
BULL. AUSTRAL. MATH. SOC. 4 6 B 2 0 , 46B22, 46E40

VOL. 48 (1993) [177-186]

ASYMPTOTIC-NORMING AND MAZUR INTERSECTION
PROPERTIES IN BOCHNER FUNCTION SPACES

ZHIBAO H U AND B O R - L U H LIN

A Banach space X has the asymptotic-norming property if and only if the
Lebesgue-Bochner function space LF(n, X) has the asumptotic-norming property
for p with 1 < p < oo. It follows that a Banach space X is Hahn-Banach smooth
if and only if Lp(/x, X) is Hahn-Banach smooth for p with 1 < p < oo. We also
show that for p with l < p < o o , ( l ) i f X has the compact Mazur intersection
property then so does £p(/x, X); (2) if the measure /i is not purely atomic, then
the space Lp(fi, X) has the Mazur intersection property if and only if X is an
Asplund space and has the Mazur intersection property.

Unless otherwise stated, we always assume X is a Banach space, 1 < p, q < oo
with l / p + I/? = 1, and (fi, S, fj.) is a positive measure space so that E contains an
element with finite positive measure. We use Sx and Bx to denote the unit sphere
and the unit ball in X respectively.

The asymptotic-norming property (ANP) was introduced by James and Ho [12].
There are three different kinds of asymptotic-norming properties, and each of them
implies the Radon-Nikodym property [12]. Ghoussoub and Maurey [3] proved that for
separable Banach spaces the asymptotic-norming property is equivalent to the Radon-
Nikodym property. However, in general, it is an open question whether the two prop-
erties are equivalent.

A set $ in X* is a norming set for X if $ C Bx* and $ norms X, that is,
||x|| = sup/(x) for all x in X. A sequence {xn} is asymptotically normed by $ if for

/e*
each e > 0, there are TV ^ 1 and / € $ such that f(xn) > ||xn|| — e, for all n ^ N.
We say that X has the %-ANP-I (respectively S-ANP-II; or S-ANP-M) if every
sequence {xn} in Sx that is asymptotically normed by $ is convergent (respectively
has a convergent subsequence; or f] co{xk: k J? n} ^ 0). And we say that (X, || ||)

has the ANP-K for K =1, II or III if there is a norming set $ for (X, || ||) such that
X has the S-ANP-K. The space X has the ANP-K for K = I, II or III if there is an
equivalent norm || || on X such that (X, \\ ||) has the ANP-K.
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178 Z. Hu and B. Lin [2]

As was shown in [5] (see Lemma 1 for detail), the ANP is related to property (G)
and the Kadec property which can be described respectively in terms of denting points
and points of continuity. Let C be a subset of X. A point x is said to be a point of
continuity of C if x £ C and the relative weak and norm topologies on C coincide at
x. And a point x is called a denting point of C if x £ C and the family of all slices of C
containing a: is a neighbourhood base of x with respect to the relative norm topology
on C, where a slice of C is given by

S(x", C,6) = {xeC: as*(as) > supx*{C) - 6}

for some functional x* in X* and 6 > 0. The space X is said to have the property
(G) (respectively the Kadec property) if every unit vector in X is a denting point
(respectively a point of continuity) of the unit ball of X.

LEMMA 1. [5] Suppose X is a Banach space and $ is a norming set for X.

(1) The space X has the $-ANP-III if and only if every sequence {xn} in Sx

that is asymptotically normed by $ has a weakly convergent subsequence.
(2) The space X has the $-ANP-III if and only if X** \ X = {x** : x** £

X**,\\x**\\>suV{x**(x*):x*£$}}.
(3) The space X has the &-ANP-I if and only if it has the $-ANP-III and

the property (G).
(4) The space X has the $ -ANP-II if and only if it has the $ -ANP-III and

the Kadec property.
(5) The space X has the ANP-II if and only if it has the ANP-III and it

admits an equivalent norm with the Kadec property.

REMARK. It is a result of James and Ho [12] that the £p-product (1 ^ p < oo) of spaces
with ANP-II has the ANP-II. Using Lemma 1, it can be proved that the £p product
(1 < p < oo) of spaces with ANP-K has the ANP-K for K = I, II or III.

The concept of ANP can be used to characterise Hahn-Banach smoothness, the
weak* Kadec-Klee property, and property (G*) (see Lemma 2 for detail). A Banach
space X is said to be Hahn-Banach smooth if in X*", x* € X* and ||a;* +s ' L | | =
||s«5*|| = 1 imply z x = 0, where z x £ X"* with x1- \x= 0 [17]. A dual space X* is
said to have the property (G*) if every unit vector in X* is a weak* denting point of
the unit ball of X*, that is, for every unit vector x* in X*, the family of all weak*
slices of Bx* containing x* is a neighbourhood base of x* with respect to the relative
norm topology on Bx', where a weak* slice of Bx- is given by

S(x, Bx., 6) = {y* £ Bx.: y*{x) > sup x{Bx.) - 6}

for some x in X and 8 > 0. We denote by w*-dent Bx* the set of weak* denting
points of BX' •
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[3] Asymptotic norming properties 179

LEMMA 2 . [5, 6] The following assertions are true for any Banach space X .

(1) X is Hahn-Banach smooth if and only if X* has the $ -ANP-III for some

norming set $ in Bx •

(2) X* has the property (G*) if and only if X* has the $-ANP-Ifor some

norming set $ in Bx •

Using techniques from [7] and results from [9], we show in Theorem 6 and Theorem
7 that ANP-K for K = I, II, or III can be lifted from X to L'bi, X) with no restriction
on X. As a consequence we obtain one of the main results of [7] in Corollary 8.

LEMMA 3 . Suppose X has the $ -ANP-K for K = I, II or III. If $i is a norming

set for X contained in co($ U — $) , then X has the $1 -ANP-K. In particular, if

$! = co($ U {0}) \ Sx, then X has the $ j -ANP-K.

PROOF: If X has the $-ANP-III, then by Lemma 1, for every x" in X**\X we
have Has**|| > sup{x"(s:*): x* G $} and ||-x**|| > sup{-x"(x*): x* G * } . Hence

| |x"| | > sup{x"(x*): x* 6 co($ U - $ ) } ^ sup{z"(x*): x* € $1}.

So by Lemma 1, the space X has the $i -ANP-III.

If X has the $-ANP-I (respectively 3>-ANP-II), then by Lemma 1, it has property
(G) (respectively the Kadic property), and it also has the $1 -ANP-III because it has
the $-ANP-III. By the same lemma, the space X has the $i-ANP-I (respecitvely
$i -ANP-II), and the proof is complete. D

Note that Lq(fi, X") is a subspace of Lp(fi, X)* and for any / € Lq(fi, X*) and
g € L*(/i, X), the action of / on g is defined by (/, g) = Jn (/(<), g(t))d(J,{t) [1]. A
norming set $ for X induces in a natural way a norming set for Lp([i, X), namely the
set

: *• £ $ , £ ; £ E, Et n Ej = <j> for i # j , \{ > 0 with £ Af^(^) = 1

In order to prove our main result, we use a construction of norming sets for Lp(fi, X)
which is a modification of the one just mentioned. Let $i = co ($ U {0}) \ Sx , and for
each n ^ 1, let

{
Y, *i*iXB{ • x*i € * i , T!—— ^ | |< | | < -?—, Ei G E, Ei1

i > 0 with J^ \\ti{Ei) = \ \ .
i=i J
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Then A ( # , /i, q) = \J A n is a norming set for Lp(fi, X). Let g G A n ; then in

x, X*) the norm of g is less than or equal to n/(n + l ) . If t G suppy, that is
g(t) ^ 0, then g(t) = \x* for some A > 0 and x* G $ : such that (n - l)/n < ||x*|| <
n/(n + 1). Thus

n||z*

because 0 ^ (n — l)/(n ||x*||) ^ 1. So we have proved the following lemma.

LEMMA 4 . Suppose 3> is a norming set for X. Then A($, fi, q) — (J An is a

norming set for Lp(fi, X) such that if g G An and t € suppj, then

LEMMA 5 . Suppose X has the &-ANP-III, and V is a subspace of X* which
norms a closed subspace E of X . Let {xn} be a sequence in X such that for every x*
in V the sequence {x*(xn)} converges. Let x** be a weaic* cluster point of {xn}. If
\\x**\\ > \\xn\\ for n > 1, and \\x**\\ = sup{z"(x*): x* G $ n V}, then x** £ E and
{xn} converges weakly to x** .

PROOF: It is obvious that h'mz*(xn) = x**(x*) for x* in V. Since ||x**|| ^ | |xn| |
n

for n ^ 1, and ||x**|| = sup{x**(x*); x* G $D V}, we have lim ||xn|| = ||x**||. For each
n

e > 0, there is x* G $ n V such that x**(x') > ||x**|| - e. Then there is N ^ 1 such
that x*(xn) > ||x**|| — e ^ ||a;n|| —e, for all n ^ TV. Without loss of generality, we may
assume that xn ^ 0 for n ^ 1. Then {xn/ ||xn||} is a sequence in Sx asymptotically
normed by $ . By Lemma 1 every subsequence of {xn/ ||xn||} has a weakly convergent
subsequence. Since lim ||xn|| = ||x**|| jL 0, every subsequence of {xn} also has a weakly

n

convergent subsequence Because V norms E and the sequence {x*(xn)} converges
for every x* in V, the sequence {xn} has to be weakly convergent. Therefore {xn}
converges weakly to x** and x** G E. This completes the proof. D

THEOREM 6 . Let $ be a norming set for X and K = I or III. Then X has the
&-ANP-K if and only if L'in, X) has the A($, fi, q)-ANP-K.

PROOF: Choose £ e E such that 0 < n(E) < oo. Define the function J: X ->
Lp(fj., X) by J(x) = p(E)~ XXE- It is obvious that J is an isometry. If a sequence
{xn} in Sx is asymptotically normed by $, then {Jxn} is asymptotically normed by
A($, fi, q). Thus X has the S-ANP-K if £"(/*, X) has the A($, /x, 9)-ANP-K for
K = I, II or III.
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[5] Asymptotic norming properties 181

Now suppose X has the $-ANP-III. Let {fn} be a sequence in SLP^X) which is
asymptotically normed by A($ , /x, q). We need to show that f) co{fk'- k ^ n } ^ 0.

Let {gn} be a sequence in A($ , jt, q) such that for fc ̂  1

liminf / (£*(<), fn{t))dn{t) > l - \ -
n Jn k

Then lim | | ( / n + / m ) / 2 | | = 1. The uniform convexity of Lp(/i) implies that the
n1 m

sequence {||/n(-)ll} converges in norm to some / in Si,p(M). By Lemma 3 in [8]
there is a sequence {f'n} in Lp(ii, X) such that ||/i(OII — / ( 0 for all * in fi, and
lim ||/^ — / n | | = 0 . It is obvious that {f'n} is asymptotically normed by A ( $ , fi, q),

n

and Pi co{fn: k ^ n} = f] co{/*: k ^ n } . Thus there is no loss of generality in

assuming that | | /n(0ll = / ( 0 ^Or ail ' in fi and n ^ 1. We may also assume that
the subspace Xi of X spanned by (J fn(Cl) is separable. Hence there is a separable

subspace V of X* which contains gn{£l) for n ^ 1 and norms X. By Lemma 5 in [7]
there are hn G co{/fc: Jfc ^ n} for each n ^ 1, and Qi G S satisfying ^i(fi \ fii) = 0
such that {x*(hn(t))} converges for every t in f2i and z* in V. Without loss of gen-
erality we may assume that $7 = Qi. For each t in f2, let /i(i) be a weak* cluster
point of {hn(i)}. Then \\h(t)\\ < /(<) and ]imx*(hn(t)) = h(t)(x*) for all t G ft and

n

x* G V. By the Lebesgue Convergence Theorem, for every g € Lq(n, V), we have

/ , g(t))dn(t) = Km /

In particular, for each Jfe ̂  1, we have

/ (&(*), gk(t))dfi(t) = lim /

Next we show that {fcn} weakly converges to /i, which would imply that
0 co{/*:fc>n}^0.

CLAIM 1. For almost all t in fi, we have

\\h(t)\\ = f{t) = sup{h(t)(x*): x* G * j 0 V}.

By the definition of A($, /*, 9) there is m* ^ 1 for each k ^ 1 with ĵfc G A m t .
Since

1 - T < /* Jn
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182 Z. Hu and B. Lin [6]

we have limmj. = oo, and lim{(/i(), gk()) - /(•) ||5*()||} = 0 in L1^), and

lim ||<7*(')ll — f(')P~ m ^'(/O- Passing to a subsequence if necessary, we may as-

sume that there is Qz G E such that fi(Q \ fit) = 0, and both limjb{(M0> <7*(0) ""

/(*) lla*(*)ll> = ° a n d U m IMOII = fit)1"1 for t in n2 . If t G n2 n supp/, then

J) = H- (MO, i £ | | ) = lim (MO. ^ T T £ ^ IIMOII •

Since m !

whenever 5fc(t) 7̂  0, we have

IIMOII = / ( 0 = sup{fc(0(**): *' e *i n

whenever < G f?2 H supp/ . Thus the claim holds.
Without loss of generality, we may assume that for all i in H,

HMOII = / ( 0 = sup{fc(<)(*'): *' € *i n V}.

Then ||ftn(<)|| < HMOII for all < in 12 and n ^ 1. By Lemma 5, we have h(t) G -Xi and
{/in(<)} weakly converges to h(t). Thus /i is separably valued, and for every x* in X*,
the real valued function x*(/i(-)) is measurable. It follows from the Pettis Measurability
Theorem and the fact that ||MOII = / ( 0 for all < in fi, that h G Z,p(/i, X).

CLAIM 2. The sequence {hn} weakly converges to h.
To prove this, let T G Lp(fi, X)*. There is a function g from Q to X*

such that g is weak* measurable, ||<7(-)|| G L9(fi), and for any yj G Lp((i, X),
T(<p) — /n (</(<)» v(0)<^M(0 (2? 11]- Applying the Lebesgue Convergence Theorem
to the sequence {g(-)(hn(-))} in Lx{fi), we have

T{h) = f = lim /
Jn

Hence {hn} weakly converges to h as claimed.
Since {hn} weakly converges to h, we have h G f) co{/t: k ^ n}. Therefore

X) has the A(#, /x, 9)-ANP-III.
Finally suppose X has the $-ANP-I. Then L'(fi, X) has the A($, /x, g)-ANP-III.

By Lemma 1, the space X has the property (G). So Lp(fi, X) also has the property
(G) [13]. By Lemma 1 again, we conclude that Lp(fi, X) has the A($, fi, g)-ANP-I,
and hence the proof is complete. D
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[7] Asymptotic norming properties 183

It follows from Theorem 6 that (X, || ||) has the ANP-K if and only if
(Lp(/x, X), || ||) has the ANP-K for K = I or III. However if (X, || ||) has the ANP-II,
the space (V(fi, X), || ||) may not have the ANP-II. For example, the space £i with
the usual norm has the ANP-II [12], in fact it has the B^-ANP-II, but if (ft, E, fi)
is not purely atomic, then since li is not strictly convex, Lp(n, £i) does not have the
Kadec property [16], so by Lemma 1, (£p(/x, X), || ||) does not have the ANP-II.

THEOREM 7 . A BanacA space X has the ANP-II if and only if £p(/i,-.Y) has the
ANP-II.

PROOF: Since X is isomorphic to a subspace of £*(ft, X), if Lp(n, X) has the
ANP-II then X also has the ANP-II. Now suppose X has the ANP-II, then by Theorem
5, the space Lp(fi, X) has the ANP-III. And by Lemma 1, the space X admits an
equivalent norm with the Kadec property. It can be proved that Lp(fi, X) also admits
an equivalent norm with the Kadec property (see [9]). Thus by Lemma 1, the space
Lp(n, X) has the ANP-II and the proof is complete. D

COROLLARY 8 . [7] Let X be a Banach space.

(1) If X is Ha.hn-Ba.na.ch smooth, then Lp(fi, X) is Hahn-Banach smooth.

(2) If X* has the property (G*), then Lp(fi, X)* has the property (G*).

PROOF: (1) The space X is an Asplund space, because it is Hahn-Banach smooth
[15]. So Lq(fi, X*) is the dual of Lp(fi, X) [1]. By Theorem 6 and Lemma 2, the
space Lq((j., X*) has the $-ANP-III for some norming set $ in BLP{H,X)- Then by
Lemma 2, we conclude that Lp(fi, X) is Hahn-Banach smooth. The proof of part (2)
is similar. u

REMARK. For K = I, II or III, a dual space X* is said to have the w*-ANP-K if
there is an equivalent norm || || on X such that (X*, || ||) has the $-ANP-K for some
norming set $ in X (see [5]). It follows from Lemma 2 and Corollary 8 that if X*

has the to*-ANP-I (respectively iz>*-ANP-III), then i«(/x, X*) which is the dual of
Lp(fi, X) has the w*-ANP-I (respectively w*-ANP-III). In [5] it was shown that X*

has the to*-ANP-II if and only if there is an equivalent norm || || on X such that
the norm topology and the weak* topology on the unit sphere of (X*, || ||) coincide,
in other words, (X*, || ||) has the weak*-Kadec property. Therefore, in terms of w*-
ANP-II, a result of [9] asserts that if X* has the iu*-ANP-II, then L*(n, X*) has the
w* -ANP-II.

A Banach space X is said to have the Mazur intersection property (I) if every
bounded closed convex set in X is an intersection of balls in X. And X is said to
have the compact Mazur intersection property (CI) if every compact convex set in X
is an intersection of balls in X. In [4], Giles, Gregory and Sims proved that X has
property (I) if and only if the weak* denting points of the unit ball of X* are dense in

https://doi.org/10.1017/S0004972700015628 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700015628


184 Z. Hu and B. Lin [8]

the unit sphere. In [14], Sersouri proved that X has property (CI) if and only if the
cone of extreme points of X* is dense in X* for the topology of uniform convergence
on compact sets of X, where the cone of extreme points of X* is the cone generated
by the set of extreme points of Bx' •

PROPOSITION 9 . Suppose the measure space space (fi, E, /x) is not purely

atomic. Then the following statements are equivalent:

(1) Tie Ba.na.ch space X is an Asplund space with property (I).
(2) Tie Lebesgue-Bochner function space ip(/x, X) has property (I).

PROOF: Suppose X is an Asplund space with property (I). Then L9(fj,, X*) is the

dual of Lp(fi, X) [1] and ty*-dent Bx* is dense in Sx* [4]. Let D be the set

it *{ € w* - dent Bx*, E{ 6 E, E{ H Et = 0 for t £ j ,

1
A< > 0 with "^2 \lft(Ei) = 1 >.

t=i J

It follows that the set D is dense in the set of norm-one simple functions in Lq{n, X*)

which is dense in 5x,«(/1)x*)- On the other hand, D is a subset of iw*-dent B^q^x*)

[8]. Thus tu*-dent B^q^x*) ls dense in 5£,«(M)jt»). Therefore LP(/J., X) has property

(I) [4].
Conversely, suppose Lp(fj., X) has property (I). Then to "-dent B^^xy *s dense

in Sj^p^xy [4]. Since B^q^x*) is weak* dense and norm closed in B^^xy > ^
contains the set w*-dent B^^xy • It follows that Lq(fi, X*) is the dual of Lp(fj,, X).
Hence X is an Asplund space [1]. Now choose E £ £ such that 0 < fi(E) < oo.
Without loss of generality, we may assume that fi(E) = 1. Let i " be a unit vector in
X*. Then the function X*XE is a unit vector in L9(fi, X*). Hence for each e with
1 > e > 0, there is a weak* denting point / of •Bi«(/i,.x

>) wuch that

\\**XB-f\\ <e

Let A be the subset of E given by

{t:t£E and ||x* - f{t)\\ < e}.

Then fi(A) > 0 and £ is a subset of the support of / . Since f(t)/ ||/(<)|| is a weak*

denting point of Bx* for almost all t in the support of / [8], there is t in A such that

/(*)/ 11/(011 € undent Bx.. Then

/(0
11/(011

— x
/(0

11/(011
+11/(0 - **\\ < II - ll/lll+e

Thus to*-dent Bx* is dense in Sx*, and hence X has property (I) [4].
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REMARK. If (£2, S, /x) is purely atomic, then X has property (I) if and only if Lp(fi, X)
has property (I). In fact if {Xi, i £ 7} is a family of Banach spaces, then lp(Xi) has
property (I) if and only if each X, has property (I).

PROPOSITION 1 0 . If the Banach space X has property (CI), then so does

PROOF: Let T be a unit vector in £p(/i , X)* and K be a norm-compact set in
Lp((i, X). Since B^q^x*) is bounded and weak* dense in B^^x)* > an<^ since K is
norm-compact, for each e > 0 there exists / in B^q^^x') such that for all g in K

\(f, 9) - T(g)\ < e.
n

We may assume that / is a non-zero simple function, say, / = 53 xiXEi > where zj G
«=i

X*, Ei e £ with Ei D Ej — 0 for i ^ j . We may assume that (J,(Ei) < M for some
finite number M. Let Ki be the subset of X given by

Then for each t, the set Ki is norm-compact. Since X has property (CI) [4], there
exists an element y? which is a scalar multiple of an extreme point of Bx* such that
for all x in Ki

Define the function h by

Then for every g in K,

\(h, g) - T{g)\ < \(h, g) - (f, g)\ + \(f, g) - T(g)\ < 2e.

Since h(t)/ \\h(t)\\ is an extreme point of Bx' for all t in the support of h, the function
h{-)/ \\h\\ is an extreme point of Bj^^xy [10]. Thus h belongs to the cone of extreme
points of LP(n, X)*. Therefore LP(n, X) has property (CI) [14] and the proof is
complete. 0

REMARK. We do not know whether the converse of Proposition 10 is true or not.

NOTE ADDED IN PROOF. After the paper was accepted, it came to the attention of the
authors that both Proposition 9 and Proposition 10 had been obtained jointly by P.
Bandyopadhyay and A.K. Roy in their paper published in Indag. Math. 1 (1990). In
that paper they even proved that if y. is non-atomic then Lp(/i, X) has property (CI)
for any Banach space X.
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