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This paper is dedicated to the development of particle charge and velocity second-order
moment transport equations for monodisperse particles in gas flow with a tribocharging
effect. The full transport equations for the particle charge–velocity covariance and the
charge variance are derived in the framework of the kinetic theory of granular flow
assuming that the electrostatic interaction does not modify the collision dynamics. The
collision integrals are solved without presuming the form of the electric part for the particle
probability density function. The full second-order transport equation model is tested in a
one-dimensional periodic domain. The results show that this model is able to capture more
important physical mechanisms that are neglected by simple algebraic models proposed in
the past. An in-depth analysis of the transport equations is also performed. This study
reveals that, for sufficiently small covariance characteristic destruction time scales, the
transient and third-order moments terms can be safely neglected. In addition, two different
reduced-order models are proposed: a more general algebraic model that takes into account
the variance effect and a semi-algebraic model that only resolves a transport equation
for the charge variance coupled with an algebraic model for the covariance. The former
could, however, lead to non-physical predictions in many cases, while the latter can be
a suitable alternative only for a sufficiently small interparticle collision time. Finally, a
simple chart based on test case simulations is proposed to show under which conditions a
semi-algebraic model could be considered as a suitable alternative.

Key words: kinetic theory, particle/fluid flow, fluidized beds

1. Introduction

Particle-laden flows play an important role in today’s world due to the large number
of industrial applications relying on them. These kind of flows are characterized by
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numerous solid–solid contacts, either particle–particle or particle–wall contacts. All
these solid–solid interactions can electrically charge the solid phase via the triboelectric
effect (Forward 2009). These electrically charged particles can now interact with each
other due to the Lorentz force. However, because the particle’s velocity is much
smaller than the speed of light, the only relevant component is the electrostatic
force.

For simplicity reasons, this electrostatic force is generally neglected in mathematical
modelling approaches and numerical simulations. However, it is well known that the
electrostatic effects are at the root of several problems in many industrial reactors,
especially in fluidized beds. Due to their different electrical polarity, particles might get
attached to the reactor’s wall. This greatly diminishes the solid mixing and could even
force the complete shutdown of the reactor (Hendrickson 2006). In addition to this, the
electrostatic force can also modify important dynamic properties of the reactor such as:
bubble size (Dong et al. 2015), minimum fluidization velocity (Manafi, Zarghami &
Mostoufi 2019), heat transfer coefficient (Miller & Logwinuk 1951) and fine entrainment
rate (Baron et al. 1987).

In recent years, some efforts have been directed towards developing predictive
mathematical tools capable of modelling the effect of this force in gas–solid flows
(Chowdhury et al. 2021). Rokkam, Fox & Muhle (2010) and Rokkam et al. (2013)
were among the first to propose the use of an Eulerian approach for a fluidized bed
with electrostatic forces. Using a model where the particles have a constant electric
charge, they were able to reproduce the wall sheeting effects in a fluidized bed reactor.
However, the constant electric charge assumption might be very restrictive as it cannot
account for the effects due to the electric charge spatial distribution. In addition to this,
it would require previous knowledge of the solid phase electric charge. To solve this
limitation, Kolehmainen, Ozel & Sundaresan (2018b) suggested deriving a full transport
equation for the particle electric charge in the framework of the kinetic theory of granular
rapid flow. However, this approach is known to require closure law models for the
higher-order moments, such as the particle-velocity covariance and the charge variance.
Multiple strategies are possible to overcome this problem. One can neglect them altogether
(Ceresiat, Kolehmainen & Ozel 2021). A first-order approximation can be made by
making an analogy with the heat transfer coefficient (Kolehmainen et al. 2018b). Finally,
a more rigorous strategy consists of deriving algebraic models obtained by simplifying
the second-order moment transport equations (Ray et al. 2019, 2020; Montilla, Ansart &
Simonin 2020).

At this point, all these studies have focused on algebraic closure models for the
particle charge–velocity covariance and the particle charge variance. The advantage of
this approach is that it only needs one additional transport equation for the mean charge
to describe the flow. In this work, we propose to extend these previous models. In
particular, we propose closure assumptions for the particle velocity–charge covariance
and for the particle charge variance transport equations. These models are derived on
the framework of the kinetic theory of rapid granular flow, with the assumption that the
electrostatic force does not modify the hard-sphere collision model and that the electric
field does not polarize the particles (Kolehmainen et al. 2018a; Ruan et al. 2022). We also
consider binary instantaneous collisions neglecting any particle–particle agglomeration
due to electrostatic effects. Following previous works, we show that the collision terms
of these second-order moments can be closed without assuming uncorrelated velocity
and electric charge probability density distributions. We also propose a simple algebraic
gradient closure model for the third-order moments appearing in the transport equations.
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Because the additional four partial differential equations may appear very computationally
expensive, we also study two possible simplifications for this model: an algebraic
model coupling the particle charge–velocity covariance and the charge variance, and a
semi-algebraic model, where the covariance is modelled by an algebraic expression but
the variance is solved using its transport equation. All these models are tested in a simple
one-dimensional fully periodic domain and the equations are solved using high-order
accurate explicit schemes.

2. Continuum modelling of gas–solid flows with electrostatic force

2.1. Particle dynamics
Following Newton’s second law of motion, the dynamic equation of a single particle can
be written as

mp
dup,i

dt
= Fi, (2.1)

where mp is the mass of the particle, up,i is the velocity in the ith direction and Fi is the
ith component of the total force exerted on the particle.

In the frame of kinetic theory of rapid granular flows used for gas–solid flow modelling,
the inter-particle forces are treated as instantaneous collisions. Equation (2.1) represents
the particle dynamic equation between collisions and the force Fi, in the framework of the
point-particle approximation, is written as (Gatignol 1983; Maxey & Riley 1983)

Fi = −Vp
∂Pg@p

∂xi
− mp

τp
(up,i − ug@p,i) + mpgi + qpEi, (2.2)

where Vp is the particle volume, Pg@p is the pressure of the undisturbed flow at the particle
position, τp is the particle relaxation time, ug@p,i is the ith component of the undisturbed
gas flow velocity, gi is the gravitational acceleration, qp is the particle electric charge and
Ei is the ith component of electric field obtained by solving Gauss’s flux law

Ei = −∇φ, (2.3)

and the electric potential φ is given by

∇ (ε∇φ) = −�, (2.4)

where ε is the medium permittivity and � is the electric charge density. Equations
(2.2), (2.3) and (2.4) are exact if the electric potential is solved using the local
instantaneous charge density. However, in this work, we will follow the strategy used
in all previous studies in this subject, and we will solve the electric potential using the
mean electric charge distribution � = npQp (where np is the particle number density and
Qp the mean particle electric charge, which will be clearly defined later). Therefore, the
calculated electric field Ei is an average, or macroscopic, electric field that does not
take into account the instantaneous local distribution of charged particles. The effect
of short-range electric interaction forces on the particle dynamics has been studied
in very dilute turbulent flows (see e.g. Boutsikakis, Fede & Simonin 2022), but is
generally completely neglected in dense flows and should be the subject of future studies
using computational fluid dynamics/discrete element method (CFD/DEM) (Kolehmainen
et al. 2016). On the other hand, the short-range electrical interaction between particles
has a very important effect on the charge exchange between colliding particles and
it is taken into account using the electrical collision model presented in the next
section.
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2.2. Particle dynamic and electrical collision model
In this work, we assume binary instantaneous collisions of frictionless inelastic spheres
in translation, but the extension to inelastic and frictional collisions with rotation of the
particles is feasible within the proposed approach (Yang, Padding & Kuipers 2016). During
these collisions, the impacting particles will only exchange linear momentum and electric
charge.

Let us consider two colliding particles, p1 and p2, whose centres are located at xp1 and
xp2 . Before the collision, the particles have given velocities cp1 and cp2 , and given electric
charges ξp1 and ξp2 . We define the vector ki as the unit vector going from the centre of p1
to the centre of p2. We also define the vector gr as the relative velocity between p1 and p2:
gr = cp1 − cp2 .

Following previous works on the Eulerian modelling of electrostatic forces, we are going
to neglect the effect of any electric field (mean or fluctuating) during the particle–particle
collisions. Hence, the velocities after the collision are given by c+

p1
and c+

p2

c+
p1,i = cp1,i − 1

2 (1 + ec) gr,jkjki, (2.5)

c+
p2,i = cp2,i + 1

2 (1 + ec) gr,jkjki, (2.6)

where ec is the collision restitution coefficient.
We also need to account for the transfer of electric charge between the particles during

contact. For this, we use the model proposed by Kolehmainen et al. (2017) following the
work of Laurentie, Traoré & Dascalescu (2013). According to this model, the transfer of
electric charge is written as a function of the interparticle contact area due to the elastic
deformation of the particles during collisions. Some charge might be transferred when the
particles are moving away from each other, however, this is considered negligible in their
modelling approach. Therefore, when two particles p1 and p2 collide, the charge evolution
of the particle p1 during the collision, can be written as

dqp1

dt
= dA

dt
(κ1 − κ2qp1) for

dA
dt

> 0, (2.7)

where κ1 is a coefficient that depends on the collision type and the pre-collision particle
charge, κ2 is a geometrical coefficient that depends only on the particle diameter and A is
the contact area during the collision. This contact area can be written as a function of the
overlap distance δ

A = 8πδ

dp
, (2.8)

where

δ = dp1 + dp2

2
− ∣∣xp1 − xp2

∣∣ . (2.9)

Finally, the total charge transferred during the collision is given by the solution of (2.7)
when the contact area is maximum. Using these hypotheses, Kolehmainen et al. (2017)
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showed the particle charge after the collisions are given by

ξ+
p1

= ξp1 − ε0AmaxE+
i ki, (2.10)

ξ+
p2

= ξp2 + ε0AmaxE+
i ki. (2.11)

Also, Amax is given by

Amax = π
dp

2

(
30mp(1 − ν2)

32Y
√

dp

)2/5

(gr,iki)
4/5, (2.12)

where dp is the particle diameter, Y is the particle Young’s modulus, ν is the particle
Poisson’s ratio and ε0 is the vacuum permittivity.

In this case, we do decompose the local electric field E+
i into its two components, the

mean macroscopic electric field Ei and the local instantaneous electric field at the contact
point generated by the two colliding particles

E+
i = Ei − ξp2 − ξp1

πε0d2
p

ki. (2.13)

According to this tribocharging model, we can write the electric charge transferred
during a particle–particle collision as a contribution of two separate terms. One
contribution is proportional to the projection of the mean electric field on the vector k and
another contribution proportional to the difference on the electric charge of the colliding
particles

ξ+
p1

= ξp1 + [−βEiki + γ (ξp2 − ξp1)](gr,iki)
4/5, (2.14)

ξ+
p2

= ξp2 − [−βEiki + γ (ξp2 − ξp1)](gr,iki)
4/5, (2.15)

where β and γ are given by

β = ε0π
dp

2

(
30mp(1 − ν2)

32Y
√

dp

)2/5

, (2.16)

γ = 1
2ε0dp

(
30mp(1 − ν2)

32Y
√

dp

)2/5

. (2.17)

2.3. Transport equation for the solid phase mean properties
The kinetic theory of rapid granular flow is based on the analogy between the motion of
solid particles in a gas–solid flow and the thermal motion of molecules in a gas. In this
approach, we define f (x, cp, ξp; t)δxδcpδξp as the mean probable number of particles at
time t with their centre xp(t) in the volume element [x, x + δx[, with a velocity up(t) in the
range [cp, cp + δcp[ and an electric charge qp(t) in the range [ξp, ξp + δξp[, respectively.
Where x, cp and ξp are the phase space coordinates for the particle position, velocity and
electric charge. Also, xp(t), up(t) and qp(t) are the short form notation for any n-particle
position, velocity and electric charge for a given realization r of the ensemble averaging
xp(t) = xp

(n,r)(t), up(t) = up
(n,r)(t) and qp(t) = q(n,r)

p (t), where n = 1, 2, 3, . . . , Np with
Np being the total number of particles.
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This probability density function allows us to define the particle number density

np (x, t) =
∫

R

∫
R3

f (x, cp, ξp, t)dcp dξp. (2.18)

We can also define the mean value for any particle property φ(t, x, cp, ξp)

〈φ〉 (x, t) = 1
np

∫
R

∫
R3

φf (x, cp, ξp, t)dcp dξp. (2.19)

This mean property 〈φ〉 allows us to define the fluctuant value φ′

φ′ = φ − 〈φ〉. (2.20)

By definition, we have that 〈φ′〉 = 0.
Using the Grad–Boltzmann limit from the Liouville equation, we can deduce the

dynamic equation for f

∂f
∂t

+ ∂

∂xi

[
cp,i f

]+ ∂

∂cp,i

[〈
dup,i

dt
| x, cp, ξp

〉
f
]

+ ∂

∂ξp

[〈
dqp

dt
| x, cp, ξp

〉
f
]

=
(

∂f
∂t

)
coll

, (2.21)

where the notation 〈Φ | x, cp, ξp〉 is a short form for the conditional mean 〈Φ | xp(t) =
x, up(t) = cp, qp(t) = ξp; t〉.

Experimental results have proven that the gas–particle contact does not charge
the particles (Mehrani, Bi & Grace 2005). The only charging mechanisms are the
particle–particle or particle–wall collisions. Therefore, the last term on the left-hand side
of (2.21) can be discarded

dqp

dt
= 0. (2.22)

If we multiply (2.21) by φ dc′
p dξ ′

p, and then integrate over the whole phase space, we
can derive the transport equation for the mean value 〈φ〉

Dnp 〈φ〉
Dt

+ np 〈φ〉 ∂Up,i

∂xi
+

∂np〈φc′
p,i〉

∂xi
− np

〈
Dφ

Dt

〉
− np

〈
c′

p,i
∂φ

∂xi

〉

− np

〈〈
dup,i

dt
|x, cp, ξp

〉
∂φ

∂c′
p,i

〉
+ np

DUp,i

Dt

〈
∂φ

∂c′
p,i

〉
+ np

〈
c′

p,j
∂φ

∂c′
p,i

〉
∂Up,i

∂xj

+ np
DQp

Dt

〈
∂φ

∂ξ ′
p

〉
− np

〈〈
dqp

dt
|x, cp, ξp

〉
∂φ

∂ξ ′
p

〉
+ np

〈
∂φ

∂ξ ′
p

c′
p,i

〉
∂Qp

∂xi
= C (φ) , (2.23)

where Up,i = 〈cp,i〉 and Qp = 〈ξp〉.
The term on the right-hand side of (2.23) accounts for the mean transfer rate of property

φ, during particle–particle collisions (Jenkins & Savage 1983; Jenkins & Richman 1985).
The details of how this term is calculated are given in Montilla et al. (2020). From
this right-hand side term, we will obtain all the collisional transport terms, such as the
collisional triboconductivity and the collisional dispersion terms, in contrast with what we
will call the kinetic terms that are associated with the transport of the property φ due to
the particle-velocity fluctuations (such as the third term in (2.23)).
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2.4. Mean electric charge transport equation
Kolehmainen et al. (2018b) were the first to derive a transport equation for the mean
particle electric charge Qp. Assuming that the particle velocity and electric charge are
not correlated, they were able to propose a first approximation to the mean electric charge
transport equation. Later, Montilla et al. (2020) extended this work, proposing a linear
model for the conditional mean 〈ξp | cp〉. This led them to the more general equation

np
∂Qp

∂t
+ npUp,i

∂Qp

∂xi
+ ∂

∂xi
(np(1 + ηcoll)〈ξ ′

pc′
p,i〉) = − ∂

∂xi
(σpEi) + ∂

∂xi

(
npDp

∂Qp

∂xi

)
,

(2.24)

where the triboconductivity coefficient σp, the collisional dispersion coefficient Dp and
ηcoll are given by

σp = λ1.1d3
pβg0n2

p(Θp)
9/10, (2.25)

Dp = λ1.2d4
pγ g0np(Θp)

9/10, (2.26)

ηcoll = λ1.3d3
pγ g0npΘ

2/5
p , (2.27)

Θp = Rp,ii

3
, (2.28)

Rp,ij = 〈c′
p,ic

′
p,j〉, (2.29)

and λ1.1 = λ1.2 ≈ 1.825, and λ1.3 ≈ 5.936.
In order to close (2.24), the second-order moment 〈ξ ′

pc′
p,i〉 needs to be modelled in terms

of computed variables. The existing literature has focused on algebraic closure laws for this
particle charge–velocity covariance term, either by analogy with the kinetic dispersion
of the particle temperature (Kolehmainen et al. 2018b) or by simplifying the covariance
transport equation (Ray et al. 2019; Montilla et al. 2020). Their results have shown that
this modelling approach leads to extra dispersion and triboconductivity effects due to the
random motion of particles. In this study, we will analyse a more complex approach by
keeping the full transport equation for the particle charge–velocity covariance vector and
we will derive a transport equation for the charge variance 〈ξ ′

pξ
′
p〉. Additionally, we will

propose algebraic closure laws for the third-order moments appearing in those transport
equations.

3. Particle charge–velocity covariance transport equation

The particle charge–velocity covariance transport equation can be derived using the
general mean transport equation for a property φ with φ = ξ ′

pc′
p,i

np
D〈ξ ′

pc′
p,i〉

Dt
+

∂np〈ξ ′
pc′

p,ic
′
p,j〉

∂xj
+ npRp,ij

∂Qp

∂xj
+ np〈c′

p,jξ
′
p〉

∂Up,i

∂xj

= np

〈〈
dup,i

dt
| x, cp, ξp

〉
ξ ′

p

〉
+ C(ξpc′

p,i) − QpC(c′
p,i). (3.1)
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The force term is expanded as〈
1

mp
〈Fi | x, cp, ξp〉ξ ′

p

〉
= −

〈
Vp

mp

〈
∂Pg@p

∂xi
| x, cp, ξp

〉
ξ ′

p

〉

−
〈

1
τp

(cp,i − 〈ug@p,i | x, cp, ξp〉)ξ ′
p

〉

+
〈

1
mp

ξ ′
pξpEi

〉
+ 〈giξ

′
pEi〉. (3.2)

Considering very inertial particles with respect to the fluid turbulent motion, we may
assume that the fluid velocity and pressure are not correlated with the particle velocity and
electric charge. Additionally, because the computed electric field Ei corresponds to a mean
electric field, there is no correlation between this variable and the particle properties. With
these hypotheses, the force term reduces to〈

1
mp

〈Fi | x, cp, ξp〉ξ ′
p

〉
= − 1

τp
〈c′

p,iξ
′
p〉 + 1

mp
〈ξ ′

pξ
′
p〉Ei, (3.3)

where τp = 〈1/τp〉−1.
The collision terms on the right-hand side of (3.1) were already derived by Montilla

et al. (2020) neglecting the cross-product between the electric field, the gradient of charge
and the covariance

C(ξpc′
p,i) − QpC(c′

p,i) = −1 + ec

3
1
τc

np〈ξ ′
pc′

p,i〉 − 3 − ec

5
1
τξ

np〈ξ ′
pc′

p,i〉

+ λ2.1ec

√
Θp

dp
σpEi − λ2.2ecnp

√
Θp

dp
Dp

∂Qp

∂xi
, (3.4)

with λ2.1 = λ2.2 ≈ 0.5422.
Where τc is the characteristic particle–particle collision time and τξ is the characteristic

time of destruction of the particle charge variance by inter-particle charge exchange during
collision, as shown by (3.5) and (3.6),

τc = (4
√

πnpg0d2
p
√

Θp)
−1 (3.5)

τξ = (λ2.3npg0d2
pγΘ9/10

p )−1, (3.6)

with λ2.3 ≈ 21.90.
Similarly to the mean charge transport equation, the covariance transport equation

depends on a higher-order statistical moment 〈ξ ′
pc′

p,ic
′
p,j〉, which represents the transport

of the charge–velocity covariance due to the random motion of particles. In this study,
we propose a simple closure model for this term based on a simplification of its
transport equation, following the methodology developed by Sakiz & Simonin (1999).
First, we derive the transport equation for this third-order moment by setting φ = ξ ′

pc′
p,ic

′
p,j

in the general mean transport equation (2.23). Then, and after solving the collision
integrals, we reduce the transport equation to an algebraic equation using a series of
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simplifying hypotheses. From this equation, we can deduce an simple algebraic model
for the third-order moment (see Appendix A for a detailed derivation)

〈ξ ′
pc′

p,ic
′
p,j〉 = 1

K1
Dij − K2

K1 (K1 + 3K2)
Dmmδij, (3.7)

with

K1 =
[

1
τc

(λ2.4(1 + ec) − λ2.5(1 + ec)
2) + 1

τp
+ λ2.6

1
τξ

]
, (3.8)

K2 = − 1
τc

[−λ2.7 (1 + ec) + λ2.8 (1 + ec)
2] (3.9)

Dij = −Rp,jk
∂〈ξ ′

pc′
p,i〉

∂xk
− Rp,ik

∂〈ξ ′
pc′

p,j〉
∂xk

− dpΘ
1/2
p (1 + ec)

1
τξ

[
λ2.9

∂〈ξ ′
pc′

p,i〉
∂xj

+ λ2.9
∂〈ξ ′

pc′
p,j〉

∂xi
+ λ2.10

∂〈ξ ′
pc′

pn〉
∂xn

δij

]

− λ2.11dpΘ
1/2
p (1 + ec)

2 1
τξ

[
∂〈ξ ′

pc′
pn〉

∂xn
δij +

∂〈ξ ′
pc′

p,i〉
∂xj

+
∂〈ξ ′

pc′
p,j〉

∂xi

]
, (3.10)

with λ2.4 ≈ 6.667, λ2.5 ≈ 1.387, λ2.6 ≈ 3.201, λ2.7 ≈ 0.2667, λ2.8 ≈ 0.2607, λ2.9 ≈
10.68, λ2.10 ≈ 208.2 and λ2.11 ≈ 0.2048.

We remark that, according to this algebraic model, the third-order moment 〈ξ ′
pc′

p,ic
′
p,j〉

contains a term involving a dispersion tensor, a product of a characteristic time 1/K1 with
the kinetic stress tensor 〈c′

p,ic
′
p,j〉 and the spatial gradients of the lower moments 〈ξ ′

pc′
p,i〉

and 〈ξ ′
pc′

p,j〉.

4. Particle charge variance transport equation

The electrostatic force in the particle charge–velocity covariance equation introduces a
second term that needs to be modelled, the particle charge variance 〈ξ ′

pξ
′
p〉. Similarly to

the covariance transport modelling approach, we can derive its transport equation and the
corresponding closure assumptions required. Using the general mean transport equation
with φ = ξ ′

pξ
′
p, we obtain

np
D〈ξ ′

pξ
′
p〉

Dt
+ 2np〈ξ ′

pc′
p,i〉

∂Qp

∂xi
+

∂np〈ξ ′
pξ

′
pc′

p,i〉
∂xi

= C(ξpξp) − 2QpC(ξp). (4.1)

To be consistent with the covariance equation, we calculated the collision terms in the
above equation neglecting the mean particle velocity gradient, the granular temperature
gradients and any cross-product term between Qp, Ei, 〈ξ ′

pc′
p,i〉. This led us to the following
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expression:

C(ξpξp) − 2QpC(ξp) = −np

(
1
τξ

− λ3.1(Dp)
2 τc

d4
p

)
〈ξ ′

pξ
′
p〉

+ λ3.2(σp)
2 τc

npd2
p

EiEi + ∂

∂xi

[
λ3.3np(Dp)

2 τc

d2
p

∂〈ξ ′
pξ

′
p〉

∂xi

]
, (4.2)

where λ3.1 ≈ 21.29, λ3.2 ≈ 14.20 and λ3.3 ≈ 0.6278.
Like the particle charge–velocity covariance transport equation, the charge variance

equation depends on the higher-order moment 〈ξ ′
pξ

′
pc′

p,i〉, which represents the transport
of the electric charge variance due to the random motion of particles. Using the same
approach applied for the modelling of 〈ξ ′

pc′
p,ic

′
p,j〉, we can also derive an algebraic model

for this high-order moment (see Appendix B)

〈ξ ′
pξ

′
pc′

p,i〉 = − Rp,ij

1
3

(1 + ec)
1
τc

+ 1
τp

+ (λ3.4 − λ3.5γΘ
2/5
p )

1
τξ

∂〈ξ ′
pξ

′
p〉

∂xj
, (4.3)

with λ3.4 ≈ 2.806 and λ3.5 ≈ 1.017.
By analogy with the 〈ξ ′

pc′
p,ic

′
p,j〉 model, we can notice that, according to (4.3), the

third-order moment 〈ξ ′
pξ

′
pc′

p,i〉 may be written as a dispersion tensor, being the product
between a characteristic time, the particle kinetic stress tensor and the gradient of the
second-order moment.

Equations (3.1), (3.7), (4.1) and (4.3) provide a comprehensive closed modelling
approach for the velocity–charge covariance vector appearing in the mean electric charge
transport equation. As shown above, this approach uses the full transport equations for the
two second-order moments 〈ξ ′

pc′
p,i〉 and 〈ξ ′

pξ
′
p〉 coupled with two algebraic closure laws for

the third-order moments 〈ξ ′
pc′

p,ic
′
p,j〉 and 〈ξ ′

pξ
′
pc′

p,i〉.

5. Case of study

In order to gain a better understanding of the behaviour of charged particle flows predicted
by this model, we will solve this set of equations in the simple configuration already used
in previous works (Kolehmainen et al. 2018b; Montilla et al. 2020). This test case consists
in a one-dimensional periodic domain of length L. The particle density number is constant
and uniform inside the domain. The mean fluid and particle velocities are zero and the
particles have a uniform constant granular temperature Θp. At t = 0 the particles have a
non-uniform electric charge distribution with particles positively charged on the left and
negatively charged on the right (5.1). The initial conditions for particle charge–velocity
covariance, 〈c′

p,iξ
′
p〉, and particle charge variance, 〈ξ ′

pξ
′
p〉, are set to 0

Qp (t = 0) = −Qp,0 sin
(

2π
x
L

)
. (5.1)

5.1. Dimensionless analysis
Given the simplicity of this system, we can rewrite the governing equations in a simpler
dimensionless form. We can choose Lref = L as reference length, Qp,ref = Qp,0 as
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reference electric charge, Up,ref = √
Θp as reference velocity and Eref = npQp,ref L/ε0 as

reference electric field. These choices lead to a reference time equal to tref = L/
√

Θp.
Using these characteristic scales, we can express the governing equations as:

(i) The dimensionless mean particle charge transport equation

∂Q∗
p

∂t∗
+ (1 + ηcoll)

∂〈c∗′
p ξ∗′

p 〉
∂x∗︸ ︷︷ ︸

Kinetic flux

= − 1
τ ∗
σ

∂E∗

∂x∗︸ ︷︷ ︸
Triboconductivity

+ 1
Pe

∂2Q∗
p

∂x∗2︸ ︷︷ ︸
Collisional dispersion

. (5.2)

(ii) The dimensionless particle charge–velocity covariance transport equation

∂〈c∗′
p ξ∗′

p 〉
∂t∗

+
(

1 + λ2.2ec
1
Pe

L
dp

)
∂Q∗

p

∂x∗︸ ︷︷ ︸
Production

− λ2.1ec
1
τ ∗
σ

L
dp

E∗

︸ ︷︷ ︸
Production

− ue

uk
〈ξ∗′

p ξ∗′
p 〉E∗

︸ ︷︷ ︸
Elec. force

= −
(

1 + ec

3
1
τ ∗

c
+ 1

τ ∗
p

+ 3 − ec

5
1
τ ∗
ξ

)
〈c∗′

p ξ∗′
p 〉

︸ ︷︷ ︸
Destruction

+
[

2 + 1
τ ∗
ξ

L
dp

(2λ2.9 + λ2.10) (1 + ec)

+ 3λ2.11
1
τ ∗
ξ

L
dp

(1 + ec)
2

]
1

K1 + K2

∂2〈ξ∗′
p c∗′

p 〉
∂x∗2︸ ︷︷ ︸

Collisional + Kinetic dispersion

. (5.3)

(iii) The dimensionless particle charge variance transport equation

∂〈ξ∗′
p ξ∗′

p 〉
∂t∗

+ 2〈ξ∗′
p c∗′

p 〉∂Q∗
p

∂x∗︸ ︷︷ ︸
Production

= −
(

1
τ ∗
ξ

− λ7
1

Pe2 τ ∗
c

(
L
dp

)4
)

〈ξ∗′
p ξ∗′

p 〉
︸ ︷︷ ︸

Destruction

+ λ8
τ ∗

c

τ 2
σ

(
L
dp

)2 ∣∣E∗∣∣2
︸ ︷︷ ︸

Production

+ λ9
1

Pe2 τ ∗
c

(
L
dp

)2 ∂2〈ξ∗′
p ξ∗′

p 〉
∂x∗2︸ ︷︷ ︸

Collisional dispersion

+
[

1 + ec

3
1
τ ∗

c
+ 1

τ ∗
p

+ 1
τ ∗
ξ

(
2.8 − 20.39

1
Pe

τ ∗
c

(
L
dp

)2
)]−1

∂2〈ξ∗′
p ξ∗′

p 〉
∂x∗2︸ ︷︷ ︸

Kinetic dispersion

. (5.4)

And the dimensionless Maxwell equations can be written as

E∗ = −∇φ∗, (5.5)

∇2φ∗ = −Q∗
p, (5.6)
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where the dimensionless variables Q∗
p, 〈c′∗

p,iξ
′∗
p 〉, 〈ξ ′∗

p ξ ′∗
p 〉 E∗, x∗, t∗ are given by

Q∗
p = Qp

Qp,0
(5.7)

E∗ = E
Eref

(5.8)

〈c′∗
p,iξ

′∗
p 〉 =

〈c′
p,iξ

′
p〉

Qp,0Θp
(5.9)

〈ξ ′∗
p ξ ′∗

p 〉 = 〈ξ ′
pξ

′
p〉

Qp,0Qp,0
(5.10)

t∗ = t

√
Θp

L
(5.11)

x∗ = x
L

. (5.12)

The seven dimensionless parameters are expressed as

Pe = L
√

Θp

Dp
(5.13)

τ ∗
σ = ε0

σp

√
Θp

L
(5.14)

τ ∗
c = τc

√
Θp

L
(5.15)

τ ∗
p = τp

√
Θp

L
(5.16)

ue

uk
=

1
2
ε0E2

ref

1
2

npmpΘp

(5.17)

L
dp

(5.18)

ec. (5.19)

This non-dimensionalization process has revealed that the original system of equations
can be expressed as a function of seven independent dimensionless parameters: Pe, τ∗

c ,
τ ∗

p , τ ∗
σ , L/dp, ue/uk and ec. The dimensionless parameters τ ∗

ξ and ηcoll can be written as a
function of the previous dimensionless parameters

τ ∗
ξ = λ′Pe

(
dp

L

)2

(5.20)

ηcoll = λ′′ 1
Pe

L
dp

, (5.21)

with λ′ = 12 and λ′′ ≈ 3.256.
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The dimensionless analysis of this simple system has allowed us to highlight some
of the characteristics of the equations derived in the previous sections. First of all,
the dimensionless mean electric charge transport equations are mainly controlled by 2
parameters: Pe and τ ∗

σ . The first one corresponds to the inverse dimensionless dispersion
coefficient while, τ ∗

σ characterizes the strength of the triboconductivity effect. It is also
worth noting that, in our case, the dimensionless collision time (τ ∗

c ) is also equivalent to
a Knudsen number, as it represents the ratio between a collisional mean free path and
the system characteristic length scale. The dimensionless covariance transport equations
show that the relaxation characteristic time of this variable is a function of the collision
time (τ ∗

c ), the particle relaxation time (τ ∗
p ) and the variance relaxation time (τ ∗

ξ ), and this
relaxation characteristic time is guaranteed to be at least as small as the smallest of the
three previously mentioned times. Finally, analysing the dimensionless variance transport
equation, we note that its relaxation characteristic time will always be greater than τ∗

ξ .
This point is important because it shows that the charge variance will always have a larger
characteristic relaxation time than the charge–velocity covariance.

These equations allow us to derive the conditions in which some mechanisms are
more dominant than others. For example, one of the most important distinctions is the
difference between the dense or collisional regime and the dilute or kinetic regime. The
former is characterized for low kinetic transport and high collisional charge transfer and,
in contrast, the latter is associated with high kinetic transport and low collisional charge
transfer. Looking at the dimensionless form of the transport equation, a dense regime can
be achieved in configurations where the product between Pe and the covariance relaxation
time is small. Conversely, kinetic regimes correspond to configuration where this product
is large.

6. Full second-order transport equation model evaluation

In this section, we would like to evaluate the behaviour of this model given different
peculiar configurations. Because we want to study the impact of the charge–velocity
covariance and the charge variance, we would like to place ourselves in configurations
where these two effects are important. The previous section showed that these effects
should be important in the kinetic regime which may be characterized in terms of the
dimensionless parameters. Indeed, this regime is achieved when the product between
the covariance dimensionless relaxation characteristic time and Pe is very large. We
will, therefore, set Pe = 106 to ensure that we are always in the kinetic regime for most
covariance relaxation times. In order to simplify the analysis, we will neglect the effects
of the fluid–particle interactions and the triboconductivity effect (τ ∗

p = ∞ and τ ∗
σ = ∞).

However, we would like to keep the effect of the electrostatic force. Hence, we will choose
a large electric–kinetic energy ratio (ue/uk = 300). We also chose to consider elastic
particles with very small size compared with the macroscopic characteristic length scale:
ec = 1 and L/dp = 192. Finally, the only free parameter left is the dimensionless particle
collision time. Given that we have fixed L/dp, changing the dimensionless collision time
is equivalent to changing the volume fraction of particles in the one-dimensional domain.
We choose to study two different dimensionless collision time values: τ ∗

c = 10−4 and
τ ∗

c = 10−1. This means that our two test cases are always in the kinetic regime, but one
has a larger Knudsen number than the other. These values also ensure that the covariance
dissipation effect is controlled by the dimensionless collision time, as τ ∗

ξ ≈ 325 is several
orders of magnitude larger than τ ∗

c .
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Figure 1. Time dependent profiles of the predicted variables using the full second-moment transport equation
modelling approach at t∗ ≈ 48: (a) dimensionless charge, (b) dimensionless electric field, (c) dimensionless
charge–velocity covariance and (d) dimensionless charge variance for the test case with a dimensionless
collision time τ ∗

c = 10−4.

Figures 1 and 2 show the state of the four variables (Q∗
p, 〈c∗′

p ξ∗′
p 〉, 〈ξ∗′

p ξ∗′
p 〉 and E∗)

when max(Q∗
p) = 1

2 . The first thing we notice is that both systems will tend to reach
an equilibrium where all the variables reach a uniform constant state. We also observe
that the charge profile differs significantly from those predicted by Kolehmainen et al.
(2018b) and Montilla et al. (2020). This is because, in their derivation, they neglected
the effect of the charge variance in the modelling of the kinetic dispersion term. In our
case, the charge variance effect leads to the production of charge–velocity covariance.
Comparing the two studied cases, we remark a few differences between them. First of all,
the magnitude of the charge covariance is much higher in the system with larger collision
time. This is expected, as we know that the particle–particle collisions are a limiting factor
in the kinetic dispersion effect, by limiting the mean free path of particles. As for the
variance profile, we notice that there are two maximum values. These regions correspond
to the zones where there is a maximum of the charge gradient and covariance. This can be
explained by examining the variance transport equation (5.4), where we can see that one
of the production terms is the product between the charge gradient and the charge–velocity
covariance.

We can also compare this modelling approach with the one proposed previously by
Montilla et al. (2020) that relies on a single transport equation for the mean electric charge
and an algebraic gradient model for the charge–velocity covariance without any charge
variance term. For the sake of brevity, we will only compare against the test case with the
largest dimensionless collision time (τ ∗

c = 10−1), because it is in this configuration where
the differences are more noticeable because we are further from the hypothesis needed
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Figure 2. Time dependent profiles of the predicted variables using the full second-moment transport
equation modelling approach at t∗ ≈ 0.16 for the test case with a dimensionless collision time τ ∗

c = 10−1:
(a) dimensionless mean particle electric charge, (b) dimensionless electric field, (c) dimensionless particle
charge–velocity covariance, (d) dimensionless particle charge variance.

to derive the algebraic gradient model. Figure 3, shows a comparison of variable profiles
at the same dimensionless time. First, we observe that the maximum value of the mean
electric charge is lower when using an algebraic model for the covariance. This is due
to an overestimation of the kinetic transport term by neglecting the transient dynamic of
the covariance, especially at the beginning. Secondly, we remark that the profile of the
mean electric charge is different. The model proposed by Montilla et al. (2020) predicts a
trigonometric-like profile, while the full second-order transport equation model predicts a
more complex profile because it solves the covariance dynamics and it takes into account
the effect of the mean electrostatic force. Finally, this comparison also highlights that,
although the algebraic gradient model might overestimate the charge–velocity covariance
at the beginning, the opposite might be true later. In this case we observe that the gradient
model underestimates the covariance, this is mainly because overestimating the kinetic
transport reduced too quickly the mean charge gradient that produced the covariance but
also because that simple algebraic model completely neglected any mean electrostatic
force effect.

Given the simplicity of these test cases, we can easily analyse the importance of
the different phenomena taking place for the different variables. We can rearrange
the transport equations and write them as ∂〈·〉/∂t = ∑

i Ti, where Ti are the different
production, destruction, dispersion, electrostatic, kinetic and collisional terms. Then, we
can plot the profile for each of the Ti to measure their weights in the configuration
dynamics. This is done in figures 4 and 5, where we represent the profile for each
contribution for the three transport equations. First of all, figures 4(a) and 5(a) confirm
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Figure 3. Comparison between the full second-moment transport equation model and the model proposed by
Montilla et al. (2020) for the test case with a dimensionless collision time τ ∗

c = 10−1. (a) Dimensionless mean
particle electric charge. (b) Dimensionless electric field. (c) Dimensionless particle charge–velocity covariance.
(d) Dimensionless particle charge variance.

that the main charge transport mechanism in these cases is the kinetic transport due to the
random motion of particles. However, the larger the collision time, the stronger the kinetic
transport effects due to the larger particle mean free path.

For the covariance equation terms (figures 4b and 5b), the different terms are grouped
together into different categories: production, destruction, dispersion and electrostatic
force. Looking at these figures, the first thing we remark is that, in both cases, the main
contributor to the covariance dynamics is the electrostatic force. The strength of this
term is directly linked to the electric and kinetic energy ratio and the particle charge
variance. Another important contribution comes from the destruction terms. There are two
main mechanism that destroy the particle charge–velocity covariance: particle–particle
collisions limiting the mean free path and modifying the particle electric charge at each
collision, and the drag force that slows down the particle along its trajectory. The latter
was neglected in our simulations (τ ∗

p = ∞). Hence, the only destruction mechanism is
due to the particle–particle collisions. And finally, in both cases, we observe a small
production term. This production term is the generation of covariance due to the charge
gradient. Although the two cases are very similar in the aspects mentioned above, there
are important differences. First of all, we can see that the dispersion term obtained from
the algebraic modelling of the third-order correlation is more noticeable in the system with
larger collision time. The second noticeable difference is the temporal derivative term. In
the smaller collision time case, the destruction and production terms are in equilibrium,
making the transient term negligible. In other words, for small enough collision times, the
charge–velocity covariance is in a quasi-steady state. This is due to the fact that, in these
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Figure 4. Balance of the transport equations for the system with a lower collision time τ ∗
c = 10−4.

(a) Dimensionless mean particle electric charge. (b) Dimensionless particle charge–velocity covariance.
(c) Dimensionless particle charge variance.

test cases, the covariance characteristic dissipation time is controlled by the collision time
(because τ ∗

p = ∞ and τξ 
 τ ∗
c ). Hence, a small collision time ensures a rapid relaxation

towards a quasi-steady state characterized by an equilibrium between the production and
dissipation terms of the transport equation (3.1).

Finally, the analysis of the variance terms (figures 4c and 5c) also reveals important
information. First, we can note that both figures are very similar, and they only differ in
the magnitude of the terms. In these examples, two contributions stand out: the production
term related to the product between the charge gradient and the covariance (second term
on the left-hand side of (5.4)), and the dispersion term coming for the algebraic model of
the third-order correlation. In both cases, the modelling of the high-order correlation is an
important term that should not be neglected.

These simple test cases allowed us to study in detail the different mechanisms present in
the dynamics of a gas–solid flow with an electrostatic force. By analysing the individual
contributions in the transport equations, we have shown that, under certain configurations,
the transient term or the third-order moment can be neglected without losing any accuracy.
On the other hand, we have also highlighted that systems with highly electrically charged
particles require a correct modelling of the charge variance in order to predict the transport
generated by the electrostatic force.
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Figure 5. Balance of the transport equations for the system with a larger collision time τ ∗
c = 10−1.

(a) Dimensionless mean particle electric charge. (b) Dimensionless particle charge–velocity covariance.
(c) Dimensionless particle charge variance.

7. Reduced-order models

In this section, we would like to explore if we can reduce the complexity of the model,
while accounting for as many physical phenomena as possible.

7.1. Full coupled algebraic model
The simplest approach could be to try to extend the algebraic model proposed by Montilla
et al. (2020) to take into account the electric charge variance. This will reduce the model to
a single partial differential equation with two algebraic expressions for the charge–velocity
covariance vector and the charge variance. In order to obtain this more general algebraic
model, we can follow the methodology used to derive the previous algebraic model. First,
we simplify the charge–velocity covariance and the charge variance equations neglecting
the contributions of the Lagrangian derivative, the velocity gradient, the third-order
moments and the dispersion terms. This reduces the covariance transport equation (3.1)
and the variance transport equation (4.1) to the following system of algebraic equations:

{
D1〈c′

p,iξ
′
p〉 + D2,i〈ξ ′

pξ
′
p〉 = D3,i

F1,i〈c′
p,iξ

′
p〉 + F2〈ξ ′

pξ
′
p〉 = F3

(7.1)
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where

D1 = 1 + ec

3
1
τc

+ 1
τp

+ (3 − ec)

5
1
τξ

(7.2)

D2,i = − np

mp
Ei (7.3)

D3,i = −
(

1 + λ2.2ec

√
Θp

dp
Dp

)
np

∂Qp

∂xi
+ λ2.1ec

√
Θp

dp
σpEi (7.4)

F1,i = 2np
∂Qp

∂xi
(7.5)

F2 = np

(
1
τξ

− λ3.1(Dp)
2 τc

d4
p

)
(7.6)

F3 = λ3.2(σp)
2 τc

npd2
p

EiEi. (7.7)

This system of equations can be solved to find an algebraic model coupling the particle
charge–velocity covariance and the charge variance

〈c′
p,iξ

′
p〉 = D3,i

D1
− D2,i

D1
〈ξ ′

pξ
′
p〉, (7.8)

〈ξ ′
pξ

′
p〉 = F3D1 − F1,iD3,i

D1F2 − D2,jF1,j
. (7.9)

Equations (7.8) and (7.9) give us a set of algebraic expressions that can be used to close
the mean particle electric charge transport equation. With these expressions, we no longer
have to solve a system of multiple partial differential equations (PDEs). We would also
like to remark that this model reduces to the aforementioned simpler algebraic model of
Montilla et al. (2020) if 〈ξ ′

pξ
′
p〉 = 0. So this model is indeed a more general algebraic

model including the effects of the charge variance.
However, we would like to note that this algebraic closure law could produce

non-physical results. In particular, the positive sign in (7.9) cannot be guaranteed. In
addition to this, the denominator of this equation could also approach zero, leading to
indeterminate variance values in some regions. A clear example of this can be shown
if we look at the variance prediction for the initial condition of the two cases studied
earlier (figure 6a,b). These figures show that this coupled algebraic model could lead to an
unphysical prediction even for valid initial conditions. Given this behaviour, we cannot use
this approach to simulate these two test cases. In our tests, we remarked that this problem
is more prone to occur when the variance term is not negligible.

7.2. Semi-algebraic model
Another possible reduced-order model can be derived by only simplifying one of the
second-order moment transport equations. Here, we choose to simplify the charge–velocity
covariance transport equation to an algebraic expression. Therefore, the system is governed
by the mean charge transport equation (2.24), the variance transport equation (4.1) and the
algebraic simplification for the covariance (7.8). The reason behind this choice is that, as
shown in the dimensionless analysis, the variance characteristic relaxation time will always
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Figure 6. Initial variance profile predicted by the coupled algebraic model for the two cases studied;
(a) τ ∗

c = 10−4, (b) τ ∗
c = 10−1.

be larger than the covariance characteristic relaxation time. Therefore, the quasi-steady
state hypothesis can be reached first for the covariance but it is harder to satisfy for the
variance.

We tested this approach for the same two configurations we have been studying in this
paper. The first thing we would like to point out is that, unlike the previous model, this
semi-algebraic model produced meaningful physical results at all times. Figures 7 and
8 show a comparison between this semi-algebraic model and the solution of the full
second-order transport equation model. We observe that, in the smaller collision time
configuration, the proposed semi-algebraic model matches perfectly the result obtained
by solving the full model. However, for the larger collision time configuration, the
semi-algebraic model fails to correctly reproduce the dynamics.

In order to explain the success and failure of this model, we need to look at the
hypotheses taken to reduce the covariance transport equation to an algebraic expression.
The algebraic expression is obtained by assuming that the temporal derivative and any
dispersion term can be neglected. Therefore, the semi-algebraic model should produce
good results when these two assumptions hold simultaneously. This is exactly the case
for the small collision time configuration. The term-by-term analysis of the covariance
terms (figure 4b) showed that the transient and the kinetic dispersion terms are negligible
compared with the production and destruction terms. In this case, the small collision time
imposes also a very small relaxation characteristic time for the covariance, which ensures
the quasi-steady state, corresponding to equilibrium between production and destruction
terms. Also, the covariance dispersion coefficient is limited by the smallest of the particle
collision time, the particle relaxation time and the variance destruction time. In our case,
the very small particle collision time ensures a very weak covariance dispersion coefficient
that could be neglected.

However, in the larger collision time configuration, the semi-algebraic model is not a
suitable alternative. In this case, the assumptions mentioned above are no longer valid and
therefore none of the terms in the equation can be neglected. The large collision time also
means that the covariance characteristic destruction time is very large which means that
no quasi-steady state can be reached. Also, the kinetic dispersion term is stronger as the
collision times becomes larger. This is confirmed by looking at the term-by-term analysis
of this case (figure 5b). We can clearly see that both the dispersion and temporal derivative
terms are relevant to correctly characterize the dynamics of the covariance. In our example,
we see that the semi-algebraic model has overestimated the mean charge transport.
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Figure 7. Comparison between the predictions of the full transport equation model and the semi-algebraic
model in the test case with τ ∗

c = 10−4. (a) Dimensionless mean particle electric charge. (b) Dimensionless
electric field. (c) Dimensionless particle charge–velocity covariance. (d) Dimensionless particle charge
variance.

This is due to the overestimation of the kinetic transport imposed by the quasi-steady-state
hypothesis.

Given these results, we wanted to determine the validity region in which the
semi-algebraic model is a valid alternative to model the dynamics of a gas flow system
with electrostatic charge. In order to do this, we performed several simulations varying
the different dimensionless numbers to see the impact on the quality of the semi-algebraic
model. According to our results, two of the most important parameters to determine the
suitability of the semi-algebraic model are τ ∗

c and Pe. Using our simulations, we were
able to distinguish the conditions in which the semi-algebraic model is a valid approach
to model these kinds of systems, as shown by figure 9. We have also marked the two
test cases we have studied in this article. As we can see, the boundary is a nonlinear
curve. For high Pe values we only need to ensure that the collision time is small enough
to guarantee rapid relaxation towards the steady state and a weak kinetic dispersion for
the charge covariance. However, as Pe decreases, the electric charge transport due to
collision increases. So the collision time has to be small enough to continue to ensure
the quasi-steady-state hypothesis in the charge–velocity covariance transport equation.

8. Conclusions

In this work, we have extended the Eulerian modelling of the mean electric charge
transport equation. The simple algebraic gradient model for the electric charge kinetic
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Figure 8. Comparison between the predictions of the full transport equations model and the semi-algebraic
model in the test case τ ∗

c = 10−1. (a) Dimensionless mean particle electric charge. (b) Dimensionless electric
field. (c) Dimensionless particle charge–velocity covariance. (d) Dimensionless particle charge variance.
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Figure 9. Suitability regions of the semi-algebraic model as a function Pe and τ ∗
c . The two marked points

correspond to the test cases studied in this work.

flux term proposed in previous works was replaced with a more complete model using
the full charge–velocity covariance transport equation. The charge variance term, which
was neglected in the algebraic model, was closed using also the corresponding equation
obtained in the frame of the kinetic theory of rapid granular flow. We have also
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proposed closure laws for the third-order charge and velocity correlations appearing in
the covariance and variance transport equations.

This more complete approach was analysed in a one-dimensional periodic domain
configuration. The simplicity of this test case allowed us to perform a dimensional analysis
to obtain seven independent dimensionless numbers governing the system. In this work,
we focused our attention on the kinetic regime of gas–solid flows, as it is in these
configurations where the modelling of the particle charge–velocity covariance and particle
variance is important. Our results showed that, in order to be in the kinetic regime, the
product between the inverse of dimensionless dispersion coefficient and the dimensionless
covariance relaxation time must be large.

We chose to study two different test cases in the kinetic regime, one with a low
dimensionless particle collision time and one with a large particle collision time. But
both under strong effects of the electrostatic forces. Our results showed that, when the
electrostatic force is strong enough, the particle charge variance needs to be correctly
modelled to capture the kinetic transport due to the mean electric field. We also showed
that, when the particle collision time is small enough, the particle charge–velocity
covariance is in a quasi-steady state, characterized by a local equilibrium between
production and dissipation, and the third-order correlation effect is negligible. However,
for large enough particle collision times, this quasi-steady state is not present, and the
modelling of the high-order moments is important.

Because we were aware that adding and solving these additional transport equations may
be too computationally expensive for practical applications, we also proposed and tested
some possible simplifications. Our first attempt was to derive a coupled algebraic model
that takes into account the electric charge variance. Although, mathematically feasible,
the final result proved to be non-physical under some conditions, especially when the
electrostatic force is strong. This means that this coupled algebraic model cannot be
used when the variance term is dominant, which goes against the main objective of the
model. Due to this important shortcoming, we proposed a different alternative in which
the charge–velocity covariance retains the algebraic form including the variance term,
however, the charge variance is obtained solving its transport equation. This intermediary
model showed excellent agreement compared with the full model on the test case with
a low particle collision time, but it completely failed on the test case with a larger
particle collision time. This is because larger collision times imply a non-equilibrium
particle charge–velocity covariance dynamics, which goes against one of the assumptions
used to derive the algebraic model. Given these results, we also wanted to find under
which conditions this semi-algebraic model could be suitable. In our study, we found
that the two most important parameters to predict the suitability of this semi-algebraic
approach are Pe and τ ∗

c . We performed several simulations varying these parameters, and
we were able to determine under which conditions this reduced-order model can safely be
used.

Finally, in order to derive the model presented in this work, a significant number of
assumptions and hypotheses have been made and the lifting of these restrictions could
be the subject of future studies. Some aspects should correspond to direct extensions
of the proposed approach, such as the consideration of polydispersion or the effect of
the short-range electrostatic particle–particle interaction on the collision dynamics. But
others, according to our knowledge, seem to be more complex to take into account, such
as the treatment of the polarization of the particles during the collisions or the modelling
of the spatial and temporal fluctuations of the electric field due to the instantaneous
distribution of the particles.
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Appendix A. Algebraic gradient closure model for the third-order moment 〈ξ ′
pc′

p,ic
′
p,j〉

The transport equation of the particle charge–velocity covariance 〈ξ ′
pc′

p,i〉 depends on a
higher-order statistical moment 〈ξ ′

pc′
p,ic

′
p,j〉. In order to close the third-order statistical

moment, we can use the same strategy employed to approximate the second-order
statistical moments: an algebraic model. For this, we write the transport equation for this
third-order moment using the general mean transport equation with φ = ξ ′

pc′
p,ic

′
p,j

np
D〈ξ ′

pc′
p,ic

′
p,j〉

Dt
+ npSp,ijk

∂Qp

∂xk
+ np〈ξ ′

pc′
p,k〉

∂Rp,ij

∂xk
+ npRp,ik

∂〈ξ ′
pc′

p,j〉
∂xk

+ npRp,jk
∂〈ξ ′

pc′
p,i〉

∂xk
+ np

2
τp

〈ξ ′
pc′

p,ic
′
p,j〉 − np

mp
〈ξ ′

pc′
p,jξ

′
p〉Ei

− np

mp
〈ξ ′

pc′
p,iξ

′
p〉Ej + np〈c′

p,kc′
p,jξ

′
p〉

∂Up,i

∂xk
+ np〈c′

p,kc′
p,iξ

′
p〉

∂Up,j

∂xk

= C(ξpc′
p,ic

′
p,j) − QpUp,iC(cp,j) − QpUp,jC(cp,i) − 〈ξ ′

pc′
p,i〉C(cp,j)

− 〈ξ ′
pc′

p,j〉C(cp,i) − Rp,ijC(ξp), (A1)

with Sp,ijk = 〈c′
p,ic

′
p,jc

′
p,k〉.

Here, the equations of 〈ξp〉, 〈cp,i〉 〈ξ ′
pc′

p,i〉 and 〈c′
p,ic

′
p,j〉 have been used to further simplify

the final expression. We have also treated the force term in the same way as for the
covariance equation: the undisturbed flow properties and the macroscopic electric field
are assumed to be uncorrelated with the particles fluctuant electric charge.

In order to derive an algebraic model, we need to close the collision terms, in particular
the term involving the third-order moment. To be able to derive an algebraic model we
need a more general model to take into account the particle charge–velocity correlation in
the collision integrals. We therefore propose an extension of the collision model proposed
by Montilla et al. (2020). In this work, we suppose that the conditional mean 〈ξp1 | cp1〉
can be written as

〈ξp | cp〉 = A + Bic′
p,i + Cijc′

p,ic
′
p,j. (A2)
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The tensors A, Bi and Cij are calculated so the first three statistical moments are satisfied

∫
R3

〈ξp | cp1〉f dcp = np〈ξp〉, (A3)∫
R3

c′
p,i〈ξp | cp〉f dcp = np〈c′

pξp〉, (A4)∫
R3

c′
p,ic

′
p,j〈ξp | cp〉f dcp = np〈c′

p,ic
′
p,jξp〉. (A5)

If we assume that the particle-velocity probability density function follows a Gaussian
distribution, the fourth-order tensor 〈c′

p,ic
′
p,jc

′
p,kc′

p,l〉 can be written as

〈c′
p,ic

′
p,jc

′
p,kc′

p,l〉 = Rp,ijRp,kl + Rp,ikRp,jl + Rp,ilRp,jk. (A6)

Assuming an isotropic kinetic stress tensor, we obtain

〈c′
p,ic

′
p,jc

′
p,kc′

p,l〉 = Θ2
p
(
δijδkl + δikδjl + δilδjk

)
. (A7)

This allows us to deduce the expressions for the tensors A, Bi and Cij

A = 〈ξp〉 − 1
2Θp

〈ξpc′
p,ic

′
p,j〉, (A8)

Bi = 1
Θp

〈c′
p,iξp〉, (A9)

Cij = 1
Θ2

p
〈c′

p,ic
′
p,jξp〉. (A10)

This nonlinear model reduces exactly to the already published linear model if we assume
〈ξpc′

p,ic
′
p,j〉 = 0.

With this model, we can now compute the right-hand side of (A1). For this term, we
will assume a isotropic kinetic stress tensor. We also neglect any velocity and granular
temperature gradient, as well as any cross-product term between Qp, Ei, 〈c′

p,iξ
′
p〉, 〈ξ ′

p〉,
〈ξ ′

pξ
′
pcp,i〉
Right-hand side

= −np

τc
[λ2.4(1 + ec) − λ2.5(1 + ec)

2]〈ξ ′
pc′

p,ic
′
p,j〉

+ np

τc
[−λ2.7(1 + ec) + λ2.8(1 + ec)

2]〈ξ ′
pc′

p,mc′
p,m〉δij − λ2.6

np

τξ

〈ξ ′
pc′

p,ic
′
p,j〉

− npdpΘ
1/2
p (1 + ec)

1
τξ

[
λ2.9

∂〈ξ ′
pc′

p,i〉
∂xj

+ λ2.9
∂〈ξ ′

pc′
p,j〉

∂xi
+ λ2.10

∂〈ξ ′
pc′

p,n〉
∂xn

δij

]

− λ2.11npdpΘ
1/2
p (1 + ec)

2 1
τξ

[
∂〈ξ ′

pc′
p,n〉

∂xn
δij +

∂〈ξ ′
pc′

p,i〉
∂xj

+
∂〈ξ ′

pc′
p,j〉

∂xi

]
(A11)

with λ2.4 ≈ 6.667, λ2.5 ≈ 1.387, λ2.6 ≈ 3.201, λ2.7 ≈ 0.2667, λ2.8 ≈ 0.2607, λ2.9 ≈
10.68, λ2.10 ≈ 208.2 and λ2.11 ≈ 0.2048.
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Equations (A1) and (A11) give the form of a simple governing equation for the
third-order moment 〈ξ ′

pc′
p,ic

′
p,j〉. To extract an algebraic closure model, we simplify the

left-hand side of (A1) by neglecting the contribution of the Lagrangian time derivative,
the velocity and kinetic stress gradient and the third-order tensors Sp,ijk and 〈ξ ′

pξ
′
pc′

p,i〉.
With these assumptions, we can write (A1) as

K1〈ξ ′
pc′

p,ic
′
p,j〉 + K2〈ξ ′

pc′
p,mc′

p,m〉δij = Dij, (A12)

with

K1 = np

[
1
τc

(λ2.4 (1 + ec) − λ2.5 (1 + ec)
2) + 1

τp
+ λ2.6

1
τξ

]
, (A13)

K2 = −np

τc
[−λ2.7 (1 + ec) + λ2.8 (1 + ec)

2], (A14)

Dij = npRp,jk
∂〈ξpc′

p,i〉
∂xk

+ npRp,ik
∂〈ξpc′

p,j〉
∂xk

− npdpΘ
1/2
p (1 + ec)

1
τξ

[
λ2.9

∂〈ξ ′
pc′

p,i〉
∂xj

+ λ2.9
∂〈ξ ′

pc′
p,j〉

∂xi
+ λ2.10

∂〈ξ ′
pc′

p,n〉
∂xn

δij

]

− λ2.11npdpΘ
1/2
p (1 + ec)

2 1
τξ

[
∂〈ξ ′

pc′
p,n〉

∂xn
δij +

∂〈ξ ′
pc′

p,i〉
∂xj

+
∂〈ξ ′

pc′
p,j〉

∂xi

]
. (A15)

In a three-dimensional flow, (A12) can be solved for the third-order moment

〈ξ ′
pc′

p,ic
′
p,j〉 = 1

K1
Dij − K2

K1 (K1 + 3K2)
Dmmδij. (A16)

Appendix B. Algebraic gradient closure model for the third-order moment 〈ξ ′
pξ

′
pc′

p,i〉
Similarly to the particle charge–velocity covariance equation, the particle charge variance
equation is function of a higher statistical moment 〈ξ ′

pξ
′
pc′

p,i〉. To close this term, we follow
the same methodology used to close the previous third-order moment. First, we write
the full transport equation for this third-order moment using the general mean transport
equation with φ = ξ ′

pξ
′
pc′

p,i

np
D〈ξ ′

pξ
′
pc′

p,i〉
Dt

+ 2np〈ξ ′
pc′

p,ic
′
p,j〉

∂Qp

∂xj
+ np〈c′

p,ic
′
p,j〉

∂〈ξ ′
pξ

′
p〉

∂xj

+ 2np〈ξ ′
pc′

p,j〉
∂〈ξ ′

pc′
p,i〉

∂xj
+ np

τp
〈ξ ′

pξ
′
pc′

p,i〉 − np

mp
〈ξ ′

pξ
′
pξ

′
p〉Ei

+ np〈ξ ′
pξ

′
pc′

p,j〉
∂Up,i

∂xj
= C(ξ ′

pξ
′
pc′

p,i) − 2〈ξ ′
pc′

p,i〉C(ξ ′
p) − 〈ξ ′

pξ
′
p〉C(c′

p,i). (B1)

Here, the force term was treated using the same methodology as in Appendix A.
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Assuming an isotropic kinetic stress tensor and neglecting the particle mean velocity
gradient and the granular temperature gradient, we obtain a simplified form for the
right-hand side of (B1)

C(ξ ′
pξ

′
pc′

p,i) − 2〈ξ ′
pc′

p,i〉C(ξ ′
p) − 〈ξ ′

pξ
′
p〉C(c′

p,i)

= −
[

1
3
(1 + ec)

1
τc

+ (2.806 − 1.017γΘ2/5
p )

1
τξ

]
np〈ξ ′

pξ
′
pc′

p,i〉. (B2)

Similarly to the previous algebraic gradient model, we simplify the left-hand side of
(B1) by neglecting the contribution of the Lagrangian time derivative, the velocity and
kinetic stress gradient and the third-order tensors Sp,ijk and 〈ξ ′

pc′
p,ic

′
p,j〉. We will also drop

any nonlinear term involving 〈ξ ′
pcp,i〉, Ei or Qp. These assumptions lead us to the following

closure model for the third-order moment:

np〈ξ ′
pξ

′
pc′

p,i〉 = npRp,ij

1
3

(1 + ec)
1
τc

+ 1
τp

+ (λ3.4 − λ3.5γΘ
2/5
p )

1
τξ

∂〈ξ ′
pξ

′
p〉

∂xj
(B3)

with λ3.4 ≈ 2.806 and λ3.5 ≈ 1.017.
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