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Abstract

The multi-level Monte Carlo method proposed by Giles (2008) approximates the
expectation of some functionals applied to a stochastic process with optimal order of
convergence for the mean-square error. In this paper a modified multi-level Monte Carlo
estimator is proposed with significantly reduced computational costs. As the main result,
it is proved that the modified estimator reduces the computational costs asymptotically
by a factor (p/α)2 if weak approximation methods of orders α and p are applied in the
case of computational costs growing with the same order as the variances decay.
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1. Introduction

The multi-level Monte Carlo (MLMC) method proposed by Giles [6] approximates the
expectation of some functional applied to some stochastic processes, e.g. solutions of stochastic
differential equations (SDEs), at a lower computational complexity than classical Monte Carlo
simulations; see also [5], [8], and [9]. The MLMC approximation finds application in many
fields such as mathematical finance [1], [7], for SDEs driven by a Lévy process [3], by fractional
Brownian motion [11], or stochastic PDEs [13]. The main idea of this paper is to reduce
the computational costs additionally by applying the MLMC method as a variance reduction
technique for some higher-order weak approximation method. As a result, the computational
effort can be significantly reduced while the optimal order of convergence for the root-mean-
square (RMS) error is preserved.

The outline of this paper is as follows. In Section 2 we provide a brief introduction to
the main ideas and results of the MLMC method. In Section 3, based on these results, we
present as the main result a modified MLMC algorithm that allows the computational costs
to be significantly reduced. Depending on the relationship between the orders of the variance
reduction and of the growth of the costs, there exists a reduction of the computational costs by
a factor depending on the weak order of the underlying numerical method. As an example, in
Section 4 the modified MLMC algorithm is applied to the problem of weak approximation for
SDEs driven by Brownian motion.

Received 6 February 2013; revision received 28 April 2014.
∗ Postal address: Department of Mathematics and Computer Science, University of Southern Denmark, Campusvej 55,
5230 Odense M, Denmark.
∗∗ Postal address: Institut für Mathematik, Universität zu Lübeck, Ratzeburger Allee 160, D-23562 Lübeck, Germany.
Email address: roessler@math.uni-luebeck.de

307

https://doi.org/10.1239/jap/1437658600 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1437658600


308 K. DEBRABANT AND A. RÖßLER

2. MLMC simulation

Let (�, F , P) be a probability space with some filtration (Ft )t≥0 and let X = (Xt )t∈I

denote an adapted stochastic process on the interval I = [t0, T ] that belongs to a space X

that may be infinite-dimensional. In the following, we are interested in the approximation
of EP(f (X)) for some functional f ∈ F, where F denotes a suitable class of functionals
that are of interest. Furthermore, let an equidistant discretization Ih = {t0, t1, . . . , tN } with
0 ≤ t0 < t1 < · · · < tN = T of the time interval I with step size h be given. Then, we consider
a probability space (�̃, F̃ , P̃) with some filtration (F̃t )t∈Ih

and we denote by Y = (Yt )t∈Ih
a

discrete-time approximation of X on the grid Ih, adapted to (F̃t )t∈Ih
. Thus, we consider the

approximation Y ∈ Xh of X ∈ X on a finite-dimensional space Xh. Here, the probability
spaces (�, F , P) and (�̃, F̃ , P̃) may be but do not have to be equal and we assume that Y

approximates X in the weak sense with some order p > 0, i.e.

|E
P̃
(f (Y )) − EP(f (X))| = O(hp)

for all f ∈ F.
In order to approximate the expectation of f (X) we apply the MLMC estimator introduced

in [6]. For some fixed M ∈ N with M ≥ 2 and some L ∈ N we define the step sizes
hl = T/Ml , and let Y l = (Yt )t∈Ihl

denote the discrete-time approximation process on the grid
Ihl

based on step size hl for l = 0, 1, . . . , L. Here, we consider the approximations Y l ∈ Xhl

for l = 0, 1, . . . , L of X ∈ X on a sequence Xh0 ⊂ Xh1 ⊂ · · · ⊂ XhL
of finite-dimensional

subspaces. Then the MLMC estimator is defined by

ŶML =
L∑

l=0

Ŷ l (2.1)

for some L ∈ N using the estimators

Ŷ 0 = 1

N0

N0∑
i=1

f (Y 0(i)
), Ŷ l = 1

Nl

Nl∑
i=1

(f (Y l(i)) − f (Y l−1(i)
))

for l = 1, . . . , L. Then, we obtain

E
P̃
(ŶML) = E

P̃
(f (Y 0)) +

L∑
l=1

E
P̃
(f (Y l) − f (Y l−1)).

Here, we have to point out that both approximations Y l(i) and Y l−1(i)
are simulated

simultaneously based on the same realization of the underlying driving random process, whereas
(Y l(i), Y l−1(i)

) and (Y l(j)
, Y l−1(j)

) are independent realizations for i �= j .
Now, there are two sources of errors for the approximation. On the one hand, we have a

systematical error that depends on the dimension of Xhl
due to the discrete-time approximation

Y l ∈ Xhl
based on step size hl which is given by the bias of the method. On the other hand,

there is a statistical error from the estimator for the expectation of f (Y l) by the Monte Carlo
simulation. Therefore, in what follows we consider the RMS error

e(ŶML) = (E
P̃
(|ŶML − EP(f (X))|2))1/2 (2.2)

of the MLMC method. In order to rate the performance of an approximation method, we will
analyse the RMS error of the method compared to the computational costs. Therefore, we

https://doi.org/10.1239/jap/1437658600 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1437658600


On the acceleration of the multi-level Monte Carlo method 309

denote by C(Y ) the computational costs of the approximation method Y . In order to determine
C(Y ), one may use a cost model where, e.g., each operation or evaluation of some function
is charged with the price of one unit, i.e. one counts the number of required mathematical
operations or function evaluations. Furthermore, each random number that has to be generated
to compute Y may also be charged with the price of one unit.

It is well known that the optimal order of convergence for the classical Monte Carlo estimator
ŶMC = (1/N)

∑N
i=1 f (Y (i)) is given by e(ŶMC) = O((1/C(ŶMC))p/(2p+1)), where p is

the weak order of convergence of the approximations Y ; see [4]. Thus, higher-order weak
approximation methods result in a higher order of convergence with respect to the RMS error.
Clearly, the best RMS order of convergence that can be achieved is at most 1

2 . However, the
order bound 1

2 cannot be reached by any weak order p approximation method in the case of the
classical Monte Carlo simulation. Therefore, in order to attain the optimal order of convergence
for the RMS error, we apply the MLMC estimator (2.1). The following theorem due to Giles [6]
is presented in a slightly generalized version suitable for our considerations.

Theorem 2.1. For some L ∈ N, let Y l denote the approximation process on the grid Ihl
with

respect to step size hl = T/Ml for each l = 0, 1, . . . , L, respectively. Suppose that there exist
some constants α > 0 and c1,α, c2,0, c2, c2,L > 0 and β, βL > 0 such that for the bias

(i) |EP(f (X)) − E
P̃
(f (YL))| ≤ c1,αhα

L

and for the variances

(ii) var
P̃
(f (Y 0)) ≤ c2,0h

β
0 ,

(iii) var
P̃
(f (Y l) − f (Y l−1)) ≤ c2h

β
l for l = 1, . . . , L − 1,

(iv) var
P̃
(f (YL) − f (YL−1)) ≤ c2,Lh

βL

L .

Furthermore, assume that there exist constants c3,0, c3, c3,L > 0 and γ, γL ≥ 1 such that for
the computational costs

(v) C(Y 0) ≤ c3,0T h
−γ
0 ,

(vi) C(Y l, Y l−1) ≤ c3T h
−γ

l for l = 1, . . . , L − 1,

(vii) C(YL, YL−1) ≤ c3,LT h
−γL

L .

Then for some arbitrarily prescribed error bound ε > 0 there exist values L and Nl for
l = 0, 1, . . . , L, such that the RMS error of the MLMC estimator ŶML has the bound

e(ŶML) < ε

with computational costs bounded by

C(ŶML)

≤

⎧⎪⎨
⎪⎩

c4ε
−2 if β > γ, βL ≥ γL, α ≥ 1

2 max{γ, γL},
c4ε

−2(log(ε))2 if β = γ, βL ≥ γL, α ≥ 1
2 max{γ, γL},

c4ε
−2−max{γ−β,γL−βL}/α if β < γ, α ≥ 1

2 (max{γ, γL} − max{γ − β, γL − βL}),

for some positive constant c4.
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In order to apply Theorem 2.1 and the MLMC method, one has to determine the values
α, β, βL > 0 as well as γ, γL ≥ 1. First, α denotes the weak order of convergence for the
bias of the finite-dimensional approximation YL ∈ XhL

as the dimension of the approximation
subspace increases. This value is well known for commonly applied approximations YL.
Because the approximations (Y l)l≥0 converge to X in the weak sense, the differences of
two successive approximations (f (Y l) − f (Y l−1))l≥1 converge to 0 as the dimensions of the
subspaces increase. Then, usually their variances will also tend to 0 with some order β and βL

for the approximations applied on levels 0, 1, . . . , L − 1 and on level L, respectively. Here,
we want to point out that estimates of type (i)–(iv) in Theorem 2.1 are rather natural and turn
out to be no considerable restriction for typical applications. Finally, the computational costs
to evaluate two correlated approximations Y l and Y l−1 on the finite-dimensional subspaces
Xhl

and Xhl−1 depend on the dimensions of the subspaces that are proportional to h−1
l . For

commonly used discrete-time approximations, one typically has γ = γL = 1.
The calculations for the proof follow the lines of the original proof of Giles [6]. Considering

the mean-square error

e(ŶML) = (|EP(f (X)) − E
P̃
(f (YL))|2 + var

P̃
(ŶML))1/2 < ε,

we make use of the weight q ∈ (0, 1), and claim that

|EP(f (X)) − E
P̃
(f (YL))|2 < qε2 and var

P̃
(ŶML) < (1 − q)ε2.

Then, we can calculate L from the bias and we have to solve the minimization problem

min{Nl : 0≤l≤L} C(ŶML)

under the constraint that var
P̃
(ŶML) < (1 − q)ε2. As a result of this, we obtain the following

values for L and Nl .
Let

L =
⌈

log(q−1/2c1,αε−1T α)

α log(M)

⌉
and

N0 =
⌈

1

1 − q
ε−2h

(β+γ )/2
0

(
c2,0

c3,0

)1/2

κ

⌉
,

Nl =
⌈

1

1 − q
ε−2h

(β+γ )/2
l

(
c2

c3

)1/2

κ

⌉
(2.3)

for l = 1, . . . , L − 1 and

NL =
⌈

1

1 − q
ε−2h

(βL+γL)/2
L

(
c2,L

c3,L

)1/2

κ

⌉
for some q ∈ (0, 1), with

• in the β > γ and βL ≥ γL case or in the β < γ and γL − βL ≤ γ − β case

κ = (c2,0c3,0)
1/2T (β−γ )/2 + (c2c3)

1/2 (M−1T )(β−γ )/2 − h
(β−γ )/2
L

1 − M(γ−β)/2

+ (c2,Lc3,L)1/2h
(βL−γL)/2
L ,

• in the β = γ and βL ≥ γL case

κ = (c2,0c3,0)
1/2 + (L − 1)(c2c3)

1/2 + (c2,Lc3,L)1/2h
(βL−γL)/2
L .
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3. The improved MLMC estimator

The order of convergence of the MLMC estimator ŶML given in (2.1) is optimal in the
given framework. However, the computational costs can be reduced if a modified estimator
is applied. As yet, the estimator ŶML is based on some weak order α approximations Y l for
l = 0, 1, . . . , L on each level. Now, let us apply some cheap low-order weak approximation
Y l on levels l = 0, 1, . . . , L − 1 combined with some probably expansive high-order weak
approximation Y̌ L on the finest level L. The idea is that the approximations Y l contribute a
variance reduction, while the approximation Y̌ L results in a small bias of the MLMC estimator,
thus reducing the number of levels needed to attain a prescribed accuracy.

Let Y be an order α weak approximation method and let Y̌ be an order p weak approximation
method applied on the finest level. Furthermore, let L = Lp with

Lp =
⌈

log(q−1/2c1,pε−1T p)

p log(M)

⌉

denote the number of levels in order to indicate the dependence on the weak order p. Then, we
define the modified MLMC estimator by

ŶML(α,p) =
Lp∑
l=0

Ŷ l

with the estimators Ŷ l for l = 0, 1, . . . , Lp − 1 based on the order α weak approximations Y l

as defined in Section 2. However, now applying the modified estimator

Ŷ Lp = 1

NLp

NLp∑
i=1

(f (Y̌ Lp )(i) − f (YLp−1)(i)),

which combines the weak order α approximations YLp−1 with the weak order p approximations
Y̌ Lp . Clearly, all conditions of Theorem 2.1 have to be fulfilled for YL replaced by Y̌ L. Then,
in the case of p > α, the improved MLMC estimator ŶML(α,p) features significantly reduced
computational costs compared to the originally proposed estimator ŶML = ŶML(α,α).

Proposition 3.1. Let conditions (i)–(vii) of Theorem 2.1 be fulfilled and suppose that there
exist constants ĉ3,0, ĉ3, ĉ3,Lp , δi > 0 and ĉ

(i)
3,0, ĉ

(i)
3 , ĉ

(i)
3,Lp

≥ 0 such that for the computational
costs

(v′) C(Y 0) = ĉ3,0T h
−γ
0 + ∑k

i=1 ĉ
(i)
3,0T h

−γ+δi

0 ,

(vi′) C(Y l, Y l−1) = ĉ3T h
−γ

l + ∑k
i=1 ĉ

(i)
3 T h

−γ+δi

l for l = 1, . . . , Lp − 1,

(vii′) C(Y̌ Lp , YLp−1) = ĉ3,LpT h
−γLp

Lp
+ ∑k

i=1 ĉ
(i)
3,Lp

T h
−γLp +δi

Lp

with some γ, γLp ≥ 1 such that γ − δi ≥ 1 and γLp − δi ≥ 1. Then the MLMC estimator
ŶML(α,p) based on a weak order α > 0 approximation scheme on levels 0, 1, . . . , Lp − 1
and some weak order p > α approximation scheme on level Lp has reduced computational
costs.

(i) In the β > γ and β − γ < βLp − γLp case, there exists some ε0 > 0 such that for all
ε ∈ (0, ε0] it holds that

C(ŶML(α,α))(ε)

C(ŶML(α,p))(ε)
> 1, (3.1)
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provided that α ≥ γ /2, p ≥ 1
2 max{γ, γLp }, and p > 1

4 max{β + γ, β − γ + 2γLp }.
In the β > γ and β − γ = βLp − γLp case then (3.1) holds if, in addition,
c2c3 > (1 − M(γ−β)/2)2c2,Lpc3,Lp and ĉ2

3c2/c3 > (1 − M(γ−β)/2)2ĉ2
3,Lp

c2,Lp/c3,Lp .
Furthermore, for 0 < β − γ ≤ βLp − γLp it holds that C(ŶML(α,p))(ε) = O(ε−2) if
α > 0 and p ≥ 1

2 max{γ, γLp }.
(ii) In the β = γ and βLp ≥ γLp case and if p ≥ 1

2 max{γ, γLp }, α ≥ γ /2, it holds that

lim
ε→0

C(ŶML(α,α))(ε)

C(ŶML(α,p))(ε)
≥

(
p

α

)2

(3.2)

and C(ŶML(α,p))(ε) = O(ε−2(log(ε))2) if α > 0 and p ≥ 1
2 max{γ, γLp }.

(iii) In the β < γ and γ − β = γLp − βLp case it holds that

lim
ε→0

C(ŶML(p,p))(ε)

C(ŶML(α,p))(ε)
(3.3)

≥ M2(γ−β)

(
ĉ3c2

ĉ3,Lpc2,Lp

+ ĉ3(c2c3,Lp )1/2

ĉ3,Lp (c2,Lpc3)1/2 (M(γ−β)/2 − 1)

+
(

c2c3

c2,Lpc3,Lp

)1/2

(M(γ−β)/2 − 1) + (M(γ−β)/2 − 1)2
)−1

(3.4)

if p > 1
2 (max{γ, γLp } − γ + β). If the parameter q ∈ (0, 1) is chosen as

q = γ − β

γ − β + 2p

then the computational costs C(ŶML(α,p)) are asymptotically minimal. In general, if
β < γ or if βLp < γLp then it holds that C(ŶML(α,p))(ε) = O(ε

−2−max{γ−β,γLp −βLp }/p
)

for p ≥ 1
2 (max{γ, γLp } − min{γ − β, γLp − βLp }).

We note that in relations (v′)–(vii′) of Proposition 3.1 a more detailed polynomial dependence
of the computational costs from the dimension of the approximation subspaces has to be
taken into account, e.g. standard discrete-time approximation methods possess polynomial
computational costs and the constants are known explicitly.

Proof. In the following, we will first state some basic formulae and conditions used in
the remaining part of the proof. Then, we will calculate lower and upper bounds for the
computational costs in the β �= γ case. We will then use these to prove first (i) and then (iii).
Finally, case (ii) with β = γ is considered.

Basic formulae. Assume that ε < 1. Let δ0 = 0, ĉ
(0)
3,0 = ĉ3,0, ĉ

(0)
3 = ĉ3, and ĉ

(0)
3,Lp

= ĉ3,Lp .
Then the computational costs for ŶML(α,p) are

C(ŶML(α,p)) =
k∑

i=0

ĉ
(i)
3,0T h

−γ+δi

0 N0 +
k∑

i=0

Lp−1∑
l=1

ĉ
(i)
3 T h

−γ+δi

l Nl

+
k∑

i=0

ĉ
(i)
3,Lp

T h
−γLp +δi

Lp
NLp
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with L = Lp = 
log(q−1/2c1,pε−1T p)/(p log(M))� and Nl for l = 0, 1, . . . , Lp given in
(2.3). Without loss of generality, suppose that δi �= δj for i �= j and that δk = (γ − β)/2 with
ĉ
(k)
3,0 = ĉ

(k)
3 = ĉ

(k)
3,Lp

= 0 in the β ≥ γ case. In the following, we make use of the two estimates:

Lα ≥ log(ε−1)

α log(M)
+ log(q−1/2c1,αT α)

α log(M)
,

Lp − 1 ≤ log(ε−1)

p log(M)
+ log(q−1/2c1,pT p)

p log(M)
. (3.5)

Lower bound for β �= γ . Let β �= γ . Then, we obtain the lower bound

C(ŶML(α,α))(ε) (3.6)

≥ T κε−2

1 − q

k∑
i=0

(
h

(β−γ )/2+δi

0 ĉ
(i)
3,0

(
c2,0

c3,0

)1/2

+
Lα∑
l=1

h
(β−γ )/2+δi

l ĉ
(i)
3

(
c2

c3

)1/2)

≥ T

1 − q
ε−2

[ k∑
i=0

T β−γ+δi ĉ
(i)
3,0c2,0

+
k∑

i=0

T (β−γ )/2+δi ĉ
(i)
3,0

(
c2,0c2c3

c3,0

)1/2 T (β−γ )/2 − h
(β−γ )/2
Lα

M(β−γ )/2 − 1

+
k−1∑
i=0

ĉ
(i)
3

(
c2c2,0c3,0

c3

)1/2

T (β−γ )/2
T (β−γ )/2+δi − h

(β−γ )/2+δi

Lα

M(β−γ )/2+δi − 1

+ ĉ
(k)
3

(
c2c2,0c3,0

c3

)1/2

T (β−γ )/2
(

log(ε−1)

α log(M)
+ log(q−1/2c1,αT α)

α log(M)

)

+
k−1∑
i=0

ĉ
(i)
3 c2

T (β−γ )/2+δi − h
(β−γ )/2+δi

Lα

M(β−γ )/2+δi − 1

T (β−γ )/2 − h
(β−γ )/2
Lα

M(β−γ )/2 − 1

+ ĉ
(k)
3 c2

T (β−γ )/2 − h
(β−γ )/2
Lα

M(β−γ )/2 − 1

(
log(ε−1)

α log(M)
+ log(q−1/2c1,αT α)

α log(M)

)]
, (3.7)

where ĉ
(i)
3,Lα

= ĉ
(i)
3 , c2,Lα = c2, c3,Lα = c3, βLα = β, and γLα = γ for ŶML(α,α).

Upper bound for β �= γ . Next, we calculate the upper bound for the β �= γ case. Thus,

C(ŶML(α,p))(ε)

≤ T κε−2

1 − q

k∑
i=0

(
h

(β−γ )/2+δi

0 ĉ
(i)
3,0

(
c2,0

c3,0

)1/2

+
Lp−1∑
l=1

h
(β−γ )/2+δi

l ĉ
(i)
3

(
c2

c3

)1/2

+ h
(βLp −γLp )/2+δi

Lp
ĉ
(i)
3,Lp

(
c2,Lp

c3,Lp

)1/2)

+ T

k∑
i=0

(
ĉ
(i)
3,0h

−γ+δi

0 + ĉ
(i)
3

Lp−1∑
l=1

h
−γ+δi

l + ĉ
(i)
3,Lp

h
−γLp +δi

Lp

)
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≤ T

1 − q
ε−2

[ k∑
i=0

ĉ
(i)
3,0

(
c2,0T

β−γ+δi +
(

c2,0c2c3

c3,0

)1/2

	0T
(β−γ )/2+δi

+
(

c2,0c2,Lpc3,Lp

c3,0

)1/2

T (β−γ )/2+δi h
(βLp −γLp )/2
Lp

)

+
k−1∑
i=0

ĉ
(i)
3

(
c2,0c3,0c2

c3

)1/2

T (β−γ )/2	i +
k−1∑
i=0

ĉ
(i)
3 c2	i	0

+
(

ĉ
(k)
3 c2	0 + ĉ

(k)
3

(
c2c2,Lpc3,Lp

c3

)1/2

h
(βLp −γLp )/2
Lp

+ ĉ
(k)
3

(
c2,0c3,0c2

c3

)1/2

T (β−γ )/2
)

×
(

log(ε−1)

p log(M)
+ log(q−1/2c1,pT p)

p log(M)

)

+
k−1∑
i=0

ĉ
(i)
3

(
c2c2,Lpc3,Lp

c3

)1/2

	ih
(βLp −γLp )/2
Lp

+
k∑

i=0

ĉ
(i)
3,Lp

(
c2,0c3,0c2,Lp

c3,Lp

)1/2

T (β−γ )/2h
(βLp −γLp )/2+δi

Lp

+
k∑

i=0

ĉ
(i)
3,Lp

((
c2c3c2,Lp

c3,Lp

)1/2

	0h
(βLp −γLp )/2+δi

Lp

+ c2,Lph
βLp −γLp +δi

Lp

)]

+ T

k∑
i=0

(
ĉ
(i)
3,0T

δi−γ + ĉ
(i)
3

(M−1T )δi−γ − h
δi−γ

Lp

1 − Mγ−δi
+ ĉ

(i)
3,Lp

h
δi−γLp

Lp

)
(3.8)

with 	i = ((M−1T )(β−γ )/2+δi − h
(β−γ )/2+δi

Lp
)/(1 − M(γ−β)/2−δi ) for i = 0, . . . , k − 1.

Proof of (i). In the β > γ and βLp > γLp case, we prove that there exists some ε0 > 0

such that for all ε ∈ (0, ε0] it follows that C(ŶML(α,α))(ε) > C(ŶML(α,p))(ε). From the lower
bound (3.7) for C(ŶML(α,α))(ε) and the upper bound (3.8) for C(ŶML(α,p))(ε) we obtain the
following estimate:

C(ŶML(α,α))(ε) − C(ŶML(α,p))(ε)

≥ T

1 − q
ε−2

×
(k−1∑

i=0

T (β−γ )/2+δi ĉ
(i)
3,0

(
c2,0c2c3

c3,0

)1/2 h
(β−γ )/2
Lp

− M(γ−β)/2h
(β−γ )/2
Lα

1 − M(γ−β)/2

+
k−1∑
i=0

ĉ
(i)
3

(
c2c2,0c3,0

c3

)1/2

T (β−γ )/2
h

(β−γ )/2+δi

Lp
− M(γ−β)/2−δi h

(β−γ )/2+δi

Lα

1 − M(γ−β)/2−δi
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+
k−1∑
i=0

ĉ
(i)
3 c2

( (M−1T )(β−γ )/2+δi (h
(β−γ )/2
Lp

− M(γ−β)/2h
(β−γ )/2
Lα

)

(1 − M(γ−β)/2−δi )(1 − M(γ−β)/2)

+ (M−1T )(β−γ )/2(h
(β−γ )/2+δi
Lp

−M(γ−β)/2−δi h
(β−γ )/2+δi
Lα

)−h
β−γ+δi
Lp

+Mγ−β−δi h
β−γ+δi
Lα

(1−M(γ−β)/2−δi )(1−M(γ−β)/2)

)

−
k−1∑
i=0

ĉ
(i)
3,0

(
c2,0c2,Lpc3,Lp

c3,0

)1/2

T (β−γ )/2+δi h
(βLp −γLp )/2
Lp

−
k−1∑
i=0

ĉ
(i)
3

(
c2c2,Lpc3,Lp

c3

)1/2

	ih
(βLp −γLp )/2
Lp

−
k−1∑
i=0

ĉ
(i)
3,Lp

(
c2,0c3,0c2,Lp

c3,Lp

)1/2

T (β−γ )/2h
(βLp −γLp )/2+δi

Lp

−
k−1∑
i=0

ĉ
(i)
3,Lp

((
c2c3c2,Lp

c3,Lp

)1/2

	0h
(βLp −γLp )/2+δi

Lp
+ c2,Lph

βLp −γLp +δi

Lp

))

− T

k−1∑
i=0

(
ĉ
(i)
3,0T

δi−γ + ĉ
(i)
3

(M−1T )δi−γ − h
δi−γ

Lp

1 − Mγ−δi
+ ĉ

(i)
3,Lp

h
δi−γLp

Lp

)
. (3.9)

In the following, we make use of the estimatesM−1c
−1/α
1,α q1/(2α)ε1/α ≤ hLα ≤ c

−1/α
1,α q1/(2α)ε1/α

and M−1c
−1/p
1,p q1/(2p)ε1/p ≤ hLp ≤ c

−1/p
1,p q1/(2p)ε1/p, i.e. we have hLp → 0 and hLα → 0 as

ε → 0.

Multiplying both sides of (3.9) with (1 − q)/T ε2h
−min{β−γ,βLp −γLp }/2
Lp

and taking into
account the assumptions 4p > β + γ and 4p > β − γ + 2γLp results in

1 − q

T
ε2h

− min{β−γ,βLp −γLp }/2
Lp

(C(ŶML(α,α))(ε) − C(ŶML(α,p))(ε))

≥
[k−1∑

i=0

T (β−γ )/2+δi ĉ
(i)
3,0

(
c2,0

c3,0

)1/2

×
(

(c2c3)
1/2

h
(β−γ )/2
Lp

1 − M(γ−β)/2
− (c2,Lpc3,Lp )1/2h

(βLp −γLp )/2
Lp

)

+ T (β−γ )/2(c2,0c3,0)
1/2

(
ĉ
(0)
3

(
c2

c3

)1/2 h
(β−γ )/2
Lp

1 − M(γ−β)/2

− ĉ
(0)
3,Lp

(
c2,Lp

c3,Lp

)1/2

h
(βLp −γLp )/2
Lp

)

+
k−1∑
i=0

ĉ
(i)
3 c2

1/2 (M−1T )(β−γ )/2+δi

1 − M(γ−β)/2−δi

(
c

1/2
2

h
(β−γ )/2
Lp

1 − M(γ−β)/2
−

(
c2,Lpc3,Lp

c3

)1/2

× h
(βLp −γLp )/2
Lp

)
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+ (M−1T )(β−γ )/2

1 − M(γ−β)/2
c2

1/2
(

ĉ
(0)
3 c2

1/2
h

(β−γ )/2
Lp

1 − M(γ−β)/2
− ĉ

(0)
3,Lp

(
c3c2,Lp

c3,Lp

)1/2

× h
(βLp −γLp )/2
Lp

)

+ o(h
min{βLp −γLp ,β−γ }/2
Lp

)

]
h

−min{β−γ,βLp −γLp }/2
Lp

. (3.10)

As a result of (3.10), it follows that in the β − γ < βLp − γLp case there exists some ε0 > 0
such that

C(ŶML(α,α))(ε)

C(ŶML(α,p))(ε)
> 1 (3.11)

for all ε ∈ (0, ε0]. In the β − γ = βLp − γLp case there exists some ε0 > 0 such that
(3.11) holds for all ε ∈ (0, ε0] if c2c3 > (1 − M(γ−β)/2)2c2,Lpc3,Lp and (ĉ

(0)
3 )2c2/c3 >

(1 − M(γ−β)/2)2(ĉ
(0)
3,Lp

)2c2,Lp/c3,Lp . Finally, C(ŶML(α,p))(ε)=O(ε−2) follows from (3.8).

Proof of (iii). In the β < γ and β < 2p case, we have to compare the dominating terms as
ε → 0. Therefore, from the lower bound we obtain

C(ŶML(p,p))(ε) ≥ q(β−γ )/(2p)

1 − q
ε−2−(γ−β)/pT ĉ

(0)
3,Lp

c2,Lpc
(γ−β)/p
1,p Mγ−β(M(β−γ )/2 − 1)−2

+ o(ε−2−(γ−β)/p) (3.12)

and from the upper bound,

C(ŶML(α,p))(ε) ≤ q(β−γ )/(2p)

1 − q
ε−2−(γ−β)/pT c

(γ−β)/p
1,p

×
(

ĉ
(0)
3 c2

(1 − M(γ−β)/2)2
− ĉ

(0)
3 (c2c2,Lpc3,Lp )1/2

c
1/2
3 (1 − M(γ−β)/2)

−
ĉ
(0)
3,Lp

(c2c3c2,Lp )1/2

c
1/2
3,Lp

(1 − M(γ−β)/2)
+ ĉ

(0)
3,Lp

c2,Lp

)
+ o(ε−2−(γ−β)/p). (3.13)

Making use of estimates (3.12) and (3.13), this results in estimate (3.4) where βLp < γLp

because we require that βLp − γLp = β − γ < 0.
In general, it follows that C(ŶML(α,p))(ε) = O(ε

−2−max{γ−β,γLp −βLp }/p
) due to the upper

bound (3.8) for β < γ and any βLp > 0, γLp ≥ 1. Furthermore, there is an asymptotically op-
timal choice for the parameter q ∈ (0, 1), such that the computational costs are asymptotically
minimal. Calculating a lower bound for C(ŶML(α,p))(ε) and taking into account the upper
bound (3.13), we obtain

C(ŶML(α,p))(ε) = 1

1 − q
ε−2−(γ−β)/pq(β−γ )/(2p)C + o(ε−2−(γ−β)/p)

with some constant C > 0 independent of q and ε. Now, we have to find some q̂ ∈ (0, 1) such
that

Cε−2−(γ−β)/p q̂(β−γ )/(2p)

1 − q̂
= min

q∈ (0,1)
Cε−2−(γ−β)/p q(β−γ )/(2p)

1 − q
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for all 0 < ε < 1. Solving this minimization problem leads to

q̂ = γ − β

γ − β + 2p
,

which is asymptotically the optimal choice for q ∈ (0, 1) in the β < γ case.

Lower bound for β = γ . In the β = γ case, we obtain the following lower bound:

C(ŶML(α,α))(ε)

≥ T

1 − q
ε−2

( k∑
i=0

ĉ
(i)
3,0c2,0h

δi

0 +
k∑

i=0

ĉ
(i)
3,0

(
c2,0c2c3

c3,0

)1/2

Lαh
δi

0

+ ĉ
(0)
3

(
c2c2,0c3,0

c3

)1/2

Lα +
k∑

i=1

ĉ
(i)
3

(
c2c2,0c3,0

c3

)1/2

× T δi − h
δi

Lα

Mδi − 1
+ ĉ

(0)
3 c2L

2
α +

k∑
i=1

ĉ
(i)
3 c2Lα

T δi − h
δi

Lα

Mδi − 1

)

≥ T

1 − q
ε−2

( k∑
i=0

ĉ
(i)
3,0c2,0T

δi +
( k∑

i=0

ĉ
(i)
3,0

(
c2,0c2c3

c3,0

)1/2

T δi + ĉ
(0)
3

(
c2c2,0c3,0

c3

)1/2

+
k∑

i=1

ĉ
(i)
3 c2

T δi − h
δi

Lα

Mδi − 1

)

×
(

log(ε−1)

α log(M)
+ log(q−1/2c1,αT α)

α log(M)

)
+ ĉ

(0)
3 c2

(
log(ε−1)

α log(M)

)2

+ 2ĉ
(0)
3 c2

log(ε−1) log(q−1/2c1,αT α)

α2(log(M))2 + ĉ
(0)
3 c2

(
log(q−1/2c1,αT α)

α log(M)

)2

+
k∑

i=1

ĉ
(i)
3

(
c2c2,0c3,0

c3

)1/2 T δi − h
δi

Lα

Mδi − 1

)
, (3.14)

where ĉ
(i)
3,Lα

= ĉ
(i)
3 , c2,Lα = c2, c3,Lα = c3, βLα = β, and γLα = γ for ŶML(α,α).

Upper bound for β = γ . Next, we calculate the upper bound for β = γ ,

C(ŶML(α,p))(ε)

≤ T

1 − q
ε−2

[ k∑
i=0

ĉ
(i)
3,0c2,0T

δi +
k∑

i=1

ĉ
(i)
3

(
c2,0c3,0c2

c3

)1/2

	i

+
k∑

i=0

ĉ
(i)
3,0

(
c2,0c2,Lpc3,Lp

c3,0

)1/2

T δi h
(βLp −γLp )/2
Lp

+
(

ĉ
(0)
3

(
c2,0c3,0c2

c3

)1/2

+
k∑

i=0

ĉ
(i)
3,0

(
c2,0c2c3

c3,0

)1/2

T δi

+ ĉ
(0)
3

(
c2c2,Lpc3,Lp

c3

)1/2

h
(βLp −γLp )/2
Lp
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+
k∑

i=0

ĉ
(i)
3,Lp

(
c2c3c2,Lp

c3,Lp

)1/2

h
(βLp −γLp )/2+δi

Lp
+

k∑
i=1

ĉ
(i)
3 c2	i

)

×
(

log(ε−1)

p log(M)
+ log(q−1/2c1,pT p)

p log(M)

)

+ ĉ
(0)
3 c2

(
log(ε−1)

p log(M)
+ log(q−1/2c1,pT p)

p log(M)

)2

+
k∑

i=1

ĉ
(i)
3

(
c2c2,Lpc3,Lp

c3

)1/2

	ih
(βLp −γLp )/2
Lp

+
k∑

i=0

ĉ
(i)
3,Lp

((
c2,0c3,0c2,Lp

c3,Lp

)1/2

h
(βLp −γLp )/2+δi

Lp
+ c2,Lph

βLp −γLp +δi

Lp

)]

+ T

k∑
i=0

(
ĉ
(i)
3,0T

δi−γ + ĉ
(i)
3

(M−1T )δi−γ − h
δi−γ

Lp

1 − Mγ−δi
+ ĉ

(i)
3,Lp

h
δi−γLp

Lp

)
, (3.15)

where we applied the relation (3.5).

Proof of (ii). Suppose that βLp ≥ γLp and γ, γLp ≤ 2p. Then from the upper bound (3.15)
we obtain C(ŶML(α,p))(ε) = O(ε−2(log(ε))2). Furthermore, comparing the lower and the
upper bounds, (3.14) and (3.15), we asymptotically obtain

lim
ε→0

C(ŶML(α,α))(ε)

C(ŶML(α,p))(ε)
≥ lim

ε→0

(T /(1 − q))ε−2ĉ
(0)
3 c2(log(ε−1)/(α log(M)))2 + o(ε−2(log(ε))2)

(T /(1 − q))ε−2ĉ
(0)
3 c2(log(ε−1)/(p log(M)))2 + o(ε−2(log(ε))2)

= p2

α2 ,

which proves (3.2). This completes the proof.

Remark 3.1. Especially, if c3 = ĉ3 and c3,Lp = ĉ3,Lp , then it follows in the β < γ and
β < 2p case that

lim
ε→0

C(ŶML(p,p))(ε)

C(ŶML(α,p))(ε)
≥ Mγ−β

(
1 − M(β−γ )/2

(
1 −

(
c2c3

c2,Lpc3,Lp

)1/2))−2

.

Thus, if c2c3 < c2,Lpc3,Lp it follows directly that

lim
ε→0

C(ŶML(p,p))(ε)

C(ŶML(α,p))(ε)
> 1.

4. Numerical examples in the case of SDEs

To illustrate the improvement that can be realized with the proposed modified MLMC
estimator, we consider the problem of weak approximation for SDEs

dXt = a(Xt ) dt +
m∑

j=1

bj (Xt ) dB
j
t (4.1)

with initial value Xt0 = x0 ∈ R
d driven by an m-dimensional Brownian motion.
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In the following, we compare for several numerical examples the RMS errors (2.2) versus the
computational costs for the MLMC estimator ŶML, proposed in [5], [7], and [6] and described
in Section 2, with the proposed modified MLMC estimator ŶML(α,p) described in Section 3.
As a measure for the computational costs, we count the number of evaluations of the drift and
diffusion functions, taking into account the dimension d of the solution process as well as the
dimension m of the driving Brownian motion.

In the following, we consider on each level l = 0, 1, . . . , L an equidistant discretization
Ihl

= {t0, . . . , tT /2l } of [t0, T ] with step size hl = T/2l . Furthermore, we denote by Yn = Ytn

the approximation at time tn. In case of the MLMC estimator ŶML, we apply on each level
l = 0, 1, . . . , L the Euler–Maruyama scheme on the grid Ihl

given by Y0 = x0 and

Yn+1 = Yn + a(Yn)hn +
m∑

j=1

bj (Yn)I(j),n,

where hn = hl and I(j),n = B
j
tn+1

− B
j
tn

for n = 0, 1, . . . , T /2l − 1. The Euler–Maruyama

scheme converges with order 1
2 in the RMS sense and with order α = 1 in the weak sense to

the solution of the SDE (4.1) at time T [10].
On the other hand, for the modified MLMC estimator ŶML(α,p) the Euler–Maruyama scheme

is applied on levels 0, 1, . . . , Lp − 1, whereas on level Lp a second-order weak stochastic
Runge–Kutta (SRK) scheme RI6 proposed in [12] is applied. The SRK scheme RI6 on level
Lp is defined on the grid IhLp

by Y̌0 = x0,

Y̌n+1 = Y̌n + 1

2
(a(Y̌n) + a(ϒ))hn + 1

2

m∑
k=1

(bk(ϒ
(k)
+ ) − bk(ϒ

(k)
− ))

Î(k,k),n√
hn

+
m∑

k=1

(
1

2
bk(Y̌n) + 1

4
bk(ϒ

(k)
+ ) + 1

4
bk(ϒ

(k)
− )

)
I(k),n

+ 1

2

m∑
k=1

(bk(ϒ̂
(k)
+ ) − bk(ϒ̂

(k)
− ))

√
hn

−
m∑

k=1

(
1

2
bk(Y̌n) − 1

4
bk(ϒ̂

(k)
+ ) − 1

4
bk(ϒ̂

(k)
− )

)
I(k),n,

where hn = hLp and I(k),n = Bk
tn+1

− Bk
tn

for n = 0, 1, . . . , T /2Lp − 1 with stages

ϒ = Y̌n + a(Y̌n)hn +
m∑

j=1

bj (Y̌n)I(j),n,

ϒ
(k)
± = Y̌n + a(Y̌n)hn ± bk(Y̌n)

√
hn, and ϒ̂

(k)
± = Y̌n ±

m∑
j=1,j �=k

bj (Y̌n)
Î(k,j),n√

hn

,

where Î(k,k),n = 1
2 (I 2

(k),n − hn) and

Î(k,j)n =
{

1
2 (I(k),nI(j),n − √

hnĨ(k),n) if k < j,
1
2 (I(k),nI(j),n + √

hnĨ(j),n) if j < k,
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Figure 1: Error versus computational effort for (a) SDE (4.2) using f (x) = x and (b) f (x) = x2.

based on independent random variables Ĩ(k),n with P(Ĩ(k),n = ±√
hn) = 1

2 . Thus, we have
α = 1 and p = 2 for the modified MLMC estimator ŶML(α,p) in the following. Furthermore,
for both schemes the variance decays with the same order as the computational costs increase,
i.e. β = βLp = γ = γLp = 1. Then the optimal order of convergence attained by the MLMC
method is O(ε−2(log(ε))2) due to Theorem 2.1. For the presented simulations, we denote by
MLMCEM the numerical results for ŶML based on the Euler–Maruyama scheme only and by
MLMCSRK the results for ŶML(α,p) based on the combination of the Euler–Maruyama scheme
and the SRK scheme RI6.

As a first example, we consider the scalar linear SDE with d = m = 1 given by

dXt = rXt dt + σXt dBt , X0 = 0.1, (4.2)

using the parameters r = 1.5 and σ = 0.1. We choose T = 1 and apply the functionals f (x) =
x and f (x) = x2; see Figure 1. The presented simulations are calculated using the prescribed
error bounds ε = 4−j for j = 0, 1, . . . , 5. In Figure 1 we can see the significantly reduced
computational effort for the estimator ŶML(1,2) (MLMCSRK) compared to the estimator ŶML

(MLMCEM) in case of a linear and a nonlinear functional.

The second example is a nonlinear scalar SDE with d = m = 1 given by

dXt = 1
2Xt +

√
X2

t + 1 dt +
√

X2
t + 1 dBt , X0 = 0. (4.3)

We apply the functional f (x) = (log(x + √
x2 + 1))3 − 6(log(x + √

x2 + 1))2 + 8 log(x +√
x2 + 1). Then the approximated expectation is given by E(f (Xt )) = t3 − 3t2 + 2t . Here,

the results presented in Figure 2(a) are calculated for T = 2, applying the prescribed error
bounds ε = 4−j for j = 0, 1, . . . , 6. Here, the improved estimator ŶML(1,2) performs much
better than ŶML also for nonlinear functionals and a nonlinear SDE. Finally, we consider a
nonlinear multi-dimensional SDE with a d = 4-dimensional solution process driven by an
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Figure 2: Error versus computational effort for (a) the nonlinear SDE (4.3) and (b) SDE (4.4) with
noncommutative noise.

m = 6-dimensional Brownian motion with noncommutative noise. Thus,

d
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with initial condition X0 = ( 1
8 , 1

8 , 1, 1
8 )T . Then the approximated first moment of the solution is

given by E(Xi
T ) = Xi

0 exp(2T ) for i = 1, 2, 3, 4. The simulation results calculated at T = 1 for
the error bounds ε = 4−j for j = 0, 1, . . . , 6 are presented in Figure 2(b). Again, in the multi-
dimensional noncommutative noise case the proposed estimator ŶML(1,2) needs significantly
less computational effort compared to the estimator ŶML, which reveals the theoretical results
(3.2) in Proposition 3.1.
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5. Conclusions

In this paper we proposed a modification of the MLMC method introduced by Giles which
combines approximation methods of different orders of weak convergence. This modified
MLMC method attains the same mean-square order of convergence as the originally proposed
method that is in some sense optimal. However, the newly proposed MLMC estimator can
attain significantly reduced computational costs. As an example, there is a reduction of costs
by a factor (p/α)2 for the problem of weak approximation for SDEs driven by Brownian motion
in the β = γ case. This has been confirmed by some numerical examples for the p = 2 and
α = 1 case, where the calculation cost is a quarter of that required for the standard MLMC
estimator. Here, we want to point out that there also exist higher-order weak approximation
schemes, e.g. p = 3 in the case of SDEs with additive noise [2], that may further improve
the benefit of the modified MLMC estimator. Future research will consider the application
of this approach to more general SDEs, e.g. SDEs driven by Lévy processes [3] or fractional
Brownian motion [11], and to the numerical solution of stochastic partial differential equations
[13]. Furthermore, the focus will be on numerical schemes that feature not only high orders of
convergence but also minimized constants for the variance estimates.
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