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1. Introduction. We shall consider the classification problem for space 
forms of (Riemannian manifolds which are covered by) real, complex, and 
quaternionic Grassmann manifolds. In the particular case of the real Grass-
mann manifold of oriented 1-dimensional subspaces of a real Euclidean 
space, this is the classical "spherical space form problem" of Clifford and 
Klein. We shall not consider space forms of the Cayley projective plane because 
it is easy to see that there are no non-trivial ones. 

The space forms are completely determined for the quaternionic (Theorem 
1), complex (Theorem 2), and even-dimensional real (Theorem 3) Grassmann 
manifolds; the problem of determining the space forms of the odd-dimensional 
real Grassmann manifolds is reduced (Theorems 4 and 5) to the spherical 
space form problem. While our methods are quite elementary, they rest on 
some elaborate results from the theory of finite groups (2, 5 and 6) and the 
theory of Lie groups (1 and 4). A few of our shorter calculations parallel 
calculations in (4), but are given here in more suitable form for the con
venience of the reader. 

2. Definitions and conventions. In order to establish definitions and 
notation, we recall some well-known facts concerning Grassmann manifolds. 

2.1. Let F be one of the fields R (real), C (complex), or H (quaternion). 
Given integers 0 < q < n, Gq>n(F) denotes the Grassmann manifold over F 
consisting of all g-dimensional subspaces of the left vector space F" of dimension 
n over F, both the subspaces and F" being oriented if F = R. We endow Fn 

with positive definite Hermitian (relative to the conjugation of F over R) 
form, and let U(w, F) denote the group of all linear transformations of F* 
which preserve this form. U(n, F) is the orthogonal group 0(n) if F = R, the 
unitary group U(n) if F = C, or the symplectic group Sp(n) if F = H. Acting 
linearly on F", U(», F) acts on Gq,n(F) in a natural fashion; it is well known 
that U(», F) acts transitively on the elements of GQtn(F). This gives GQtn(F) 
a topology and the structure of a differentiable manifold, for (7, § 4.11) U(», F) 
is a Lie group and we can identify GQtn(F) with a coset space of U(#, F) by 
choosing P G Gq,n(F) and sending g <E U(w, F) to g(P); excluding G2,4(R), 
the isotropy subgroup {g £ U(», 70 : g(P) = P] acts irreducibly on the 
tangent space to GQtn(F) at P , so any two U(n, F)-invariant Riemannian 
metrics (differentiable fields of positive definite inner products on the tangent 
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spaces) on GQtn(F) are proportional (1). Thus we may regard Gq,n(F) as a 
Riemannian manifold (differentiable manifold together with a Riemannian 
metric) in an essentially canonical fashion. 

We remark that Gff>n(R) is a double covering of the manifold of non-oriented 
g-dimensional subspaces of Rn, and is often called the oriented real Grassmann 
manifold. Gi,n(R) is the sphere Sw_1, and the associated non-oriented Grass
mann manifold is the real projective space P n - 1 (R) . Gi,n(C) is the complex 
projective space Pn - 1(C), and Gi,n(H) is the quaternionic projective space 
P - H H ) . 

Representing the manifolds Gq,n(F) as coset spaces, one easily checks that 
they are simply connected, except for Gi>2(R). If r is the dimension of F 
over R, then Gqttl(F) has dimension rq(n — q). 

2.2. If M is a Riemannian manifold, then an isometry of M is a differentiable 
homeomorphism / : M —> M whose tangent maps /* : Mx —» Mf{x) are linear 
isometries, where Mx denotes the tangent space to M at x 6 M. The set of 
all isometries of M forms a Lie group, denoted l(M) and called the full 
group of isometries of M\ the identity component, denoted \§{M), is called 
the connected group of isometries of M. 

Our choice of Riemannian metric for G(/,n(i?) shows that the transformation 
by any element of \J (n, F) is an isometry. Replacing U(n, F) with its quotient 
by the normal subgroup consisting of all elements that induce the identity 
transformation, we obtain a subgroup of I(G?iW(F)) which contains I0(Gff,n(77)). 
Calculation of l(GQt7l(F)) is not immediate, but É. Cartan has given a very 
clever method for making this calculation (1; see 4, §2.4 for an exposition 
of this method, 4, §§ 5.5.5, 5.5.7-8, 5.5.11 for an exposition of the calculations 
of the explicit forms of the I(Gff,n(P))). We shall draw on these results as we 
need them. 

It will sometimes be convenient to replace GQtn(F) by Gn-q,n(F). This can 
be done without difficulty because we have, for appropriate normalizations 
of the metrics, an isometry /3 : Gff,n(F) —> Gn-Qtn(F) given by /3(P) = P-1, 
where P 1 denotes the orthogonal complement of P in Fn; in case F = R, P1-
is oriented such that the Grassmann product P A PL gives the original 
orientation of Rn. In particular, fi Ç I(Gfff2fl(P)). 

2.3. A Riemannian covering is a covering T : M —> TV" where M and N are 
connected Riemannian manifolds and w is a local isometry; then every deck 
transformation of the covering (homeomorphism y : M —> M with T = wy) 
is an isometry of M, the group V of all deck transformations is a discrete 
subgroup of l(M) which acts freely (the identity element K T is the only 
element of T which has a fixed point on M), and, if M is simply connected, 
then N can be identified with the quotient M/T. Conversely, if A is a discrete 
subgroup of \{M) which acts freely on M, then M/A has a unique Riemannian 
structure such that the projection M —+ M/A is a Riemannian covering. 

We shall study the manifolds that admit a Riemannian covering by a 
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Grassmann manifold; thus the classification problem for such manifolds is 
reduced to a problem on discrete subgroups of I(G f fpW(F)). For Grassmann 
manifolds Gi,w(R) this is, of course, the spherical space form problem of 
Clifford and Klein. 

3. Q u a t e r n i o n i c G r a s s m a n n m a n i f o l d s . Let M be the quaternionic 
Grassmann manifold G?>TO(H) consisting of all g-dimensional subspaces of 
Hn. Then U ( « , H ) / { ± 7 } = Sp(w)/{ ±1} (I = ident i ty matrix) is the connected 
group of isometries IQ(M); \{M) = Io(M) if q ^ n — q, and 

\{M) = Io(M) WjS-Io(M) 

if q = n — q (recall fi : P —> P1-). IQ(M) has isotropy subgroup 

{Sp(<z)XSp( W -q)}/\±1} 

which contains a maximal torus, whence (3, T h . 4) every element of Io(M) 
has a fixed point on M. 

Let T be a subgroup of I ( M ) which acts freely on M. T has a t most one 
element in each component of l(M) because T P\ I0(ikf) = {1}. T h u s 
r = {1} \i q T* n — q, and Y is either {1} or of the form {1, fig} if q = n — q. 
In the lat ter case, (fig)2 G T H Io(M), giving 1 = (3g(3g = /32g2 = g2; in te rms 
of linear t ransformations, g2 — dzl. g2 = —I is impossible, for then g would 
have matr ix diag. {i, i , . . . , i} in some orthonormal basis {ej} of Hw, where 
{1, i, j , k} is the usual basis of H over R ; then vj = e^ + j -eq+j and Vjg have 
inner product (vj, Vj-g) = (ej + }-eq+j, i-ej + ji-eq+3) = 0, so the subspace P 
of Hn with basis {vu • • • , vQ) satisfies g(P) = P±, and is thus a fixed point 
for fig. T h u s g2 = I, and consequently g has matr ix 

in some or thonormal basis {fj} of H^, where u + v = n and 7W denotes the 
w X w ident i ty matrix. As n = 2g, ^ has a fixed point on M if and only 
if u — v. T h u s we may assume v < u. 

We have now proved: 

T H E O R E M 1. Let N be a Riemannian manifold that admits a Riemannian 
covering by the quaternionic Grassmann manifold G f f ,n(H). If n ^ 2g, then N 
is isometric to GfffW(H). If n — 2q, then N is isometric to GfffW(H) or to one of 
the q manifolds G g , w (H) /A„ where Av is the subgroup {1, Pgv] of I (G f f ,n(H)) 
and gv has matrix 

C- - , ) 
with 0 < v < q. 

We remark t h a t Au and Av are conjugate in I(G f f,2ff(H)) if and only if 
u = v, so the corresponding quot ient manifolds of G ? , 2 ? (H) are isometric 
if and only if u = v. Note also t h a t Au is cyclic of order 2. 
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4. Complex Grassmann manifolds. Let M be the complex Grassmann 
manifold Gç,n(C), consisting of all g-dimensional subspaces of Cn. Then Io(M) 
is the group U(w, C)/{scalars} = U(w)/{scalars} = SU(n)/{exp(2ink/n)I}, 
where t2 = — 1 , and where SU (n) is the special (determinant 1) unitary group. 
Choosing an orthonormal basis {ej} of Cn, the conjugation of C over R induces 
a conjugation of Cn which sends g-dimensional subspaces into ^-dimensional 
subspaces, and thus induces a transformation a : M —> M. 

I (M) = I o M U a - I o M 

if q ^ n - q , and I(J|f) = I0(M) \J a-I0(M) \J j8-I0(M) \ J /3<x-I0(AO if 
q = n — q. Io{M) has isotropy subgroup 

(SU(n) n [U(g) X U(» - q)]}/{exp(2wLk/n)I} 

which contains a maximal torus, whence (3, Th. 4) every element of Io(M) 
has a fixed point on M. 

Let r be a subgroup of 1{M) which acts freely on M. T H Io(ilf) = {1}, so 
T has at most one element in each component of I(ilf). 

Let T € m o ' I o W ; 7 = <*g with g 6 Io(Jlf). As in (4, §5.5.5), 
72 Ç r n i o ( M ) , whence, in terms of linear transformations of Cn, 
ci = agag = a2- tgTl-g = 'g""1#g for some c Ç C with cn = 1; g = exp(X) and 
d = exp(F) where X is skew-Hermitian and F is pure imaginary and scalar, 
and we have 

e x p ( ' X + F) = c%g = g = exp(X). 

Thus exp(Z - 'X - F) = / = 'J = exp('X - X - F), and it follows that 
c2I = exp(2'X — 2X) = / , so *g = ± g . Now g 7^ *g, for we could then choose 
A e SU(») with hg% = I; then 

% - i . 7 . % = 'h-iah-thg'h = 'A^aA"1 = 'ft-1-1** = a 

leaves fixed the g-dimensional subspaces of Cn with basis {«i, . . . , eff}, and it 
follows that 7 has a fixed point on M. Thus *g = - g , so w = 2m for some 
integer m and we can choose A Ç SU(w) with 

**- ' - ( -? .£ - ) • 
Replacing T by its conjugate 'A™*1' T- %, we replace 7 by 

'h-^ah^hg'h = 'A"1- 'Aa/ = a / ; 

thus we may assume g — J. q is odd, for if g were even (say q = 2t) then 
the subspace spanned by {ei, em+i, . . . , eu em+t} would be a fixed point for 7 
on M; this implies that n — q is odd, for n is even. On the other hand, if q 
and n — q are odd, it is clear that a J has no fixed point on M. 

Nowsupposeg = n — g and let 7 Ç r H /fo-I0(M). 7 = /fagwithg Ç Io(Af) 
and 72 = pagfiag = (ag)2 Ç T H I0(M). Using the fact that 0 is central in 
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I(ilf) we see that, as before, in terms of linear transformations of Cn, we 
may replace T by a conjugate and assume either that g = 7 or that g — J. 
The latter is impossible, for (note that q = m) the subspace of Cn with basis 
{eu . . . , em} would be a fixed point for y = ficcJ on M, and the former is 
impossible because the subspace of Cn with basis {e\ + iem+i, . . . , em + le^m] 
would be a fixed point for y = fia on M. Thus T has no element in fia-I0(M). 

Let q = n - q and y G T P\ /M 0 (M); T = /3g with g £ Io(Af) and 
72 = g2 6 r n Io(Af). In terms of linear transformations, g Ç SU(«) with 
g2 = exp(2Tik/n)I. We replace g by exp(2ird/n)gt thus replacing g2 by 
exp(27ri(& + 21) In) 7, and assume that & = 0 or 1. As fi is central in I(M), 
we replace g by — g if necessary, conjugate y by an element of Io(Af), and 
assume that 

with w + fl = w, fl<w and a = exp(7rt£/w). Now n is even and det g = 1, 
so w, », and k have the same parity. It is clear that fig has a fixed point on M 
if and only if u — v. 

Finally, observe that V lies in either I0(Af) U a-I0(M) or I0(M) KJ fi-I0(M) 
because V C\ fia-lo(M) is empty. 

We have now proved: 

THEOREM 2. Let N be a Riemannian manifold that admits a Riemannian 
covering by the complex Grassmann manifold GQfn(C). Then: 

(1) N is isometric to Gfft»(C) ; or 
(2) both q and n — q are odd, and N is isometric to Gff,»(C)/A where A is 

the subgroup {\,aJ\ of I(G?,n(C)) and J has matrix 

( ° TA v-/* o ) 
with n = 2m; or 

(3) 2q = n and N is isometric to one of the [|(g + 1)] manifolds Gtft„(C)/A2» 
where A2v is the subgroup {1, fig2v} of I(G î>n(C)), and g2v has matrix 

-I J 
with 0 < 2v < q; or 

(4) 2q — n and N is isometric to one of the [\{q + 1)] manifolds G f f , n (C) /^ , 
where ^v is the subgroup {1, fih2v-i) of 1 ( 0 ^ ( 0 ) ) , and h2v-i has matrix 

(aln-u+i \ 
\ —ai 2v-i) 

with a = exp(7ri/w) and 1 < 2v — 1 < q. 

We remark that each of the groups A, A 2*, and SFM is cyclic of order 2, but 
that any two distinct ones lying in I(Gfff„(C)) are non-conjugate, so the 
corresponding quotients of Gff,n(C) are not isometric. 
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5. Even-dimensional real Grassmann manifolds. Let M be a. real 
Grassmann manifold G î>n(R), consisting of all oriented ^-dimensional sub-
spaces of an oriented Rw. M has dimension q(n — q); we shall now assume M 
to be even-dimensional, deferring the odd-dimensional case to § 6. As men
tioned at the end of §2.2, we can replace Gff,n(R) by Gn-Qtn(K)\ q(n — q) 
being even, this allows us to assume that q is even. Having made this assump
tion, it is clear that {±7} is the kernel of the action of U(w, R) = 0 («) on 
M. Let V(M) denote the subgroup 0(n)/{±I} of I(M) induced by O(w), 
and let SO(») denote the special (determinant 1) orthogonal group, li n — q 
is odd, then I0(M) = SO(n) = I ' (M); if n - q is even, then 

Io(M) = SO(w)/{±/} 

has index 2 in I ' (M). 
We have a transformation œ : M —> M denned by P —» — P (opposite 

orientation); co is an isometry of order 2, and the quotient Af/{1, co} is the 
non-oriented Grassmann manifold. If q = n — q, we have the isometry {$ of 
M given by P —> PL, where P x is oriented such that P A P x gives the original 
orientation of Rn; as q is even, we have P A PL = PL A P , so /32 = 1. Now 
let I"(M) = I '(M) U co-r(M) if g ^ n - 2, and let 

I"(M) = V(M) \j co-I'(M) W /M' (M) VJ /3o>-I'(Af) 

if g = n - q. I(M) = I"(ilf) if Jlf ^ G4,8(R). If M = G4,8(R), then ikf has 
an isometry ô of order 3 such that conjugation of Io(M) by 5 is the triality 
automorphism, and l(M) = I"(M) \J ô-l"(M) W 82-I"(Af). 

Let T be a subgroup of l(M) which acts freely on M. SO(w) has isotropy 
subgroup SO(q) X SO (ft — q), and SO(g) X SO (ft — q) contains a maximal 
torus of SO (ft) because q is even; it follows that an isotropy subgroup of 
lo(M) contains a maximal torus, so every element of Io(M) has a fixed point 
on M. Thus T P\ Io(M) = {1}, T has at most one element in any component 
of l(M)y and 7—>y-Io(M) gives an isomorphism of V onto a subgroup of 
I (M)/ I 0 (M) . C. T. C. Wall and I have proved (4, §§5.5.9-10) that a self-
homeomorphism of G4,s(R) of order 3 has a fixed point; thus T is conjugate 
to a subgroup of I"(M) in case M = G4f8(R). Thus we may assume r C I" (M) 
generally. 

Let g e 0 ( f t ) /{±I ) = V{M). If g e Io(M), then it has a fixed point. If 
g $ Io(M), then n — q is even and g has matrix dbdiag{P(ai),.. . ,P(aM), 1, —1} 
in some orthonormal basis {fj} of Rw, where 2w > g and 

„ , N / cos a sin a\ 
R(a) = I 1. 

\—sin a cos a/ 
Then the oriented subspace of Rn with ordered basis {/1, . . . ,/5} is a fixed 
point for g. This proves T Pi I'(Af) = {1}. 

Following ordered bases, one checks that co commutes with every element 
of V(M). Let 7 = cog e r P\ w I ' ( M ) ; then 7

2 = ugcog = g2 <E T P \ I 0 ( M ) ; 
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in terms of linear transformations, g2 = ± 7 . If g2 = 7, we choose an ortho-
normal basis of Rn in which g has matrix 

C~ - ) • 
observe t h a t cog has a fixed point if g ^ ± 7 , and conclude t h a t y = co. If 
g2 = — 7, then n = 2m and g has matrix 

/ 0 Im\ 

in some orthonormal basis ; it is then easily seen that y = cog has no fixed 
point. 

We now need: 

LEMMA. Let q = n — q. Then ft commutes with co and every element of Io(M), 
gfig~l = /3co if g Ç I '(M) w represented by a transformation of determinant — 1, 
and /Aew g&—> b, co —> 62 and g —•> a gives aw isomorphism of I"(M)/IQ(M) 

onto the group {a, b : a2 = 64 = 1, aôa = 6 - 1}. 

To prove the first statement, one checks that £ centralizes Io(M) and 
then observes that the commutator [co, 0] is a central element of the centreless 
group Io(M). Cartan's construction of I(M) (1) shows that I"(M)/I 0 (M) is 
a non-abelian group of order 8 with several elements of order 2; it is thus 
abstractly isomorphic to the group {a, b}. As g induces an outer automorphism 
of Io(M), it must normalize the group {co, 0} ; as gco = cog, the second state
ment follows, and the third statement becomes clear. This completes the 
proof of the lemma. 

Let 7 = ftem /Mo(M). Then y2 = pgpg = P2g2 = g2 6 m I0(M), 
so g2 = ± 7 . If g2 = — 7 we can produce a fixed point; thus we may assume 
that 

2 = ( n_P - J ) ' v < g ' v e v e n ' 

in some orthonormal basis of Rw. Similarly, we have the same conclusion for 
g if œ(3g £ mcoj8-Io(M). 

Let 7 = Pg e m /M' (M) , g $ I0(Af). Then 

72 = jSgfe = cog2e r n c o - i o W , 
and an argument above shows that g2 = ± 7 or g4 = —7. The latter would 
imply g Ç Io(AOî thus 

-C~ -/)• *<*• « = l _ / J . » < 2 . vodd< 
in some orthonormal basis of R", and y2 = co. Similarly, if 

y = upg 6 r n w j S - r ( M ) 
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with g $ Io(Af), w e conjugate by g and conclude that 

v < g, v odd, 

in some orthonormal basis, and y2 = co. 
If q = n — g, then T has 1, 2, or 4 elements because T C\ I'(M) = {1}. 

If T is cyclic of order 4, then T = {1, figvy co, co/3g„} where gt, is conjugate 
by an element of \Q{M) to 

J , z; odd, u < q. 

If T is cyclic of order 2, then the possibilities are {l,co}, {l,co/}, {l,/3gt,}, 
and {1, wfigv} with i; even, v < q, J2 = —7. But the latter two are conjugate 
by gi. 

The only other non-trivial possibility is that T is the product of two cyclic 
groups of order 2. Then r = {1, co#i, /3a2, co/3a3} witha* 6 I'(il7),a2

2 = a3
2 = 7, 

and either a\ = I or #i2 = — 7. As r has no element of order 4, each 
at G Io(Af). We may assume a3 = ai#2, and we observe that a{aj = ±ajai 
because V is abelian and because co and & commute with each other and 
with each at. a2az = —a3a2 would imply that a3 exchanges the eigenspaces 
of + 1 and — 1 of a2, whence these eigenspaces would have the same dimension 
and /3a2 would have a fixed point. Thus a2az = aza2. Similarly axa2 = a2ai 
and aidz = a%a\. Now a\ — a ia2a2 = aza2 implies a\2 — az

2a2
2 — 7, so a\ = 7 

and a2 = a3. Thus T is 10(il7)-conjugate to {1, co, /3gp, cojftg,,} where g„ has 
matrix 

i; even, v < q. 

We have now proved: 

THEOREM 3. Let N be an even-dimensional Riemannian manifold that admits 
a Riemannian covering by the {oriented) real Grassmann manifold Gffin(R). Then: 

(1) N is isometric to Gff,n(R) ; or 

(2) N is isometric to the non-oriented Grassmann manifold G t f,n(R)/0 where 
12= {l,co} C I ( G M ( R ) ) i or 

(3) n = 2m and N is isometric to G t f ,n(R)/2 where E = {l,co/} C ICG^.nCR)) 
and J has matrix 

( 0 Im\ 
\-Im 0 / ' 

or 
(4) 2q = n and N is isometric to one of the %q manifolds Gff,n(R)/A2w, 

0 < u < |g , where A2u = {l,/3g2W} C I(G f fn(R)) and gv has matrix 

-r -Ù 
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or 
(5) 2g = n and N is isometric to one of the q manifolds Gff,n(R)/S t ;, 

0 < v < q, where 2 , = {1, co, 0gv, ufigv] C I(Gff,n(R)). 2„ is cyclic of order 4 
if v is odd, and 2Ï2M = Œ X A2w as a direct product of subgroups. 

6. Odd-dimensional real Grassmann manifolds. 6.1. Let M be an 
odd-dimensional real Grassmann manifold Gff,n(R), consisting of all oriented 
g-dimensional subspaces of an oriented Rn; the dimension of M being q{n — q), 
both q and n — q are odd, and n is even. Now — J € SO(») changes the 
orientation of every ^-dimensional subspace of Rn, so 0(») acts effectively 
(the kernel of the action is trivial) on M. If q 9* n — q, then 0{n) = l(M). 
If q = n — q, then we have the isometry (3 : P —> P-1 of M; g being odd, 
P A P 1 = - P 1 A P , so 02 = -I e SO(n); then I(Jlf) = 0 (n) U j8-0(») 
except in the trivial case M = Gi,2(R) == S1. 

6.2. LEMMA 1. Let g 6 0(n) with detg = — 1. Then g has a fixed point 
on M. 

Proof. As n is even and q is odd, Rrt has an orthonormal basis {ej} in which 
g has matrix diag{P(ai), . . . , R(au), 1, — 1 , P(#i), . . . , P(£p)} where 
q = 2u + 1, n — q — 2v + 1, and P(c) is defined as in § 5; the oriented 
subspace of Rn with ordered basis {ei, . . . , eq] is a fixed point for g on ikf. 
This completes the proof of Lemma 1. 

LEMMA 2. Let g € SO(w). T^m g &as a fixed point on M if and only if g 
has an eigenvalue + 1 . 

Proof. Suppose that g has a fixed point P 6 M ; then P is a ^-invariant 
subspace of Rn. As q — dim P is odd and g preserves the orientation of P , 
we can find v G P with g{v) = v ?* 0. 

Now suppose that g has an eigenvalue + 1 . We choose, as for Lemma 1, 
an orthonormal basis {fj} of Rn in which g has matrix 

diag{P(ax), . . . , P(aw), 1, 1, £(*!), . . . , £(*,)} 

and observe that the oriented subspace of Rw with ordered basis {/i, . . . ,fq] 
is a fixed point for g on M. This completes the proof of Lemma 2. 

THEOREM 4. Le£ it be the class of all odd-dimensional Riemannian manifolds 
which admit a Riemannian covering by the {oriented) real Grassmann manifold 
GQtn(R) with n 7* 2q, and let © be the class of all finite subgroups of 0(n) which 
acts freely on the unit sphere Sn~l C Rn- Then n is the class of all Riemannian 
manifolds isometric to a quotient Gn , f f(R)/r with Y 6 ©. 

For I(Gft„(R)) = 0 (») because of our hypothesis that n ?± 2q; thus the 
Theorem is an immediate consequence of Lemmas 1 and 2. 

6.3. Let r be a finite subgroup of I (M) which acts freely on M. If r C 0 (» ) , 
then r lies in the class © of Theorem 4, which is fairly well known. Now assume 
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that T Ç£0(n)] q = n — q and T meets 0•()(»). One of our main tools for 
treating T is: 

LEMMA 3. Every y Ç r H j8-0(w) has order divisible by 4. 

Proof. Let y = 0g. Then y2 = /îg/îg = /32g2 = — g2 has order /, whence y 
has order 2t. If 2 is odd, then we have fih = (fig)l Ç T of order 2, whence 
A2 = — J; this is impossible, for we could then choose a well-oriented ortho-
normal basis {vj} of Rn in which h has matrix 

C. " • ) • 
and the oriented subspace of Rn with ordered basis \vQ+h . . . , vn) would be 
a fixed point for fth on M. Thus £ is even, and the proof of Lemma 3 is com
pleted. 

Lemma 3 will be used with: 

LEMMA 4. Let pg £ T H ^ O ( w ) and h G 0 (« ) . 77*e» Âg/r1 ^ - g arcd 

Proof. Suppose that hghr1 = — g or that /zg/r1 = — g -1; we shall obtain 
a contradiction by constructing a fixed point for 0g on ikf. Playing with 
eigenvectors, it is easy to see that h maps the eigenspace of + 1 for g into 
the eigenspace of — 1 , and maps the eigenspace of —1 for g into the eigen
space of + 1 ; thus those eigenspaces have the same dimension and h pre
serves the orthogonal complement F of their sum. F is a g-invariant orthogonal 
direct sum U 0 W where g has square — / on U and has no eigenvalue dbi 
on W. It is not difficult to see that U and W are /^-invariant. We can now 
write W as a g-invariant orthogonal direct sum of subspaces W\ and, for 
each Wu choose an orthonormal basis in which g has matrix 

diag{2î(a,), . . . , £ ( * < ) } , 

such that — 7r/2 < a0 < #i < . . . < am < 7r/2 and at 9^ 0. Passing to the 
complexification of W and looking at eigenvectors, we see that 

HWi) C Wm.t and R(at) = - i ? ( ± a m _ t ) . 

This proves the existence of an orthonormal basis of Kn in which the matrix 
of g is of the form diag{/i, . . . , Jk\ where each block Ju is of one of the forms 

*<•*>• ( i - ! ) • - ( ? w -*<«>)• 
Construction of the desired fixed points for fig is now clear. This completes 
the proof of Lemma 4. 

LEMMA 5. If u and v are prime integers, then every subgroup of T of order 
uv is cyclic. 
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Proof. Let A be such a subgroup. If A C 0(n), then, using Lemmas 1 and 2, 
the result is due to H. Zassenhaus (5, Satz 3). If A meets fi'0(n), then Lemma 
3 shows that A has an element of order 4, so u = v = 2 and A is cyclic. This 
completes the proof of Lemma 5. 

LEMMA 6. Every Sylow subgroup of T is cyclic, and every 2-Sylow subgroup 
of T is generated by an element of fi-0(n). 

Proof. From Lemma 5, we see (2, p. 120 or 6, p. 149) that the odd Sylow 
subgroups of T are cyclic and that either the 2-Sylow subgroups are cyclic 
or the 2-Sylow subgroups are generalized quaternionic. Now, using Lemma 3, 
let us choose a 2-Sylow subgroup A of T which has an element fig £ fi-0(n). 
As A meets fi-0(n), it is clear that fi-0(n) contains a generator of A if A 
is cyclic. 

Suppose that A is a generalized quaternionic group. Then A has generators 
A and B with defining relations 

A2"-1 = J, A2"-2 = B2, BAB-1 = A~\ 

where a > 2 is an integer. Every element of T of order 2 lies in 0(n) by 
Lemma 3, and is thus — / b y Lemmas 1 and 2; this shows that B2 = —I. 
Now every element of A is of the form Au or of the form BAU\ as BAuB~~l = A~U 

and (fig)"1 = —fig"1, fig = Au would give us BgB*1 = — g_1, contradicting 
Lemma 4. Thus fig — BAU for some integer u. For any integer v, BAV £ 0(n) 
would give figBAv = Av~u £ fi-0(n), contradicting Lemma 4. Thus A H O J » ) 
is the set of all A\ and à f~\ fi-0(n) is the set of all BAv. In particular, 
B £ A r\ /3-0(n), so B = fik for some k <G 0(n). Now 

ABA-1 = B2'AB-1A~1 = BA~2
y 

so 
^2«-3^4-2«-3 = BA-2"-* = £3 = B-1, 

which says that 
^2«-3^-2«-3 = __k-^ 

contradicting Lemma 4. We conclude that every 2-Sylow subgroup of T is 
cyclic. This proves Lemma 6. 

6.4. If a finite group of order N has every Sylow subgroup cyclic, then 
(6, p. 175) it has two generators A and B with defining relations Au = Bv = 1, 
BAB-1 = Ar, 0 < «, N = uv, ( 0 - 1>, «) = 1 and r c = 1 (mod u). The 
group is cyclic if and only if r = 1 (mod u), i.e., u — 1. In any case, w is 
odd (2, p. 130 or 3, p. 679), and the order d of r in the multiplicative group 
GM of mod u residues primes to u as a divisor of z/, say u = dw. If a subgroup 
is cyclic whenever its order is the product of two primes, then (5, p. 204, or 
from 2, p. 160) w is divisible by every prime divisor of d. By Lemmas 5 and 6, 
we may take this to be a description of T; any subgroup of T has a similar 
description. 
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As u is odd, A g SO(»); then B 6 fi-0(n) because T meets j8-0(»), say 
5 = j8g. By Lemma 3, i> = 4* for some integer t > 0, so r has order 4w/. 

Suppose that t is even, and let A be the subgroup of 0(n) generated by A 
and B' = g (where B = fig); B' has order U because t is even and B2t = — 7; 
it follows that T and A have the same presentation, and are thus isomorphic. 
Now (2, p. 160 and 3, p. 679) q — dp and we have an orthonormal basis [ej] 
of Rn in which A has matrix diagfa, . . . , a} where each of the p blocks a 
is given by 

a = diag{i?(27r/w), R(2irr/u), . . . , R(2irrd~1 /'u)), 

and in which B' has matrix diagfbi, . . . , bp}, where 

b , = 

0 I 0 0 
0 0 I 0 

0 0 0 0 
Xi 0 0 0 

0 
0 

0 
0 

in 2 X 2 blocks 

being a matrix of degree 2d, and where x* = R(2wki/w) for some integer &< 
prime to w. 

In this case, Y acts freely on M. For r O A = Y C\0{n) acts freely on 
M, and, if 7 € r O /5-0(n) had a fixed point on if, then y2 £ r Pi A would 
have a fixed point on ilf, whence 72 = 7. But 7 must be of the form j3Aa(B')b 

with ô odd, which is impossible because 

I = 72 = - 4 a (BOMBS')6 = ^«+^6(J5')2(ï+&), 
whence (JB

,)2('+6> = 7, implying that 6 is an odd multiple of the even integer /. 
Now suppose that t is odd, and let $ be the subgroup of 0(n) generated 

by A and by g (where B = fig). - I = J52/ = fi2tg2t = - g 2 f shows that the 
order of g divides 2/; as / is odd, it is easy to check that g has order t or 2t, 
and — / € r n O ( « ) C $ shows that g cannot have order t. Thus $ has 
order 2tu, and is consequently equal to its subgroup r P i O ( w ) of order 2tu. 
It follows that Y r\ fi-0(n) is /3g-<ï>, and thus contains fi because g~l Ç $, 
whence r == <ï> \J fi • <l>. Given that $ acts freely on M, the fact that $ has 
no element of order 4 (hence no element of square —I) shows that Y acts 
freely on M, much as in the preceding paragraph. 

We have now proved : 

THEOREM 5. Let m be the class of all odd-dimensional Riemannian manifolds 
which admit a Riemannian covering by the {oriented) real Grassmann manifold 
G<?,2«(R), and let Zu,v,r denote the abstract group of order uv and with all Sylow 
subgroups cyclic, which has presentation {X, Y : Xu = Yv = 1, YXY~l = XT] 
where 0 < w, ((r — l)v, u) = 1 and rv = 1 (mod u). Then m is the class of all 
Riemannian manifolds which are isometric to a quotient G î>2(Z(R)/r, where: 

(1) T is a finite subgroup of SO(2g) which acts freely on the unit sphere 
S2*"1 C R2ff; or 
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(2) r = $ \J 13- $ is isomorphic to ZMt2»,r, where $ is a subgroup of SO(2g) 
which is isomorphic to a group ZUtVtT satisfying: 

(a) a is divisible by the order d of r in the multiplicative group of mod u 
residues prime to u, say q — dp, 

(b) v — dw where w is divisible by every prime divisor of d, 
(c) d is odd, and w = 2w' with w* odd, so that ZUtVtT has order 2udwf with 

udwr odd\ the isomorphism is a direct sum of p of the faithful irreducible 
SO {2d)-representations fk of ZUtVJ given in 2 X 2 blocks by 

fk(X) = dmgiR(2T/u), R(2irr/u), . . . , R{2irr^/u)}, 

0 / 0 0 ••• 0 0 \ 
0 0 J 0 ••• 0 0 1 

0 0 0 0 - 0 / 
R(2rk/w) 0 0 0 ••• 0 0 / 

with k prime to w; or 

(3) T is isomorphic to a group ZUfVfT satisfying conditions (a) and (b) above, 
as well as: 

(c') d is odd and w = 0 (mod 8), so that ZUtVtT has order divisible by 8; 
T is generated by f(X) and £/( Y) where f is a direct sum of p of the 
faithful irreducible SO(2d)-representations fk of ZUtVJ described above. 
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