa0 = (−iαaTBp̂a0 − U′
Bv̂a0)/S0, ŵa0 = −iβaTBp̂a0/S0,

ρ̂a0 = T ′
Bv̂a0/(T2

BS0) + M2p̂a0/TB, θ̂a0 = (γ − 1)M2TBp̂a0 − T ′
Bv̂a0/S0.

}
(3.32)

The boundary condition at the wall is v̂a0(0) = 0, whereas in the freestream, the
perturbation is a superposition of the incident and reflected acoustic waves,

p̂a0 = eiγay + Ra e−iγay, (3.33)

where γa denotes the wavenumber in the wall-normal direction, the amplitude of the
incident component is set to be 1 for normalisation, and Ra represents the amplitude of
the reflected component. The dispersion relation of the acoustic wave reads

ω =
(

1 ± 1
M cos θ

)
αa, (3.34)

where θ represents its incident angle. The ± signs represent the fast and slow acoustic
waves, respectively, because the phase speed ω/αa is faster and slower than the mainstream
velocity, respectively. The incident wave must be propagating towards the wall, indicating
a negative group velocity, i.e. dω/dγa < 0. Therefore, γa is positive for a slow acoustic
wave and negative for a fast acoustic wave.
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3.4. Mack instability
The double-deck structure for the acoustic signature is also valid for the Mack instability.
In the main layer, the leading-order perturbation is governed by the Rayleigh equation

LR(dy;ω, k, β)(v̂, p̂)T = 0, p̂(∞) → 0. (3.35)

In principle, the lower boundary condition should be the non-penetration condition to
leading order, v̂(0) = 0. However, as pointed out by Dong et al. (2020) and Dong &
Zhao (2021), the outflux of the underneath Stokes layer would induce an O(R−1/2)
correction. Although the magnitude of this correction is small, this term would include a
factor M2, which is quantitatively large for a hypersonic regime. Therefore, at a moderate
Reynolds number, taking into account this correction would lead to a much more accurate
prediction on the dispersion relation, as well as on the receptivity calculations. Therefore,
we introduce a new parameter

χ = R−1/2M2, (3.36)

which could be O(1) at a moderate Reynolds number, but approaches zero as R → ∞.
Taking into account the Stokes layer correction, we arrive at an improved boundary

condition (Dong et al. 2020),

v̂(0) = −
(

R
Cw

)−1/2 [ i(γ − 1)ωM2

(−iω Pr)1/2 + (α2 + β2)Tw

(−iω)3/2

]
p̂(0)

= −χC1/2
w

[
i(γ − 1)ω

(−iω Pr)1/2 + (α2 + β2)T̄w

(−iω)3/2

]
p̂(0), (3.37)

where T̄w = Tw/M2. For an adiabatic wall, the wall temperature Tw is approximated
by Tad = 1 + Pr1/2 (γ − 1)M2/2, indicating that T̄w can be assumed to be O(1). For a
cold (but not very cold) wall, such an approximation is also employed. Note that this
improved boundary condition can also be applied to calculate the acoustic signature, but
the improvement is rather limited because it is not an eigenvalue problem.

3.5. Excited perturbation

3.5.1. Main-layer solutions
In the receptivity process, the unsteady perturbation is a superposition of the acoustic
signature and the excited perturbation induced by the HCS–acoustic interaction. In the
main layer, they are expanded as

ϕ̃ = Ea[ϕ̂a0( y) Ea + εΘmf̂0(ϕ̃0 + ε1/2ϕ̃1 + εϕ̃2 + · · · ) eiβz/2]e−iωt + · · · + c.c.,
(3.38)

where ϕ = (v, p)T, the subscript a0 denotes the acoustic signature, and the subscripts
0, 1 and 2 represent the leading-, second- and third-order expansions of the excited
perturbation. The magnitudes of the first three excited perturbations are estimated from
the interactions between the acoustic signature and mean-flow distortion in the wall layer
or in the Stokes layer, which will be demonstrated later. The excited perturbations under
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Fourier transform, ϕ̂( y; k) = F [ϕ̃(x, y)], satisfy

LR(dy;ω, k, β) ϕ̂0 = 0; (3.39a)

LR(dy;ω, k, β) ϕ̂1 = 0; (3.39b)

LR(dy;ω, k, β) ϕ̂2 = Ĉ(k − αa) B(ϕ̂a0, Φ̂w1), (3.39c)

where the coefficient vector B associated with the nonlinear interaction between the
acoustic signature ϕ̂a0 and the mean-flow distortion Φ̂w1 is the same as that in Dong
et al. (2020). As sketched in figure 2(a), the nonlinear interaction in the main layer
is O(ε2ΘmEa), which appears only as a volumetric forcing in the third-order equation.
Two types of the upper boundary conditions may be imposed. For a very-cold-wall
configuration, the instability with a frequency close to the upper-branch neutral frequency
would radiate acoustic wave to the far field, for which the perturbation fluctuates with
a certain wall-normal wavenumber; see the boundary condition (36) of Zhao & Dong
(2022). For other cases, the perturbation attenuates in the far field, for which the boundary
conditions to different orders read

(p̂0, p̂1, p̂2) → 0 as y → ∞. (3.40a–c)

In this paper, we do not take the wall temperature to be very low, and so the radiating mode
is excluded in the following calculations. The wall boundary conditions read

v̂0(0) = G0 − (R/Cw)−1/2
[

i(γ − 1)ωM2

(−iω Pr)1/2 + (α2 + β2)Tw

(−iω)3/2

]
p̂0(0), (3.41a)

v̂1(0) = G1 − (R/Cw)−1/2
[

i(γ − 1)ωM2

(−iω Pr)1/2 + (α2 + β2)Tw

(−iω)3/2

]
p̂1(0), (3.41b)

v̂2(0) = G2 − (R/Cw)−1/2
[

i(γ − 1)ωM2

(−iω Pr)1/2 + (α2 + β2)Tw

(−iω)3/2

]
p̂2(0), (3.41c)

where G0, G1 and G2 denote the outflux obtained by analysing the underneath wall layer
or Stokes layer, and the O(R−1/2) terms are obtained by taking into account the viscous
effect of the Stokes layer on the main layer (following (3.37)). Now our task is to solve for
the outflux velocities G0, G1 and G2.

3.5.2. Wall-layer interaction
In the wall layer where y = O(ε), the perturbation velocity field (ũw, ṽw, w̃w), temperature
θ̃w, density ρ̃w and pressure p̃w should match with the main-layer solutions asymptotically,
which are expressed as

Ea

[
(ûa00, εv̂

′
a00Y, ŵa00, θ̂a00, ρ̂a00, p̂a00)Ea + Θmf̂0

∑
k,β

(û0 + ε1/2û1 + εû2,

ε(v̂0 + ε1/2v̂1 + εv̂2), ŵ0 + ε1/2ŵ1 + εŵ1, θ̂0 + ε1/2θ̂1 + εθ̂2,

ρ̂0 + ε1/2ρ̂1 + ερ̂2, ε(p̂0 + ε1/2p̂1 + εp̂2))ei(kx+βz)/2 + · · ·
]

e−iωt + c.c., (3.42)

where ϕ̂a00 = ϕ̂a0(0) and v̂′
a00 = dv̂a0/dy|y=0. The three orders of v̂ in the wall layer agree

with the scaling estimate of the interaction regimes in figure 2. Note that the second-order
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inhomogeneous forcing, O(ε3/2ΘmEa), should be from the thinner Stokes layer, and it will
be shown that the wall layer acts as a ‘bridge’ to transmit the outflux from the Stokes layer
to the main layer.

The leading-order excited perturbations are governed by

−iωTwρ̂0 + ikû0 + v̂′
0 + iβŵ0 = T̂0(ikûa00 + v̂′

a00 + iβŵa00) + v̂′
a00YT̂ ′

0, (3.43a)

−iωû0 = −iωT̂0ûa00, p̂′
0 = 0, −iωŵ0 = −iωT̂0ŵa00, (3.43b–d)

−iωθ̂0 = −iωT̂0θ̂a00 − i(kxûa00 + kzŵa00)TwT̂0 − Twv̂′
a00YT̂ ′

0, (3.43e)

T2
wρ̂0 + θ̂0 = −T2

wT̂0ρ̂a00 + T̂0θ̂a00, (3.43f )

where T̂0 = T̂0( y; kx, kz) = T̂0( y; k − αa, β − βa). It is seen that this layer is inviscid.
Noticing the relations of the acoustic signature (3.32), we obtain the solutions of (3.43):

û0 = αaT̂0Twp̂a00

ω
, ŵ0 = βaT̂0Twp̂a00

ω
, (3.44a,b)

θ̂0 = (γ − 1)M2TwT̂0p̂a00 + Tw

(
(kxαa + kzβa)TwT̂0p̂a00

ω2 + YT̂ ′
0v̂

′
a00

iω

)
, (3.44c)

ρ̂0 = −M2T̂0p̂a00

Tw
−
(

(kxαa + kzβa)T̂0p̂a00

ω2 + YT̂ ′
0v̂

′
a00

iωTw

)
. (3.44d)

Integrating (3.43a), and noticing that the transverse velocity in the underneath Stokes layer
is at most O(ε3/2), which is negligible, we obtain

v̂0 → G0 as Y → ∞, (3.45)

where

G0 = D0

∫ ∞

0
T̂0 dY p̂a00 ≈ 0.939D0(kx) p̂a00

(iλkx Pr/Cw)1/3 , (3.46)

with D0 = −i(kαa + ββa)Tw/ω. It determines the lower boundary condition of (3.39a).
The second-order perturbations in this layer are governed by the homogeneous linear

system, which is the same as (3.43) but with the inhomogeneous terms on the right-hand
side of each equation removed. However, there is an inhomogeneous forcing from the lower
boundary, and so the transverse velocity is

G1 = v̂1 = v̂10, (3.47)

where v̂10 is the outflux from the underneath Stokes layer, to be obtained in the next
subsection. Therefore, the wall layer only behaves as a bridge to transmit the outflux v̂10
to the lower boundary condition of the main-layer perturbations.

The third-order excited perturbations are governed by

−iωTwρ̂2 + ikû2 + v̂′
2 + iβŵ2 = T̂1(ikûa00 + v̂′

a00 + iβŵa00) + v̂′
a00YT̂ ′

1

− Twρ̂a00(ikÛ0 + V̂ ′
0 + iβŴ0), (3.48a)

−iωû2 + ikTwp̂0 = −iωT̂1ûa00 − ikÛ0ûa00 − Y v̂′
a00Û′

0 − iβaŴ0ûa00 − ikzŵa00Û0,
(3.48b)
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p̂′
2 = 0, (3.48c)

−iωŵ2 + iβTwp̂0 = −iωT̂1ŵa00 − iαaÛ0ŵa00 − ikxŴ0ûa00 − Y v̂′
a00Ŵ ′

0 − iβŴ0ŵa00,

−iωθ̂2 + iω(γ − 1)M2Twp̂0 = −iωT̂1θ̂a00 − i(kxûa00 + kzŵa00)TwT̂1

− Twv̂′
a00YT̂ ′

1 − iαaÛ0θ̂a00 − iβaŴ0θ̂a00, (3.48e)

T2
wρ̂2 + θ̂2 − γ M2Twp̂0 = −T2

wT̂1ρ̂a00 + T̂1θ̂a00. (3.48f )

The solutions to these equations read

û2 = kTw

ω
p̂0 +

[
αaT̂1

ω
+ kαaÛ0 + βaαaŴ0 + kzβaÛ0

ω2 +
(

M2

Tw
− α2

a + β2
a

ω2

)
YÛ′

0

]
Twp̂a00,

ŵ2 = βTw

ω
p̂0 +

[
βaT̂1

ω
+ βaαaÛ0 + kxαaŴ0 + ββaŴ0

ω2 +
(

M2

Tw
− α2

a + β2
a

ω2

)
YŴ ′

0

]
Twp̂a00,

θ̂2 = (γ − 1)M2Twp̂0 +
[

T̂1 + αaÛ0 + βaŴ0

ω

]
(γ − 1)M2Twp̂a00

+
(

(kxαa + kzβa)T̂1 +
[

ω2M2

Tw
− (α2

a + β2
a )

]
YT̂ ′

1

)
T2

wp̂a00

ω2 ,

ρ̂2 = M2

Tw
p̂0 −

[
M2T̂1 + (γ − 1)M2 αaÛ0 + βaŴ0

ω

]
p̂a00

Tw

−
(

(kxαa + kzβa)T̂1 +
[

ω2M2

Tw
− (α2

a + β2
a )

]
YT̂ ′

1

)
p̂a00

ω2 .

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.49)

Integrating (3.48a), we obtain

v̂2 →
[

iωM2 − i(k2 + β2)Tw

ω

]
p̂0Y + G2 as Y → ∞, (3.50)

where

G2 =
[
D0

∫ ∞

0
T̂1 dY − i

(
αa(γ − 1)M2 + Tw(kαa + ββa)(k + αa)

ω2

)∫ ∞

0
Û0 dY

− i
(

βa(γ − 1)M2 + Tw(kαa + ββa)(β + βa)

ω2

)∫ ∞

0
Ŵ0 dY − M2V̂0

+
(

α2
a + β2

a

ω2 − M2

Tw

)
iTw(kĈu + βĈw)

]
p̂a00. (3.51)

This leads to the wall boundary condition of (3.39c).

3.5.3. Stokes-layer interaction
Now we consider the Stokes layer where y = O(ε3/2). For convenience, we introduce a
local coordinate

Ȳ = (R/Cw)1/2y = O(1). (3.52)
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L. Zhao, J. He and M. Dong

In this layer, the perturbation velocity field (ũS, ṽS, w̃S), temperature θ̃S, density ρ̃S and
pressure p̃S are expressed as

Ea e−iωt

⎡
⎣(ûS, (R/Cw)−1/2v̂S, ŵS, θ̂S, ρ̂S, p̂a00)Ea

+ Θmf̂0
∑
k,β

(ÛS, (R/Cw)−1/2V̂S, ŴS, T̂S, R̂S, εP̂S)ei(kx+βz)/2

⎤
⎦+ · · · + c.c., (3.53)

where the acoustic-induced Stokes solutions read

(ûS, ŵS) = (αa, βa)
Tw

ω
(1 − e(−iω)1/2Ȳ)p̂a00, (3.54a,b)

θ̂S = M2Tw(γ − 1)(1 − e(−iω Pr)1/2Ȳ)p̂a00, (3.54c)

ρ̂S = M2

Tw
(1 + (γ − 1)e(−iω Pr)1/2Ȳ)p̂a00, (3.54d)

with −i ≡ e3πi/2. Here, we only probe the leading-order expansion, because the next-order
excited perturbation of the transverse velocity should be O(ε5/2ΘmE), producing only the
fourth-order contribution to the receptivity efficiency.

Substituting (3.53) into the NS equations, we obtain, for each k–β spectrum, the
linearised system

−iωTwR̂S + ikÛS + V̂ ′
S + iβWS = ikûS + v̂′

S + iβŵS, (3.55a)

−iωÛS − Û′′
S = −iωûS + μT0û′′

S, P̂′
S = 0, (3.55b,c)

−iωŴS − Ŵ ′′
S = −iωŵS + μT0ŵ′′

S, (3.55d)

−iωT̂S − 1
Pr

T̂ ′′
S = −iωθ̂S − iTw(kxûS + kzŵS) + μT0θ

′′
S

Pr
, (3.55e)

T2
wR̂S + T̂S = −T2

wρ̂S + θ̂S, (3.55f )

where kx = k − αa, and kz = β − βa. The no-slip, non-penetration and isothermal
conditions are imposed at the wall Ȳ = 0. The solutions to (3.55) read

ÛS = Twαap̂a00

ω

[
1 − e(−iω)1/2Ȳ + (−iω)1/2(μT0 + 1)

2
Ȳ e(−iω)1/2Ȳ

]
, (3.56a)

ŴS = Twβap̂a00

ω

[
1 − e(−iω)1/2Ȳ + (−iω)1/2(μT0 + 1)

2
Ȳ e(−iω)1/2Ȳ

]
, (3.56b)

T̂S = (γ − 1)M2Twp̂a00

[
1 − e(−iω Pr)1/2Ȳ + (−iω Pr)1/2(μT0 + 1)

2
Ȳ e(−iω Pr)1/2Ȳ

]

+(kxαa + kzβa)T2
wp̂a00

ω2

[
1 − e(−iω Pr)1/2Ȳ + Pr

1 − Pr
(e(−iω)1/2Ȳ − e(−iω Pr)1/2Ȳ)

]
.

(3.56c)
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Integrating (3.55) from Ȳ = 0 to ∞, we obtain the outflux to the main layer

C1/2
w V̂S → O(Ȳ) + v̂10 as Ȳ → ∞, (3.57)

where

v̂10 =
[

i(α2
a + β2

a )(2 − Pr)

ω(
√

Pr + 1)
− iωM2(γ − 1)(1 + μT0)

2Tw

− i(kαa + ββa)[4 − 2 Pr + (
√

Pr + Pr)(μT0 + 3)]

2ω(1 + √
Pr)

]
C1/2

w Twp̂a00

(−iω Pr)1/2 . (3.58)

This leads to the wall boundary condition of (3.47) and (3.39b).

3.6. Receptivity coefficients
The solutions for ϕ̂0, ϕ̂1 and ϕ̂2 in physical space are obtained by inverting the Fourier
transform

ϕ̃l = F−1[ϕ̂l(k, y)] ≡ 1√
2π

∫ ∞

−∞
ϕ̂l(k, y) eikx dk, l = 0, 1, 2. (3.59)

The integrand has a pole at k = α, where α is the wavenumber of a discrete mode. The
integral in (3.59) may be evaluated by closing the integration contour in the upper half of
the complex k-plane (Terent’ev 1981, 1984). The downstream perturbation is dominated
by the contribution of the pole, and use of the residue theorem leads to

ϕ̃l →
√

2π i
[∂(ϕ̂l)

−1/∂k]k=α

eiαx as x → ∞. (3.60)

Note that (ϕ̂l)
−1 for a vector ϕ̂l is a vector with each component being the reciprocal of the

corresponding component in ϕ̂l, which is evaluated by following the same approaches as
in Dong et al. (2020). The exponential term on the right-hand side represents the growth
of the excited eigenmode, and the prefactor is the equivalent amplitude at the centre of the
HCS.

The receptivity can be quantified by an efficiency function

Λl = lim
x→∞ p̃l(x, 0) e−iαx =

√
2π i

[∂ p̂−1
l (k, 0)/∂k]k=α

, (3.61)

which is independent of the distribution of the temperature at the HCS. The downstream
perturbation pressure at the wall thus reads

p̃ → Ea

[
p̂a0Ea + εΘmf̂0(α − αa)

2
(Λ0 + ε1/2Λ1 + εΛ2) ei(αx+βz) + · · ·

]
e−iωt + c.c.

(3.62)
Combining the efficiency function at each order, we arrive at the receptivity coefficient

Λ = Λ0 + ε1/2Λ1 + εΛ2 + · · · , (3.63)

which is a quantity independent of the shape and intensity of the HCS.
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4. Calculations at finite Reynolds numbers

In order to confirm the accuracy of the large-R predictions, we carry out calculations
at finite Reynolds numbers using two different approaches. The first is based on the
compressible OS equations with inhomogeneous forcing considered, and is referred to as
the extended OS (EOS) approach, which is valid only when Θm 	 1. The second approach
is the HLNS approach, which assumes only that the freestream acoustic waves and the
excited Mack modes are infinitesimal and valid for any Θm.

4.1. EOS approach
This approach was first formulated by Zhigulev & Tumin (1987). For a linear HCS, the
mean-flow distortion Φ̄ in (3.1) depends linearly on Θm, which, in the spectrum space, is
expressed as

Φ̄ = TwΘm
∑

kx

f̂0(kx) Φ̂m ei(kxx+kzz) + c.c. (4.1)

Substituting (4.1) into the NS equations and neglecting the O(Θ2
m) terms, we arrive at the

steady OS equations

LOS(dy;ω = 0, kx, kz, R) φ̂m = 0, (4.2)

where LOS denotes the compressible OS operator (Wu & Dong 2016a), and φ̂ =
(û, ûy, v̂, p̂, θ̂, θ̂y, ŵ, ŵy)

T. The wall boundary conditions read

ûm(0) = v̂m(0) = ŵm(0) = 0, θ̂m(0) = 1. (4.3a–c)

The upper boundary condition, representing the radiated Mach waves, is the same as (3.8)
of Dong et al. (2020).

The perturbation Φ̃ in (3.1) for an infinitesimal freestream acoustic wave (Ea 	 1) is
expressed as

Φ̃ = Ea(Φ̂a ei(αax+βaz) + TwΘmΦ̂e ei(kx+βz)) + c.c., (4.4)

where the subscripts a and e represent the acoustic signature and excited perturbation,
respectively. The acoustic signature also satisfies the compressible OS equations, which
are subject to the boundary conditions

ûa(0) = v̂a(0) = ŵa(0) = θ̂a(0) = 0, (4.5a–d)

and the same upper boundary conditions as (3.14) of Dong et al. (2020) (representing the
incident and reflected acoustic waves).

The excited perturbation is governed by the inhomogeneous OS equations

LOS(dy;ω, k, β, R) φ̂e = F (φ̂a, φ̂m), (4.6)

where the inhomogeneous forcing term F is associated with the nonlinear interaction
between the acoustic signature φ̂a and the HCS-induced mean-flow distortion φ̂m; see
Appendix A of Dong et al. (2020). The coupling conditions read kx ± αa = k and
kz ± βa = β. Without loss of generality, we take the plus sign in the following.

Being the same as the asymptotic approach, the receptivity coefficient is given by

ΛEOS =
√

2π iTw

[∂ p̂−1
e (k, 0)/∂k]k=α

. (4.7)
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x

y
Computational domain

Boundary

layer

HCS

Figure 3. Sketch of the mesh system for the HLNS approach.

4.2. HLNS approach
The HLNS calculation includes two steps. First, we solve the full NS equations by an
in-house code as in Zhao et al. (2019), Zhao & Dong (2020, 2022) and Dong & Zhao
(2021), to calculate the steady base flow. Second, we calculate the unsteady perturbation
field ϕ̃ by the HLNS approach (Zhao et al. 2019). This approach is applicable for both a
weak (Θ 	 1) and a strong (Θ = O(1)) HCS, in contrast to the EOS approach.

For a 2-D HCS, a rectangular computational domain [x0, xI] × [0, yJ] is selected as
shown in figure 3, and (I + 1) × (J + 1) grid points are employed. Here, we choose
(I, J) = (850, 400), and a careful resolution study has been carried out. In the calculation
of the mean flow for the first step, the convective and viscous terms of the NS equations
are discretised by the fifth-order partial (using three upstream points and two downstream
points) and fourth-order central finite difference schemes, respectively, whereas the
third-order Runge–Kutta method is used for time advancing. In order to be comparable
with the asymptotic predictions, the non-parallelism of the Blasius solution is neglected
by introducing a body force as in Liu et al. (2020). The boundary conditions are set as
follows. The compressible Blasius solution is set at the inlet of the computational domain
x0; the no-slip condition, non-penetration condition and isothermal condition (2.6) are
imposed at the wall; a buffer region is introduced at the outlet xI ; the outflow condition is
employed at the upper boundary yJ . The calculations continue until the solution converges
to be time-independent, namely, the difference of the flow field between two neighbouring
time steps is less than a certain threshold.

When the mean flow has been obtained by the first step, we can calculate the unsteady
perturbation field ϕ̃ (the second step) by solving the HLNS equation system. As illustrated
in Zhao et al. (2019), an infinitesimal perturbation with a given frequency ω can be
expressed as

ϕ̃ = Ea ϕ̆(x, y) ei(βz−ωt) + c.c. (4.8)

To ease the numerical process, we rearrange ϕ̆ in terms of a Wentzel–Kramers–Brillouin
form, ϕ̆(x, y) = eiα0x ϕ̆0(x, y), where ϕ̆0 varies slowly with x. Here, α0 is set to be the
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complex wavenumber obtained by the OS solution at x = x0. Substituting (4.8) into the
NS equation system and neglecting the O(E2

a ) terms, we obtain a linear system

(D̃ + Ã∂x + B̃∂y + V xx∂xx + V yy∂yy + V xy∂xy)ϕ̆0(x, y) = 0, (4.9)

where the coefficient matrices D̃, Ã, B̃, V xx, V yy and V xy can be found in the Appendix of
Zhao et al. (2019). Under a proper discretisation, the system (4.9) is reduced to a system
of linear algebraic equations.

At the inlet boundary, we introduce an acoustic-branch continuous mode of the OS
equations, Φ̂a (defined in (4.4)), representing the boundary-layer response to the acoustic
forcing. For normalisation, we set the pressure amplitude of the incident acoustic mode to
be unity. The wall and upper boundary conditions are the same as for the EOS approach,
and the outflow condition is set at the outlet boundary.

Solving the linear system (4.9) with the aforementioned boundary conditions, we obtain
the perturbation field ϕ̆, which includes both the acoustic signature ϕ̆a and the excited
perturbations ϕ̆e. The latter eventually evolves into the Mack mode in the downstream
limit. Therefore, the receptivity coefficient Λ is calculated by the amplitude of the excited
Mack-mode pressure at the HCS normalised by Θmf̂0(α − αa), since the amplitude of the
oncoming perturbation is set to be unity.

5. Numerical results

5.1. Base flow and its linear instability
In this paper, the receptivity calculations are performed for four cases with different M and
Tw, as listed in table 1. In the table, the detailed parameters are given, including the ratio
of the wall temperature Tw to the adiabatic wall temperature Tad, the displacement and
nominal boundary-layer thicknesses (δ1, δ99), the location of the generalised inflectional
point (GIP) yc, and the velocity Uc at the GIP. All these cases were also studied in Zhao
& Dong (2022), although in that paper the reference length was chosen to be δ1.

The UB and TB profiles of the base flow are shown in figure 4. For the same M, the
boundary-layer thickness δ99 decreases with decrease of Tw, whereas for adiabatic walls,
δ99 increases with M. It is seen clearly that in the near-wall region, UB for each case shows
a linear dependence of y in a rather wide transverse region, confirming the approximation
of Ū in (3.5). However, the approximation of T̄ in (3.5), Tw(1 + ελTY), is valid in a
much thinner region adjacent to the wall, and the lower Tw, the greater the error of the
approximation at a certain transverse location. This may lead to a greater error for the
calculations of the mean-flow distortion for a lower Tw. Note that if Tw is taken to be much
smaller than unity, then the main deck splits into two distinguished layers, as shown in
Cassel, Ruban & Walker (1996). However, such a cold-wall effect does not appear in our
study because we focus only on Tw > 1; see table 1.

The symbols in figure 5(a) show the OS solutions of the phase speed of the fast and slow
modes for case 1. They originate from the phase speeds of the fast and slow acoustic waves
with zero incident angle, 1 + 1/M and 1 − 1/M, respectively, and intersect at ω ≈ 0.11 for
both R = 7800 and 1560, which is referred to as the synchronisation frequency. The curves
show the phase speeds of the slow mode obtained by the asymptotic prediction (3.35) with
(3.37), which agree well with the OS calculations. The growth rate of the slow mode,
plotted in figure 5(b), shows overall two peaks, the frequencies of which correspond to
the most unstable state of the first and second modes, respectively. For this case, the two
unstable zones intersect at around ω = 0.1, for which the growth rate −αi is positive.
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Case M T∞ Tw Tw/Tad δ1 δ99 yc Uc Description

1 5.92 48.59 K 6.95 1.0 16.9 20.0 18.2 0.94 Adiabatic wall
2 5.92 48.59 K 3.48 0.5 10.8 13.9 11.6 0.90 Cold wall
3 5.92 48.59 K 1.74 0.25 7.47 10.7 7.84 0.85 Very cold wall
4 4.5 65.15 K 4.4 1.0 10.4 13.5 11.1 0.89 Adiabatic wall

Table 1. Parameters for case studies.

0 0.2 0.4 0.6 0.8 1.0

10

20

30

Case 1

Case 2

Case 3

Case 4

y

UB TB

0 2 4 6 8

10

20

30(b)(a)

Figure 4. Profiles of (a) UB and (b) TB of the compressible Blasius solution for the four cases.

Increase of R leads to a destabilising effect. The asymptotic predictions of the growth rate
are close to the OS calculations, and the agreement is better for a higher R. Figures 5(c,d)
show the results for case 3. Only the second mode for the Reynolds numbers considered
is unstable, and the agreement between the asymptotic predictions and OS calculations is
quite satisfactory. These plots can also be found in Zhao & Dong (2022), but the reference
lengths of the two papers are different.

5.2. Mean-flow distortion induced by the HCS
Solving numerically (3.12), (3.13), (3.15) and (3.20), we obtain the mean-flow distortion
in the wall layer, and figure 6 displays the profiles for a representative configuration.
The inhomogeneous forcing induces a temperature distortion from the wall, which damps
exponentially as Y becomes large, agreeing with the distribution of the Airy function. The
distortion of the transverse velocity V̂0 tends to a constant Ĉ (shown by the green dashed
lines in figure 6a) in the limit of Y → ∞, which agrees with the analytical prediction
(3.21b). The large-Y behaviours of Û0 and Ŵ0 can be predicted by (3.21a) and (3.21c),
both of which decay algebraically like 1/Y . It is also predicted that for kx = kz, the
prefactors are Ĉu = −Ĉw, which are clearly confirmed by figure 6(b). If kz is set to be
zero, then the profiles of V̂0 and T̂0 do not change, but Ŵ0 becomes zero, and Û0 changes
its large-Y asymptotic behaviour because Ĉu = Ĉw = 0 (which are not shown here for
brevity). Remarkably, only the constant Ĉ = V̂0(∞) is able to communicate with the main
layer, which generates an outflux with an order of magnitude O(R−2/3Θ), as indicated in
(3.30a).
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Figure 5. Dependence on ω of (a,c) cr and (b,d) −αi of the 2-D Mack modes, where the velocities of the fast
and slow acoustic waves, 1 ± 1/M, are marked in (a,c). Plots for (a,b) case 1, and (c,d) case 3. R1 and R2 are
for R = 7800 and 1560, respectively. The abbreviations ASMP and OS denote the asymptotic predictions and
the OS solutions, respectively.
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Figure 6. Profiles of the mean-flow distortion in the wall layer for case 1 with kx = kz = 0.028: (a) V̂0 and T̂0

profiles; (b) Û0 and Ŵ0 profiles. The dashed lines denote the asymptotic estimations.

The mean-flow distortion in the main layer is obtained by solving numerically (3.28)
with (3.30). In figure 7, we show the normalised profiles of V̂w1,r and P̂w1,r for a
representative configuration by the circles. In the freestream, the profiles oscillate with
wavelength approximately 40, indicating a Mach wave radiating to the far field. Solving
the OS equation (4.2) with (4.3) and the upper-boundary radiation boundary condition, we
are able to predict the same profiles at finite Reynolds numbers. The relation between the
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Figure 7. Normalised profiles of the real parts of (a) V̂w1 and (b) P̂w1 in the main layer for case 1 with
kx = 0.028 and kz = 0. The inset in (a) shows a zoom-in plot in the near-wall region.

two solutions is (V̂w1, P̂w1) = TwR−2/3(v̂m, p̂m). The OS solutions for three R values are
also plotted in figure 7. It is seen clearly that the OS solutions approach the asymptotic
predictions as R increases. Even for the highest-R case, we can still see a discrepancy of
V̂w1 in the near-wall region, because the main-layer asymptotic theory ceases to be valid
there. Note that in this region, the agreement of the pressure distortion is still good, which
is because P̂w1 stays constant to leading order in the thin wall layer. A better comparison
can be made by constructing a composite solution from the asymptotic theory,

V̂com( y) = V̂w1( y) + V̂0(ε
−1y) − Ĉ. (5.1)

Figure 8(a) compares V̂com with the OS solutions TwR−2/3v̂m for the three R values, and
figure 8(b) shows its zoom-in plot in the near-wall region. As R increases, the wall layer
becomes thinner with scale εy, and the agreement between the asymptotic predictions
and OS solutions becomes better in both the main and wall layers. Figures 8(c,d) show
the comparison for case 3, an extremely cold wall case. Again, the agreement between
the two families of curves becomes better as R increases. However, at a moderate R, i.e.
R = 156 000, the agreement is much worse than that for case 1, especially in the near-wall
region. The implication is that for the same Reynolds number, the asymptotic prediction
at a cold-wall configuration is less accurate, probably due to the less accurate assumption
of the base-flow temperature profile in the wall layer at a finite R, as indicated in figure 4.
Such an error may be directed to the receptivity calculations.

5.3. Receptivity
The boundary-layer response to the freestream sound waves, including the fast and slow
acoustic modes, is the same as that in Dong et al. (2020), and so is not repeated in
this paper. In the following, we will present the numerical predictions of the receptivity
efficiency and confirm their accuracy by finite-R calculations.

5.3.1. Asymptotic predictions of the receptivity efficiency
According to the asymptotic theory presented in § 3, the effects of the HCS distribution
and instability property on the receptivity are readily separated, namely, the excited
perturbation depends on the product of the Fourier transform of the HCS distribution
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Figure 8. Comparison of the distortion of the transverse velocity between the asymptotic composite solution
(solid lines) and the EOS solutions (dot-dashed lines) for kx = 0.028 and kz = 0: (a,b) case 1, and (c,d) case 3.
Panels (b,d) show zoom-in plots of (a,c) in the near-wall region, respectively.

f̂0(α − αa) and the receptivity coefficient Λ. For a locally uniform HCS, the former is
given by (3.8), so in this subsubsection, we focus only on the latter.

In figure 9(a), we show the dependence on ω of the efficiency functions to freestream
fast acoustic waves with incident angle θ = 45◦ and βa = 0 for case 1, where two
representative Reynolds numbers are considered. Because, for these configurations, the
first-mode and second-mode unstable regions connect to each other, the plot includes both
frequency bands. Overall, we can see a peak for each order of Λ at ω ≈ 0.105, close to
the intersection frequency of the first and second modes. For lower frequencies, Λ to each
order damps rapidly with decrease of ω, indicating a rather weak receptivity efficiency
of the first mode; for higher frequencies, the damping rate with increase of ω is much
slower, showing a broad frequency band for significant receptivity. The implication is
that the receptivity to this fast acoustic forcing of the second mode is more important
than that of the first mode. Because Λ2 is one order of magnitude greater than Λ0 and
Λ1, the blue Λ2 curves are multiplied by a factor 0.1 for plotting convenience. The
large-Λ2 feature determines that at a rather moderate Reynolds number, the leading-order
asymptotic prediction may yield an appreciable error in comparison with the finite-R and
direct numerical simulation calculations, therefore a reasonable prediction should include
the efficiency function of the first three orders. It needs to be noted that although εΛ2

may be quantitatively greater than ε1/2Λ1 at a moderate Reynolds number, the asymptotic
expansion is still valid because Λ to each order is independent of ε. In the second-mode
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Figure 9. Asymptotic predictions of the efficiency function at each order at different frequencies for the
receptivity to a 2-D freestream acoustic wave with incident angle θ = 45◦: (a,c,e,g) fast acoustic forcing;
(b,d, f,h) slow acoustic forcing. Plots for (a,b) case 1, (c,d) case 2, (e, f ) case 3, and (g,h) case 4. For plotting
convenience, the blue curves for |Λ2| are multiplied by 0.1.
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Figure 10. Dependence of the efficiency function on the incident angle of the 2-D freestream fast acoustic
wave. The line types are the same as in figure 9, and the blue curves for Λ2 are multiplied by 0.1. Plots for
(a) case 1 with ω = 0.108; (b) case 2 with ω = 0.126; (c) case 3 with ω = 0.153; (d) case 4 with ω = 0.185.

frequency band, increase of R leads to a stronger receptivity at each order. Figure 9(b)
shows the receptivity to freestream slow acoustic waves with the same configurations.
Overall, the curves show a similar trend as those in figure 9(a), except for the following
three points: first, the Λ value to each order is smaller; second, in the second-mode
frequency band, Λ1 and Λ2 vary more gently; third, Λ2 in the low-frequency limit shows
a trend of blow-up. These features agree with those for the roughness–acoustic receptivity
as in Dong et al. (2020).

In figures 9(c,d), we plot the Λ curves for case 2. Because the first-mode and
second-mode frequency bands do not join together for this case, and the receptivity of
the second mode is stronger, the plot includes only the second-mode frequency band. The
receptivity to the fast acoustic forcing peaks around the lower-branch neutral frequency.
However, for the receptivity to the slow acoustic forcing, another peak in the upper-branch
frequency band appears, which is even stronger than the lower-branch peak for Λ2. From
the physical point of view, the receptivity near the lower-branch neutral point is more
interesting due to its successive amplification in a broad downstream region. For an even
lower wall temperature, as shown in figures 9(e, f ) for case 3, the two peaks around the
lower- and upper-branch neutral frequencies are seen clearly. Comparing cases 1, 2 and 3,
which are with the same M, we find that as Tw decreases, the values of Λ to each order
increases, especially Λ2, indicating a stronger receptivity efficiency. Additionally, the
lower the wall temperature Tw, the greater |Λ2|/|Λ0|, indicating an increasingly important
role of the third-order receptivity as Tw decreases.
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Figure 11. Dependence of the efficiency function on the spanwise wavenumber of the freestream fast acoustic
wave βa, where kz = 0 and θ = 45◦. The line types are the same as in figure 9, and the blue curves for Λ2 are
multiplied by 0.1. Plots for (a) case 1 with ω = 0.108; (b) case 2 with ω = 0.126; (c) case 3 with ω = 0.153;
and (d) case 4 with ω = 0.185.

In figures 9(g,h), we show the Λ curves for case 4, M = 4.5 with an adiabatic wall.
Again, for both the fast and slow acoustic forcing, the strongest receptivity efficiency at
each order appears near the lower-branch neutral frequency. Compared with case 1, it is
found that in the second-mode frequency band, the receptivity to the fast acoustic wave
is stronger for a lower Mach number, while the magnitude of the receptivity efficiency
to the slow acoustic wave does not evidently change with the Mach number. Since the
receptivity to fast acoustic waves is stronger, we show the dependence of the efficiency
function on the incident angle of 2-D fast acoustic waves for the four cases in figure 10,
where the frequencies are chosen to be around the lower-branch neutral frequencies. For
each order, Λ shows a peak at a certain θ , and decays drastically as θ approaches 0 or
90◦. The most efficient angle is within 30 < θ < 60, and increase of R does not affect this
efficient angle. Setting the freestream fast acoustic wave to be three-dimensional, and with
fixed incident angle 45◦, we show the receptivity efficiency for a 2-D HCS for the four
cases in figure 11. The frequency of the incident acoustic wave for each case is around
the lower-branch neutral frequency, and only the unstable spanwise wavenumber band
(β = βa) is shown. For case 1, shown in figure 11(a), Λ increases with βa rather mildly,
except for Λ2 with R = 1560. After peaking at a certain βa, Λ decays drastically with
βa. As the wall temperature decreases, shown in figures 11(b,c), the peaking βa becomes
greater, which even disappears in the unstable wavenumber band for case 3 (the extremely
cold wall). Comparing figures 11(a,d), we find that as M decreases, the unstable βa band
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shrinks, and the drastic decay of Λ on βa in the high-βa band disappears. Again, we can
see a stronger receptivity efficiency for a lower Mach number.

5.4. Comparison of the receptivity efficiency between the asymptotic predictions and the
EOS solutions

To confirm the accuracy of our asymptotic predictions, we compare them with the
EOS solutions ΛEOS for representative configurations in figure 12. All the plots indicate
the same feature, namely, the leading- and second-order asymptotic predictions are not
sufficient, and the predictions made by the first three orders of Λ show rather better
agreement with the EOS solutions. For adiabatic walls (cases 1 and 4), the asymptotic
predictions are rather accurate even when R = O(1000), while the prediction at a finite
R becomes poorer as Tw decreases. This is due to the less accurate prediction of the
mean-flow distortion as illustrated in figure 8. The solid lines and circles in figure 13
compare the receptivity coefficient Λ obtained by the EOS solutions and the asymptotic
predictions for different ω. When the unstable regions of the first and second modes
merge, i.e. case 1, the receptivity coefficient peaks at the synchronisation frequency;
when the two unstable regions separate, i.e. case 4, the receptivity coefficient peaks
near the the lower-branch neutral frequency of the second mode. In the asymptotic
predictions, the first three orders of the efficiency functions are taken into account, i.e.
Λ = ε(Λ0 + ε1/2Λ1 + εΛ2). The two families of curves agree with each other overall,
and the agreement is better for a greater Reynolds number.

5.5. Validation of the asymptotic predictions by the HLNS calculations
We further compare the asymptotic predictions with the HLNS calculations in this
subsection. The oncoming conditions are selected from case 4 in table 1 and R = 1560;
the freestream forcing is the fast acoustic waves with the same incident angle, θ = 45◦, but
different frequencies. The HCS has the same width and intensity, namely, d = 0.5δ99 =
6.76 and Θm = 0.1.

Figures 14(a,b) show the temperature and pressure contours of the mean flow distorted
by a heating source with (Θm, d) = (0.1, 6.76), respectively. Due to the localised surface
heating, a high-temperature region appears in the region x/δ1 ∈ (−0.5, 0.5) and y/δ1 ∈
[0, 0.2), and a Mach wave, showing a peak of the pressure distortion, is radiated to the far
field. These observations agree with the asymptotic solutions in figures 6 and 7.

We introduce an acoustic wave with θ = 45◦ and ω = 0.178 to the mean flow shown
in figure 14, then we calculate the perturbation field using the HLNS approach. The
obtained pressure contours are shown in figure 15(a i). The introduced acoustic frequency
corresponds to the lower-branch neutral frequency of the Mack second mode. From this
plot, we can see only the propagation of the acoustic signature, which is oscillatory in
the external stream and shows a peak in the near-wall Stokes layer. In figure 15(a ii), we
subtract out the oncoming acoustic signature p̆a, obtained by calculating the acoustic field
without an HCS, and plot the contours only for the excited perturbation pressure defined
by p̆e = p̆ − p̆a. Because the excited Mack second mode is almost neutral, the downstream
perturbation shows a neutrally oscillatory feature. Additionally, the HCS induces a Mach
wave radiating to the far field (see figure 14b), which leads to a weak distortion of the
acoustic wave in the downstream region. Such a phenomenon can also be interpreted
as a weak scattering effect on the freestream acoustic wave, so in the potential region
downstream of the Mach wave, the acoustic field includes both the oncoming acoustic
field p̆a and the weak scattering field. The latter is referred to as the residual acoustic
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Figure 15. Contours of (a i,b i) the perturbation pressure p̆, and (a ii,b ii) the excited perturbation pressure
p̆e = p̆ − p̆a, for (a) ω = 0.178, and (b) ω = 0.202.

perturbation, which is retained in p̆e. Therefore, we can see the weak modulation of the
second mode by the residual acoustic perturbation in the downstream boundary-layer
region (see also figure 16(a) for p̆e(x, 0)). This phenomenon can also be seen in the
simulations of Dong & Li (2021).

In figures 15(b i,b ii), we show the same plots for ω = 0.202, corresponding to the most
unstable frequency of the second mode. The evolution of the whole perturbation pressure
p̆ remains similar to that in figure 15(a i), but as shown in figure 15(b ii), the excited
perturbation shows an exponential growth in the downstream limit. Because the ‘residual’
acoustic perturbation is almost neutral, much weaker than the exponential growing Mack
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Figure 16. Streamwise evolution of the excited pressure perturbation at the wall p̆e(x, 0), for (a) ω = 0.178,
and (b) ω = 0.202.
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Figure 17. Streamwise evolution of (a) the mode-decomposition amplitude |p̆M(x, 0)|, and (b) its
normalisation by its linear evolution |p̆M(x, 0)/ exp(iαx)|.

mode, the modulation induced by the acoustic wave (as shown by the streamwise evolution
of p̆e(x, 0) in figure 16b) is not as strong as that for the neutral case.

In order to obtain the receptivity coefficient, we need to measure the initial amplitude
of the excited Mack-mode pressure, which is difficult due to the contamination of the
acoustic modulation. In order to exclude this effect, we employ the mode decomposition
technique as in Tumin (2003) and Gao & Luo (2014). Using the adjoint vector of the OS
system, we are able to obtain the ‘Mack-mode part’ of the downstream perturbation p̆M , as
shown in figure 17(a). In the downstream limit, the unstable Mack modes with frequencies
0.182 and 0.202 grow exponentially, while the neutral Mack mode with ω = 0.178 stays
almost constant. If each curve is normalised by the linear evolution of the Mack instability
with the same frequency, then the downstream amplitudes are all constant, as shown in
figure 17(b). These downstream constants represent the equivalent initial amplitudes of
the excited Mack modes, also referred to as the receptivity coefficients. The comparison
of Λ between the asymptotic predictions and the HLNS calculations is shown in figure 18,
where different HCS intensities are included. For both the heating and cooling sources,
the overall trend of the dependence of Λ on ω is the same for the two families of curves,
confirming the accuracy of the asymptotic predictions.

An interesting observation from figure 18 is that even when the HCS intensity reaches
|Θ| = 0.8, i.e. the relative temperature deviation at the HCS reaches 80 %, the nonlinear

963 A34-33

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

27
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.272


L. Zhao, J. He and M. Dong

0.18 0.19 0.20 0.21 0.22 0.23
0

0.02

0.04

0.06

0.08

Asymptotic
Θm = 0.1
Θm = 0.2
Θm = 0.5
Θm = 0.8

Asymptotic
Θm = –0.1
Θm = –0.2
Θm = –0.5
Θm = –0.8

|Λ|

ω ω
0.18 0.19 0.20 0.21 0.22 0.23

0

0.02

0.04

0.06

0.08(b)(a)

Figure 18. Comparison of the receptivity coefficient Λ between the asymptotic predictions and the HLNS
calculations: (a) heating source with Θm > 0; (b) cooling source with Θm < 0.
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Figure 19. Dependence of the receptivity coefficient on Θm for three representative frequencies.

effect is still not strong enough to induce an apparent change of the normalised receptivity
coefficient. A further plot for the dependence of the excited perturbation amplitude by
unity acoustic forcing, K = ΛΘmf̂0(α − αa), on the HCS intensity is shown in figure 19,
in which the linear predictions, obtained by extending directly the results for Θm = 0.1,
are plotted by the dashed lines. For each frequency, as |Θm| increases, the receptivity
coefficient agrees overall with the linear prediction, and the nonlinearity slightly weakens
the receptivity in comparison with the linear predictions for both the heating and cooling
sources.

6. Concluding remarks and discussion

Local receptivity of boundary-layer instability modes due to the interaction of localised
surface imperfections with freestream perturbations is a canonical problem of practical
importance in fluid dynamics. Recently, Dong et al. (2020) developed an asymptotic theory
for the Mack-mode receptivity induced by roughness–sound interaction in supersonic and
hypersonic boundary layers, uncovering the leading-order receptivity to be the distortion
of the acoustic signature in the Stokes layer by the curved wall. However, this mechanism
may not be generic, because this leading-order contributor could be absent if the surface
imperfection does not induce any deformation of the wall. As a representative set-up for
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the exceptional cases and also a practical situation, a heating or cooling source (HCS) is
selected as the surface imperfection for the study of the HCS–acoustic-induced receptivity
in this paper, and both the large-R asymptotic approach and the finite-R calculations are
employed to reveal its local receptivity mechanism.

In the asymptotic framework, we assume the acoustic amplitude Ea to be sufficiently
small, and three distinguished layers emerge in the wall-normal direction. The mean-flow
distortion induced by an HCS with a width comparable to the local boundary-layer
thickness or the Mack wavelength shows a double-deck structure, namely, a main layer
where y = O(1) and a wall layer where y = O(R−1/3), whereas the acoustic signature
shows a different double-deck structure, namely, a main layer where y = O(1) and a Stokes
layer where y = O(R−1/2). The leading-order receptivity appears in the wall layer, which is
O(R−1/3ΘmEa) and driven by the nonlinear interaction between the mean-flow distortion
and the acoustic signature. The second-order receptivity is O(R−1/2ΘmEa), appearing in
the Stokes layer. The third-order receptivity appears in both the wall and the main layers,
whose order of magnitude is O(R−2/3ΘmEa). The leading-order contributor is completely
different from that of the roughness configuration in Dong et al. (2020), for which the
leading-order receptivity is due to the deformation of the Stokes layer by the curved
wall, but the magnitudes of the two leading-order contributors are the same. Interestingly,
for the HCS configuration, the third-order contributor may overwhelm the second-order
contributor at a moderate Reynolds number, but this does not lead to breakdown of the
asymptotic analysis. Introducing a linear approximation for Θm, i.e. Θm 	 1, we predict
the efficiency functions for the three orders of contributors, whose dependence on the
Mach number, the wall temperature, the Reynolds number, and the frequency, incident
angle and spanwise wavenumber of the acoustic forcing, is studied systematically.

To verify the accuracy of the asymptotic predictions, we first perform the finite-R
calculations based on the EOS approach, in which both Θm and Ea are assumed to be
infinitesimal. The leading-order asymptotic predictions are able to agree with the EOS
solutions overall, but a quantitative error is observed especially when R is moderate. This
error can be reduced remarkably if the first three orders of the contributors are all taken into
account, and the asymptotic predictions can be accurate even when R is a few thousands.

As an alternative way of verification, we also performed the HLNS calculations.
Numerous previous works (Zhao et al. 2019; Dong & Zhao 2021; Zhao & Dong 2022) have
confirmed that the HLNS calculations agree well with the direct numerical simulations as
long as the amplitude is Ea 	 1. The perturbation field obtained by the HLNS calculations
includes both the oncoming acoustic perturbation and the excited perturbation due to the
HCS–acoustic interaction. In the downstream limit, the latter evolves eventually to the
Mack instability modulated by the residual acoustic perturbation induced by the weak
scattering effect of the Mach wave in the potential region; see also Dong & Li (2021).
Using the mode-decomposition technique as in Tumin (2003) and Gao & Luo (2014), we
are able to obtain the amplitude of the excited Mack mode, and the receptivity coefficient
is defined as the ratio of its equivalent initial amplitude at the HCS to that of the incident
acoustic wave. For a few selected cases, the asymptotic predictions agree well with the
HLNS calculations for both Θm 	 1 and Θm = O(1), indicating that the nonlinear effect
of the HCS is not strong. This is because the mean-flow distortion induced by an HCS does
not show a strong nonlinear effect even when Θm = O(1); an example of the compressible
triple-deck solution driven by an HCS can be found in figure 3 of Zhao & Dong (2022).
In fact, the asymptotic analysis in this paper also applies for Θm = O(1), but in order to
ease the numerical solutions for the asymptotic theory, we assume Θm 	 1 and obtained
the analytical solutions for the mean-flow distortion. Although we do not perform the
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numerical solutions for nonlinear HCS intensities, the HLNS calculations confirm that the
linear predictions by the asymptotic theory can be used for a much wider parameter space.

The value of this paper is to deepen our understanding of the local receptivity
of the inviscid Mack modes in hypersonic boundary layers. Although the inviscid
modes themselves peak in the main layer, the leading-order receptivity for both the
roughness–acoustic and HCS–acoustic interactions never appears in this layer. From
the asymptotic point of view, both leading-order receptivity mechanisms are described
by a homogeneous Rayleigh equation forced by an unsteady outflux velocity from the
underneath Stokes layer or wall layer, which is equivalent to a canonical problem, the
receptivity induced by the unsteady blowing/suction as illustrated in Appendix C of Dong
et al. (2020). However, the unsteady outflux is determined by the surface imperfection. In
general, if the surface imperfection leads to a geometric deformation of the wall, such as
a roughness element, a step and a corner, then the distortion of the acoustic signature in
the Stokes layer leads to the leading-order receptivity; if the surface imperfection induces
only a distortion of the temperature or the velocity without causing a displacement of
the wall, such as an HCS and a steady suction/injection slot, then its interaction with the
acoustic signature in the wall layer contributes to the leading-order receptivity. As long as
the unsteady outflux velocity is determined, the receptivity coefficient is readily calculated
by the asymptotic framework developed in this paper or in Dong et al. (2020).
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