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A new nonlinear Schrödinger equation (NLSE) is presented for ocean surface waves.
Earlier derivations of NLSEs that describe the evolution of deep-water waves have been
limited to a narrow bandwidth, for which the bound waves at second order in wave
steepness are described in leading-order approximations. This work generalizes these
earlier works to allow for deep-water waves of a broad bandwidth with large directional
spreading. The new NLSE permits simple numerical implementations and can be extended
in a straightforward manner in order to account for waves on water of finite depth. For
the description of second-order waves, this paper proposes a semianalytical approach
that can provide accurate and computationally efficient predictions. With a leading-order
approximation to the new NLSE, the instability region and energy growth rate of Stokes
waves are investigated. Compared with the exact results based on McLean (J. Fluid
Mech., vol. 511, 1982, p. 135), predictions by the new NLSE show better agreement
than by Trulsen et al. (Phys. Fluids, vol. 12, 2000, pp. 2432–2437). With numerical
implementations of the new NLSE, the effects of wave directionality are investigated by
examining the evolution of a directionally spread focused wave group. A downward shift
of the spectral peak is observed, owing to the asymmetry in the change rate of energy in a
more complex manner than that for uniform Stokes waves. Rapid oblique energy transfers
near the group at linear focus are observed, likely arising from the instability of uniform
Stokes waves appearing in a narrow spectrum subject to oblique sideband disturbances.

Key words: surface gravity waves

1. Introduction

An important task in the study of surface gravity waves is the development of the
theoretical description of flow fields. Theoretical models of surface gravity waves are
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essential in a wide range of fields, such as in engineering practices and for research
purposes. A theoretical study has obvious advantages in elucidating the underlying
physics, thereby advancing the understanding of realistic wave problems, compared with
other approaches such as experiments, field studies and direct numerical computations.
Theoretical findings have contributed to providing possible explanations of the formation
mechanism of extremely large waves that appear suddenly with much larger amplitude
than their surroundings, known also as ‘rogue’ or ‘freak’ waves. A few examples of the
possible mechanisms proposed are modulational or Benjamin–Feir instability in deep
water (Onorato et al. 2009), refraction by ambient currents or bathymetry (Janssen &
Herbers 2009; Onorato, Proment & Toffoli 2011) and effects on weakly nonlinear waves
of a depth change in shallow or intermediate water depth (Trulsen et al. 2020; Li et al.
2021a,b).

The modulational instability of weakly nonlinear Stokes waves subject to sideband
disturbances was discovered by Benjamin & Feir (1967). Theoretical advances made in the
late 1960s in this perspective include contributions by Lighthill (1965), Benjamin (1967),
Whitham (1967), Zakharov (1968) and Benney & Roskes (1969). Since the discovery of the
instability of a train of Stokes waves, progress has been made both numerically (Janssen
1983; Lo & Mei 1985; Trulsen & Dysthe 1997; Dysthe et al. 2003) and experimentally
(Lake et al. 1977; Melville 1982; Su 1982; Chabchoub, Hoffmann & Akhmediev 2011) in
understanding the evolution properties of surface waves on deep water. For smaller values
of wave steepness, symmetrical upper and lower sidebands tend to grow equally in the
initial stage. This is due to the degenerate resonant interaction in the prestigious ‘figure
of eight’ quartet resonance loop (Phillips 1960, 1967; Longuet-Higgins 1976; Lake et al.
1977; McLean 1982), which corresponds to the special cases where two out of the four
wavenumbers obeying the ‘figure of eight’ loop are identical. As nonlinearity increases,
the sidebands appear to grow unequally, with the lower sideband growing faster than the
upper sideband (Lake et al. 1977; Lo & Mei 1985), reaching a maximum larger than the
minimum to which the spectrum peak drops. This unequal growth in energy, as a result of
a combination of dissipation, wave breaking and nonlinear wave evolution, likely causes
the downward shift of the spectral peak of wind waves (Lake et al. 1977; Lo & Mei 1985;
Trulsen & Dysthe 1997).

The so-called nonlinear Schrödinger equation (NLSE) has been widely known as a
convenient approach for analysing the instability of Stokes waves. For deep-water waves,
Zakharov (1968) found that the wave envelope satisfies the NLSE which is cubic in wave
slope ε (or wave steepness). The NLSE is derived based on the assumption of a small
wave slope and the so-called narrow-banded assumption that restricts the modulation of
the wave envelope to be slow in both space and time relative to a rapidly varying wave
phase.

Many attempts have been made to expand the applicability scope of the NLSE for
deep-water waves through adding higher-order terms, with a primary focus on reducing
the restrictions due to bandwidth, as shown in table 1. Table 1 indicates the lower-order
wave fields considered in a NLSE for the nonlinear and dynamic evolution of the (potential
or elevation) envelope of the first harmonic. Specifically, the second-order wave fields do
not appear alone in a NLSE but in combination with the first-order wave fields. Let δx,y be
a small non-dimensional parameter as a measure of the bandwidth in the main propagation
(δx) and the transverse (δy) directions, respectively. With one further step, Dysthe (1979)
has obtained a NLSE that is correct to O(ε3δx,y, εδ

n
xδ

3−n
y ) (n = 0, 1, 2, 3), known as

Dysthe’s equation, or the fourth-order NLSE, as O(δx,y) ∼ O(ε) is implied. With the
fourth-order NLSE, Dysthe (1979) found that second-order mean flows play a significant
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Order in wave steepness Overall order of accuracy

First order Second order Third order

Dysthe (1979) O(εδn
x δ

3−n
y ) O(ε2δx,y) O(ε3δx,y) O(ε3δx,y, εδ

n
x δ

3−n
y )

(O(δx,y) ∼ O(ε)) (n = 0, 1, 2, 3)
Trulsen & Dysthe (1996) O(εδn

x δ
5−n
y ) O(ε2δx,y) O(ε3δx,y) O(ε3δx,y, εδ

n
x δ

5−n
y )

(O(δx,y) ∼ O(
√
ε)) (n = 0, 1, . . . , 5)

Trulsen et al. (2000) O(εδ∞x,y) O(ε2δx,y) O(ε3δx,y) O(ε3δx,y,O(εδ∞x,y))
(δx,y < 1)
This paper (δx,y ∼ O(1)) O(ε) O(ε2) O(ε3) O(ε3)

Table 1. A summary of NLSEs for waves on deep water and the regimes of applicability which refer to the
accuracy of lower-order wave fields considered in an NLSE for the dynamic evolution of the (potential or
elevation) envelope of the first harmonic, in addition to the NLSEs for an arbitrary depth. Here ε denotes the
dimensionless wave steepness; δx and δy denote the dimensionless bandwidth in the main propagation direction
and in the direction normal to the main, respectively; δ∞x,y denotes arbitrary order in bandwidth.

role in the instability of Stokes waves. It is shown by Stiassnie (1984) that Dysthe’s
equation can be derived from Zakharov’s integral equation (Zakharov 1968) through a
narrow-banded assumption. Higher-order extensions in bandwidth are derived by Trulsen
& Dysthe (1996) with a modified NLSE correct to O(εδn

x δ
5−n
y , ε3δx,y) (n = 0, 1, . . . , 5)

and by Trulsen et al. (2000) in which the linear evolution of the envelope of linear
wave is described by the exact linear dispersion relation, giving an NLSE correct to
O(εδ∞x,y, ε3δx,y). Using some of the earlier versions of NLSEs, Trulsen & Dysthe (1997)
and Dysthe et al. (2003) found that the NLSEs can recover a downward shift of the
spectral peak in a three- and two-dimensional narrow spectrum, respectively. The latter
occurs after the spectrum has reached a quasi-steady state and hence, is unlikely due to
the modulational instability which results in symmetrical growth of sidebands. Strong
frequency dependence developed in the temporal evolution of directional waves initially of
no frequency dependence is observed in NLSE-based numerical simulations and field data
(Simanesew et al. 2016). Simanesew et al. (2017) found the modified NLSE of Trulsen
et al. (2000) gives less accurate predictions for short crest waves with larger directional
spread.

Recent progress has also been made in generalizing an NLSE in order to take into
account the interaction of waves with ambient environments, e.g. dissipation and forcing
effects due to wind actions and turbulence (cf. Wu, Liu & Yue 2006; Dias, Dyachenko
& Zakharov 2008; Kharif et al. 2010; Slunyaev, Sergeeva & Pelinovsky 2015) and wave
current interaction (Dysthe & Das 1981; Stocker & Peregrine 1999; Hjelmervik & Trulsen
2009; Curtis, Carter & Kalisch 2018). In addition to the NLSEs for deep-water waves,
coupled NLSEs are derived to consider crossing sea states (see Gramstad & Trulsen
(2011), Trulsen et al. (2015) and references therein). A generalization to water of finite
uniform depth is done by Davey & Stewartson (1974) and higher-order corrections
are added by Johnson (1977), Brinch-Nielsen & Jonsson (1986), Slunyaev (2005) and
Gramstad (2014), among others. Modified cubic equations are obtained that allow for
waves in water of a finite, varying depth due to a mildly sloping seabed (Djordjevié &
Redekopp 1978; Kirby & Dalrymple 1983).

Many other approaches have been developed as alternative tools to the NLSE for
understanding the properties of surface deep-water waves, such as the Zakharov integral
equation and its leading-order approximations (see Zakharov 1968; Crawford, Saffman &
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Yuen 1980; Crawford et al. 1981; Krasitskii 1994), numerical wave tanks (e.g. Bateman,
Swan & Taylor 2001; Ducrozet et al. 2012) based on the high-order spectral (HOS) method
(Dommermuth & Yue 1987; West et al. 1987) and direct numerical solutions of fully
nonlinear potential-flow equations (Engsig-Karup, Bingham & Lindberg 2009; Bihs et al.
2020; Zheng et al. 2020). Through studying the temporal evolution of three-dimensional
steep focused wave groups, rapid energy changes in a wave spectrum are reported by
earlier works e.g. Gibbs & Taylor (2005) and Gibson & Swan (2007). They attribute this
phenomenon to the third-order resonant interactions, which are considered as the cause for
the formation of the so-called ‘wing waves’ that appear in the transverse direction after the
group at nonlinear focus reported in Barratt, Bingham & Adcock (2020). Direct numerical
solutions were used by Barratt et al. (2020) for the evolution of a steep focused wave group
with directional spread. In three dimensions, oblique energy transfer in a wave spectrum
and a downward shift of the spectral peak are observed in previous works, e.g. Trulsen &
Dysthe (1997) and Barratt et al. (2021).

There is still room and the need for further development of the models based on
an NLSE, with two aspects addressed here. Firstly, ocean surface waves are generally
three-dimensional and broad banded. Nevertheless, it should be noted that the NLSEs
mentioned above, e.g. Dysthe (1979) and Trulsen et al. (2000), are only correct to order
(ε3δx,y), as shown in table 1. This suggests the need for extending the bandwidth at third
order in wave steepness. Secondly, surface waves interact with ambient environments
such as subsurface currents, turbulence and wind actions in the atmosphere, which often
require explicit and accurate vertical structures of flow fields below the surface to allow for
coupling. In contrast, it is known that a NLSE is based on the description of the envelope
of the surface displacement, accompanied by mostly lowest-order approximations to the
vertical profiles of flow fields at second order in wave steepness, as shown in table 1.

This paper aims to make attempts to fill in gaps in the aforementioned two aspects,
through the development of a new framework that would allow for the study of
three-dimensional waves of a broad bandwidth and would take into account the structures
of flow fields below the surface without compromising much the computational efficiency
of an NLSE-based model. The objective of this paper is threefold. First, a new NLSE
for the evolution of three-dimensional deep-water surface waves is derived in §§ 2–4
that does not rely on the assumption of a narrow bandwidth as aforementioned NLSEs.
Specially, the newly developed NLSE should allow for δx,y > 1 since it has relaxed the
narrowband assumption for wave fields at second order, as shown in table 1. Simple
numerical implementations of the new NLSE as performed with earlier versions of NLSEs
are explained. Second, a semianalytical approach for the description of wave fields for
bound waves at second order in wave steepness is proposed in § 3 which allows for simpler
and more efficient numerical implementations than by Dalzell (1999). Finally, a study of
the instability region and energy growth rate of Stokes waves and the temporal evolution
of a directionally spread focused wave group are presented in § 6, where comparisons
with Longuet-Higgins (1978), Dysthe (1979), Crawford et al. (1981), McLean (1982) and
Trulsen et al. (2000) are made.

2. Mathematical formulation and methodology

2.1. Problem definition
We consider ocean surface waves propagating on deep water in the framework of
potential-flow theory, thereby assuming incompressible inviscid flows, irrotational fluid
motions and negligible effects of surface tension. A Cartesian coordinate system is chosen
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with the undisturbed water surface located at z = 0. The system can be described as a
boundary value problem governed by the Laplace equation,

∇2
3Φ = 0 for − ∞ < z < ζ(x, t), (2.1)

whereΦ(x, z, t) denotes the velocity potential, ζ(x, t) is the free surface elevation, x is the
position vector in the horizontal plane, t is the time and ∇3 = (∇, ∂z), with ∇ = (∂x, ∂y)
denoting the gradient in the horizontal plane. Equation (2.1) should be solved subject to
the nonlinear kinematic and dynamic boundary conditions (cf. Davey & Stewartson 1974)
at the free water surface z = ζ(x, t), as follows:

∂tζ + ∇Φ · ∇ζ − ∂zΦ = 0 (2.2a)

and
ΓΦ + ∂t(∇3Φ)

2 + 1
2∇3Φ · ∇3(∇3Φ)

2 = 0, (2.2b)

where the operator Γ is defined as Γ = ∂tt + g∂z with g the gravitational acceleration; a
deep-water boundary condition is

∂zΦ = 0 for z → −∞. (2.3)

2.2. Stokes expansion and separation of harmonics
In order to solve the boundary value problem (2.1)–(2.3), we seek the solutions of unknown
Φ and ζ in a form of power series in wave steepness defined as ε = k0A0 (a so-called
Stokes expansion), with k0 and A0 denoting the characteristic wavenumber and wave
amplitude, respectively,

Φ = εΦ(1) + ε2Φ(2) + ε3Φ(3) + O(ε4) (2.4a)

and
ζ = εζ (1) + ε2ζ (2) + ε3ζ (3) + O(ε4), (2.4b)

where we consider the first three orders and the superscripts denote the order in ε.
Substituting (2.4) into the boundary value problem (2.1)–(2.3) leads to the decomposition
of the fully nonlinear system into different problems through a collection of the terms at
the same order in ε. The decomposed problems can be solved successively from the lowest
to higher orders, as presented in the following from the first (§ 2.3) to the third order (§ 5).

Let linear surface elevation ζ (1) be expressed in two equivalent forms, as follows:

ζ (1)(x, t) = 1
2 A(x, t) ei(k0·x−ω0t) + c.c. (2.5a)

or

ζ (1)(x, t) = 1
2

∫ ∞

−∞
ζ̂ (k) ei(k·x−ω(k)t) dk2 + c.c., (2.5b)

in which c.c. denotes the complex conjugates; A denotes the complex wave envelope of the
surface displacement of the carrier wave, with k0 = (k0, 0) the wavenumber vector chosen
in the x direction; ω0 denotes the angular frequency of the carrier wave that satisfies
the dispersion relation ω0 = ω(k0) given by ω(k) = √

gk (where k = |k|); k = (kx, ky)
denotes a wavevector in the horizontal plane. Equation (2.5a) denotes the first-order
elevation being expressed in an envelope-type form and (2.5b) a form through linear
superposition of monochromatic waves in the Fourier k plane. This paper focuses on the
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former which leads to a nonlinear evolution equation for A that allows for the relaxation of
a narrow banded assumption (cf. Chu & Mei 1971; Davey & Stewartson 1974).

Equating (2.5a) and (2.5b) we obtain a relation between A and ζ̂ , as follows:

A(x, t) =
∫ ∞

−∞
ζ̂ (κκκ + k0) ei[κκκ·x−(ω(κκκ+k0)−ω0)t] dκκκ2, (2.6)

where the integral variable was replaced with κκκ through k = κκκ + k0. Introducing a Fourier
transform for A defined as follows:

A(x, t) =
∫ ∞

−∞
Â(k, t) eik·x dk, (2.7a)

we obtain
Â(k, t) = ζ̂ (k + k0) e−i(ω(k+k0)−ω0)t. (2.7b)

A linear evolution equation for A for waves of a broad bandwidth is derived by Trulsen
et al. (2000) in two equivalent forms, as follows:

∂tA + iω0LA = 0, (2.8a)
with

L(∂x, ∂y) =
[(

1 − i∂x

k0

)2

+ (i∂y)
2

k2
0

]1/4

− 1 (2.8b)

and
∂tÂ + i(ω(k + k0)− ω0)Â = 0, (2.8c)

where (2.8a) is used for constructing the solutions in §§ 3, 4 and 6.2; (2.8c) is in a
form convenient for numerical implementations, as explained in § 4.4. It is clear that a
narrow-banded assumption implies k0LA � O(ε), which, again, this paper aims to drop.
For convenience and later reference, we introduce a dimensionless bandwidth parameter
defined, as follows:

δx,y ∼ 
kx,y

k0
or δx,y ∼ O

(
∂x,yA
ε

)
, (2.9a,b)

where δx (
kx) and δy (
ky) denote the dimensionless (dimensional) bandwidth in the
x and y direction, respectively. The bandwidth is not assumed small, in contrast to
conventional, reduced-form evolution equations for A by earlier works, e.g. Dysthe (1979)
and Stiassnie (1984). Specifically, δx,y > 1 are permitted in this paper. Similar to (2.5a), ζ
and Φ are expressed in an envelope-type form through the separation of wave harmonics,
as follows:

Φ(x, z, t) = 1
2ε(B + ε2B(31)) ek0z ei(k0·x−ω0t) + c.c.

+ ε2[Φ(20)(x, z, t)+ (Φ(22)(x, z, t)+ c.c.)]

+ ε3(Φ(33)(x, z, t)+ c.c.), (2.10a)

ζ(x, t) = 1
2ε(A + ε2A(31)) ei(k0·x−ω0t) + c.c.

+ ε2[ζ (20) + (1
2 A(22) e2i(k0·x−ω0t) + c.c.)]

+ 1
2(ε

3A(33) e3i(k0·x−ω0t) + c.c.), (2.10b)

in which the superscripts (ij) denote O(εi) and jth harmonic, A(ij) = A(ij)(x, t) and B(ij) =
B(ij)(x, z, t) are the modulated amplitude and potential, respectively, and the potentials at
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second and third harmonics are given by, respectively,

Φ(22)(x, z, t) = 1
2 B(22) e2k0z e2i(k0·x−ω0t) (2.11a)

and

Φ(33)(x, z, t) = 1
2 B(33) e3k0z e3i(k0·x−ω0t). (2.11b)

It is worth noting, that although (2.10a,b) are in a form similar to the so-called harmonic
expansion, the wave fields at second and third order in such a form are introduced for
convenience. They are due to the separation of wave harmonics arising mainly from the
forcing equations (e.g. (3.1b) and (4.1)) at a still water surface, presented in § 3 at second
order and in § 4 at third order.

2.3. Linear wave fields
Solutions to a linearized boundary value problem from (2.1)–(2.3) are obtained for linear
wave fields. They are given here without detailed derivations (see § 13 in Mei, Stiassnie &
Yue 2005), expressed in terms of Â(k), as follows:

V (1) ≡ [u(1),w(1)] = 1
2 V̄ (x, z, t) ek0z ei(k0·x−ω0t) + c.c., (2.12a)

with

V̄ = [ū(x, z, t), w̄(x, z, t)] (2.12b)

and ⎡⎣B
ū
w̄

⎤⎦ = −i
∫ ∞

−∞

⎡⎣ 1
i(k + k0)
|k + k0|

⎤⎦ cp(k + k0)Â(k, t) e(|k+k0|−k0)z eik·x dk2, (2.12c)

in which V denotes linear velocity vector and V̄ its magnitude in the envelope-type
form; u(1)(x, z, t) and w(1)(x, z, t) denote linear velocity vector in the horizontal plane
and vertical component, respectively; ū and w̄ are their corresponding magnitude in the
envelope-type form; and cp(k) = √

g/|k| denotes the phase velocity of wave k. It is worth
noting that (2.12c) is fundamental to the theory presented in this paper due to the following
two aspects: it allows for a nonlinear evolution equation for A being expressed in terms of
V̄ ; and it also facilitates simple numerical implementations of the evolution equation for
A presented in § 4.

Using the definition of linear velocity potential Φ(1) and following similar procedures
that lead to the first-order evolution equation (2.8a), it is understood that the following
identities hold (to the first order in wave steepness):

V̄ = ∇3B + k(3d)
0 B and ∂t

⎡⎣B
ū
w̄

⎤⎦+ iω0L
⎡⎣B

ū
w̄

⎤⎦ = 0, (2.13a,b)

in which k(3d)
0 = [ik0, k0] is introduced for convenience.
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2.4. Quadratic property of linear waves: velocity head
Before presenting the wave solutions at second and third order in ε, we introduce a
leading-order approximation to the wave-velocity head, Hv(x, z, t), defined as

Hv(x, z, t) = 1
2g

|∇3Φ
(1)|2, (2.14)

which is correct to O(ε2). The wave-velocity head plays an essential role in the forcing of
bound waves at second order and, thus, the nonlinear evolution equation for A presented
in § 4. Inserting the envelope-type expression for Φ(1) into (2.14) and using (2.12b), we
obtain

Hv = (H(22) + c.c.)+ H(20), (2.15a)

with

H(22)
v = 1

8g
V̄ · V̄ e2k0z e2i(k0·x−ω0t) and H(20)

v = 1
4g

V̄ · V̄ ∗ e2k0z, (2.15b)

in which the asterisk ‘*’ denotes the complex conjugates, and we note that V̄ · V̄ =
ū2 + v̄2 + w̄2 with ū and v̄ denoting the velocity component of ū (ū = [ū, v̄]) in the x
and y direction, respectively. It is noticeable that H(22)

v varies with the superharmonic
factor exp(2ik0 · x − 2iω0t) whereas the mean velocity head H(20)

v is independent of the
carrier wave phase k0 · x − ω0t. Especially for a quasi-monochromatic wave group (or a
monochromatic wave) that admits ∇A � O(1) (or ∇A = 0), we obtain a leading-order
approximation to the mean velocity head H(20)

v given by

H(20)
v (x, z, t) = 1

g
USDcg0 with USD = k0ω0|A|2 e2kz and cg0 = ω0

2k0
, (2.16)

where USD and cg0 denote Stokes drift and the group velocity, respectively. We understand
from (2.16) that the mean velocity head H(20)

v maintains the energy for the propagation of
the Stokes drift at group velocity cg0 for a quasi-monochromatic wave group. We show in
§ 3.3.2 that it is also responsible for the generation of the Eulerian return flow at second
order.

In contrast, the rapidly varying velocity head, associated with the factor of second
harmonic exp(2ik0 · x − 2iω0t), has been rarely investigated as it is zero for unidirectional
waves. In particular, we note

1
4 V̄ · V̄ e2k0z e2i(k0·x−ω0t) + c.c. = 0, (2.17)

which holds for unidirectional waves of a broad bandwidth, as can also be inferred from
earlier works, e.g. equations (23) and (25) in Dalzell (1999). Due to this, we examine the
effects of the rapidly varying velocity head in §§ 3.3.1 and 6.3.1 for multidirectional waves.

3. Second-order solutions O(ε2)

In this section, the solutions for the second-order superharmonic and subharmonic waves
forced by linear surface waves are presented. Compared with Dalzell (1999), the solutions
in this section are as exact but expressed in an envelope-type form. In contrast to Chu &
Mei (1971), Davey & Stewartson (1974) and Dysthe (1979), the derivations do not rely
on a narrow-banded assumption except for § 3.3 where leading-order approximations are
presented.
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Ocean surface waves of a broad bandwidth

3.1. Governing equation and boundary conditions
The velocity potential at second order in wave steepness,Φ(2) = Φ(22) + c.c. +Φ(20), are
described by the following boundary value problem (Dalzell 1999; Li et al. 2021c):

∇3Φ
(2) = 0 for − ∞ < z < 0, (3.1a)

(∂tt + g∂z)Φ
(2) = −ζ (1)ΓzΦ

(1)︸ ︷︷ ︸
=0

−∂t(|∇3Φ
(1)|2) for z = 0, (3.1b)

∂zΦ
(2) = 0 for z → −∞, (3.1c)

in which Γz is defined as Γz = ∂zΓ . As highlighted in (3.1b), the first term on the
right-hand side does not contribute to the forcing on a still water surface as it vanishes
and, thus, only the second term needs to be considered. Using the second term and (2.15b)
we define a forcing term S for z = 0 as follows:

S(x, t) = [−∂t(|∇3Φ
(1)|2)]z=0, (3.2a)

which leads to

S = (S(22) e2i(k0·x−ω0t) + c.c.)+ S(20), (3.2b)

with

S(22) = −2g∂tH(22)
v (x, z, t) e−2i(k0·x−ω0t) (3.3a)

and

S(20) = −2g∂tH(20)
v (x, z, t) for z = 0. (3.3b)

The forcing term S (or the velocity head on a still water surface) is responsible for the
forcing of the second-order bound waves. The negative sign on the right-hand side of
(3.3a,b) implies a flow generated below a still water surface, propagating in the opposite
direction to the change of the velocity head in time at z = 0 – a so-called return flow which
is known for second-order subharmonic waves.

In order to obtain the solution to boundary value problem (3.1a)–(3.1c) for Φ(2), two
different and novel approaches are proposed in this paper and presented in §§ 3.2 and 3.3,
respectively. In particular, the first approach is applicable to three-dimensional waves of a
broad bandwidth, and the second is an approximate method based on the assumption of a
narrow bandwidth with δx,y � 1.

3.2. Approach I: semianalytical approach for Φ(2)

Approach I, referred to as a semianalytical approach, proposes solving boundary value
problem (3.1a)–(3.1c) in the Fourier k plane by using a pseudospectral and a finite
difference method. The boundary value problem for Φ(2j) from (3.1a)–(3.1c) is given by

∇2Φ(2j) = 0 for − ∞ < z < 0, (3.4a)

ΓΦ(2j) = S(2j) for z = 0 (3.4b)

and

∂zΦ
(2j) = 0 for z → −∞, (3.4c)
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in which j = 0 and j = 2 denote the subharmonic and superharmonic wave, respectively.
The solutions of (3.4a,b,c) can be expressed in a form, as follows:

Φ(2j)(x, z, t) = eji(k0·x−ω0t)
∫ ∞

−∞
2−j/2B̂(2j)(k, t) exp eik·x+|k+jk0|z dk2, (3.5)

for j = 0 and j = 2. Substituting (3.5) into (3.4b) leads to the second-order differential
equation for B̂(2j), as follows:

(∂t − ijω0)
2B̂(2j) + g|k + jk0|B̂(2j) = 2j/2Ŝ(2j)(k, t), (3.6)

where Ŝ(2j) denotes the Fourier transform for S(2j) for j = 0 and j = 2. It is understood
that the second-order waves are bound, and which do not admit a homogeneous solution
of (3.6) (Phillips 1960; Hasselmann 1962). As a result, (3.6) for B̂(2j) can be solved
numerically by a semianalytical approach that proposes evaluating S(2j)(x, t) by using
a pseudospectral method and obtaining the numerical solution of (3.6) by available
time-marching methods. The numerical procedures are explained in § 4.4. For numerical
implementations, prescribed conditions at an initial instant are required for Φ(2)(x, 0, t0)
and ∂tΦ

(2)(x, 0, t0). In practice, multiple choices are available to this end, depending
on the purpose of wave predictions. For instance, a second-order wavemaker theory
based on Schäffer (1996), periodic boundary conditions as in Dommermuth & Yue
(1987), the framework by Bonnefoy, Le Touzé & Ferrant (2006) for the waves generation
in a numerical wave tank, stationary waves based on Dalzell (1999) and approximate
initial conditions as presented in § 3.3. If the waves generation is based on linear wave
theory, Φ(2)(x, 0, t0) = 0 and ∂tΦ

(2)(x, 0, t0) = 0 are implied, leading to inconsistency
and additional generation of spurious waves (Schäffer 1996). The semianalytical approach
leads to improved computational efficiency compared with the analytical method by
Dalzell (1999) based on Fourier integrals. For N Fourier modes, the semianalytical
approach requires computational operations at O(N In(N)), whereas Dalzell (1999)
requires O(N2). The validation of the semianalytical approach is presented in § 6.1.

3.3. Approach II: an approximate method for Φ(2)

With a narrow-banded assumption, this section presents an approximate method for
Φ(22) (§ 3.3.1) and Φ(20) (§ 3.3.2). For identifying the correct order in bandwidth, we
assume small and non-dimensional bandwidth scaling parameters δx and δy that denote the
bandwidth in the x and y direction, respectively. The order of accuracy of the approximate
solutions is indicated by the product of ε2 and δ j

x,y with j non-zero integers.
With a narrow-banded assumption, we seek the solutions of (3.1a)–(3.1c) for unknown

B(22) and Φ(20) in a form of power series in bandwidth, as follows:

B(22) = δyB(22)
≈,1 + δ2

x,yB(22)
≈,2 + · · · and Φ(20) = δxΦ

(20)
≈,1 + δ2

x,yΦ
(20)
≈,2 + · · · , (3.7a,b)

in which the subscripts ‘≈, j’ denote an approximation at O(ε2δ
j
x,y), and we consider

leading-order approximations up to j = 2.

3.3.1. Forcing of second-order superharmonic waves by multidirectional waves
It is understood that the forcing term on the right-hand side of (3.1b) (see also (2.17))
for Φ(22) for unidirectional waves is zero, which suggests Φ(22)(x, z, t) = 0. Hence, the
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Ocean surface waves of a broad bandwidth

derivations for Φ(22) are only needed for multidirectional waves. Based on the boundary
value problem described by (3.1a)–(3.1c), the forcing equation of the superharmonic
bound waves for B(22) on a still water surface reads

(∂tt − 4iω0∂t − 4ω2
0 + g∂z + 2gk0)B(22) = iω0V̄ · V̄ − V̄ · ∂tV̄ for z = 0, (3.8)

in which the first term on the right-hand side is of O(ε2δy) and the second term of
O(ε2δyδx). Inserting the expanded form (3.7a) for B(22) into (3.8) and the Laplace equation
for Φ(22) and following the conventional procedures for perturbed solutions, we obtain

B(22)
≈,1 =

∫ ∞

−∞
iω0V̂(22)

sq (k, t)

g|k + 2k0| − 4ω2
0

eik·x+(|k+2k0|−2k0)z dk2 (3.9a)

and

B(22)
≈,2 =

∫ ∞

−∞

−4ω2
0∂tV̂

(22)
sq + (4ω2

0 − g|k + 2k0|)V̂(22)
sq,t (k, t)

(g|k + 2k0| − 4ω2
0)

2
eik·x+(|k+2k0|−2k0)z dk2,

(3.9b)

where V̂(22)
sq and V̂(22)

sq,t denote the Fourier transform for V̄ · V̄ and V̄ · ∂tV̄ with respect to
x for z = 0, respectively.

3.3.2. Potential for the second-order mean flows in two and three dimensions
Similar to the second-order superharmonic waves, the forcing equation of the subharmonic
bound waves at second order for Φ(20) on a still water surface (cf. (3.1b)) reads

∂ttΦ
(20) + g∂zΦ

(20) = S(20) for z = 0, (3.10)

where S(20) is defined by (3.3b) and S(20) ∼ O(ε2δx). With a narrow-banded assumption
and following the same procedures as for B(22), we obtain

Φ
(20)
≈,1 =

∫ ∞

−∞
Ŝ(20)

g|k| eik·x+|k|z dk2 and Φ
(20)
≈,2 =

∫ ∞

−∞
−2Ŝ(20)

t

(g|k|)2 eik·x+|k|z dk2,

(3.11a,b)

in which Ŝ(20)(k, t) and Ŝ(20)
t (k, t) denote the Fourier transform for S(20) and ∂tS(20) with

respect to x, respectively.

3.4. Wave elevation ζ (2) and velocity V (2) at second order
With second-order potential Φ(2) given by the semianalytical approach presented in § 3.2
or the approximate method presented in § 3.3, the surface elevation at second order is
obtained from

ζ (2)(x, t) = −1
g

[
∂tΦ

(2) + ζ (1)∂tzΦ
(1) + 1

2
|∇3Φ

(1)|2
]

for z = 0, (3.12)

where Φ(2) = Φ(20) for unidirectional waves and Φ(2) = Φ(20) +Φ(22) + c.c. for
multidirectional waves. Inserting the envelope-type expression forΦ(1) andΦ(2), we arrive
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at
ζ (2) = ζ (20) + (ζ (22) + c.c.), (3.13a)

with

ζ (22) = −1
g

[
∂tΦ

(22) + 1
4

(
A(∂t − iω0)w̄ + 1

2
V̄ · V̄

)
e2i(k0·x−ω0t)

]
(3.13b)

and

ζ (20) = −1
g

[
∂tΦ

(20) + 1
4

V̄ · V̄ ∗ + 1
4
(A∗(∂t − iω0)w̄ + c.c.)

]
for z = 0. (3.13c)

With Φ(22) = 0 in mind for unidirectional waves, (3.13b) gives an exact expression for the
elevation for second-order superharmonic waves that depend only on linear modulational
parameters, e.g. A and V̄ .

Similarly, the velocity at second order, V (2)(x, z, t), is given by

V (2) = V (20)(x, z, t)+ [V̄ (22)(x, z, t) e2k0z e2i(k0·x−ω0t) + c.c.], (3.14a)

where
V (20) = ∇Φ(20) and V̄ (22) = 1

2(2k(3d)
0 + ∇3)B(22). (3.14b)

4. A new NLSE for A (O(ε3))

In this section, a new NLSE for linear wave envelope A is presented in § 4.1 for
multidirectional waves of a broad bandwidth. Based on a narrow-banded assumption,
leading-order approximations to the new NLSE are derived in § 4.2, and how this
new evolution equation recovers existing NLSEs is explained in § 4.3. The numerical
implementations of the new NLSE are presented in § 4.4.

4.1. An evolution equation correct to O(ε3) for waves of a broad bandwidth
Collecting the terms at third order in wave steepness in (2.2), we obtain

(∂tt + g∂z)Φ
(3) = −Q(3)(x, z, t) for z = 0, (4.1)

where the forcing term Q(3) is given by

Q(3) = ζ (2)ΓzΦ
(1) + 1

2 (ζ
(1))2ΓzzΦ

(1)︸ ︷︷ ︸
=0

+ζ (1)∂z[ΓΦ(2) + ∂t(|∇3Φ
(1)|2)]

+ 2∂t(∇3Φ
(1) · ∇3Φ

(2))+ 1
2∇3Φ

(1) · ∇3(|∇3Φ
(1)|2), (4.2)

with Γzz = ∂zΓz. As indicated in (4.2), one would show that ΓzΦ
(1) = 0 and ΓzzΦ

(1) = 0,
which are not necessarily so for a finite depth. The terms in the square bracket on the
right-hand side of (4.2) can be simplified due to (3.1b). In particular, it is noticed that the
following identity holds:

∂z[ΓΦ(2) + ∂t(|∇3Φ
(1)|2)] = k0∂t(V̄ · V̄ ∗) for z = 0. (4.3)

Inserting the harmonic expansion forΦ(1) andΦ(2) into (4.2) leads to Q(3) being expressed
in a form as follows:

Q(3)(x, z, t) = Q(31)(x, z, t)+ Q(33)(x, z, t), (4.4)

where Q(31) denotes the forcing term with a factor exp (ik0 · x − iω0t) and Q(33) the term
with a factor exp (3ik0 · x − 3iω0t). Leaving the expression for Q(33) in § 5 and focusing
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Ocean surface waves of a broad bandwidth

on Q(31) in this section, we obtain (see details in Appendix A)

Q(31) = Q̄(31)(x, z, t) ei(k0·x−ω0t) + c.c. for z = 0, (4.5a)

with Q̄(31) = Q̄(31)
all + Q̄(31)

dir ,

Q̄(31)
all = (−iω0 + ∂t)[∇3Φ

(20) · V̄ ] + 1
8 [∇3(V̄ · V̄ ∗)] · V̄

+ 1
4(k0w̄ + 2k0A∂t)(V̄ · V̄ ∗), (4.5b)

Q̄(31)
dir = (−iω0 + ∂t){1

2 [(2k(3d)
0 + ∇3)B(22)] · V̄ ∗}

+ 1
16 [(2k(3d)

0 + ∇3)(|V̄ |2)] · V̄ ∗, (4.5c)

in which the subscripts ‘all’ and ‘dir’ are used to distinguish two different cases; the former
means the parameter expressed in terms that are non-constant for both unidirectional and
multi-unidirectional waves, and ‘dir’ means the parameter composed of terms that are
non-zero only for directional waves. Hence, Q̄(31) admits a much simpler expression for
waves considered in two dimensions or for long-crested waves due to Q̄(31)

dir = 0.
Physically, Q(31) would lead to secular solutions that should be removed (see the

discussion on page 376 in Madsen & Fuhrman (2006)). In order to achieve this, a
conventional approach is to introduce a nonlinear amplitude-dependent frequency ω2
(∼O(ε2)) for the first-order wave fields through replacing factor exp[i(k0 · x − ω0t)] in
(2.5a) and (2.12) with exp[i(k0 · x − ω0t)− iε2ω2t]. Thereby, it leads to an additional
contribution of the updated first-order potential Φ(1) to (4.1) at O(ε3). Especially arising
from ∂ttΦ

(1), we obtain an additional term associated with first harmonic at O(ε3)

expressed as −iω2(∂t − iω0)B exp(i(k0 · x − ω0t)− iε2ω2t)+ c.c. Mathematically, the
secular solutions can be removed if the sum of this additional term and Q̄(31) equal zero.
Hence, we arrive at

iω2(∂t − iω0)B = Q̄(31) for z = 0. (4.6)

Noticing that ζ (1) = −∂tΦ
(1)/g for z = 0 which gives (∂t − iω0)B = −gA, substituting

this expression for B into (4.6) leads to the equation for A, as follows:

−igω2A = Q̄(31) for z = 0. (4.7)

The evolution equation for A′ with A′ = A exp(−iω2t), correct to third order in wave
steepness, can now be expressed as

∂tA′ + iω0LA′ + iω2A′ = 0. (4.8)

Inserting (4.7) into (4.8) and omitting the prime leads to

∂tA + iω0LA + N (x, z, t) = 0 for z = 0, (4.9)

where N = −Q̄(31)/g denotes the nonlinear term, given by

N = Nall + Ndir, (4.10a)

with

Nall = 1
g
(iω0 − ∂t)[V (20) · V̄ ] − 1

8g
[2k0w̄ + V̄ · ∇3 + 4k0A∂t](V̄ · V̄ ∗), (4.10b)
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Ndir = 1
g
(iω0 − ∂t)(V̄ (22) · V̄ ∗)− 1

16g
[(2k(3d)

0 + ∇3)(|V̄ |2)] · V̄ ∗. (4.10c)

Equation (4.9) denotes the new NLSE that describes the evolution of linear wave envelope
A in time and space. In addition to the linear term associated with the time derivative
∂t(. . .), (4.9) is composed of a term that denotes linear dispersion relation due to iω0L
and a nonlinear term denoted by N that is correct to O(ε3). For (4.9), no assumptions
associated with the bandwidth have been introduced. Thereby, it has relaxed the limitation
arising from a narrow-banded assumption on which most NLSEs are based, such as the
NLSEs by Dysthe (1979), Trulsen & Dysthe (1996) and Trulsen et al. (2000); i.e. the new
NLSE should permit the prediction of waves with bandwidth δx,y > 1. The implementation
of the new NLSE for the wave envelope, A, of the first-harmonic elevation requires the
evaluation of linear term ∂tA in the Fourier plane based on (2.8c) and the evaluation of the
linear envelope (vector) of both the linear and second-order velocity for N , which will be
explained in detail in § 4.4.

Extensions of the new NLSE (i.e. (4.9)) to more general cases are simple and
straightforward. For example, the new NLSE can be extended to consider a finite water
depth following the derivations in this paper, except that one would expect that the
nonlinear term N may contain a few more terms that introduce a negligible additional
computational cost. Following Dias et al. (2008) and Kharif et al. (2010), the new NLSE
would allow for weakly damped/forced free surface flows through adding the viscous
effects in the dynamic and kinematic boundary condition (cf. equations (35, 37) by Dias
et al. (2008)) at the water surface. Moreover, despite that the new NLSE is formulated
in the framework of potential flow theory for simplicity, it is essentially an equation
associated with linear envelope A, linear velocity V̄ and second-order velocity V̄ (2). This
suggests the weak effects due to viscosity and vorticity in a subsurface layer can be easily
incorporated, allowing for waves interacting with ambient environments, e.g. turbulence
and background rotational flows (cf. McWilliams, Restrepo & Lane 2004). These aspects
will be considered in future work.

4.2. Leading-order approximations to the new NLSE

Approximations to (4.9) correct to O(ε3δ
j
x,y), with j = 0, 1, 2, 3, are presented in this

section with a narrow-banded assumption, i.e. O(δ) � 1. In particular, we assume that
the bandwidths both in the longitudinal (x) direction and the transverse direction to the
propagation of the carrier wave are small and that O(δy) ∼ O(δ2

x ). Small directional spread
is, hence, implied. Based on previous papers (e.g. Chu & Mei 1971; Li et al. 2021c), the
order of magnitude associated with the relevant terms in (4.5) is assumed, as follows:

[V̄ , V̄ ∗] ∼ O(ε), [|V̄ |2, V̄ · V̄ ∗] ∼ O(ε2δ2
y , ε

2), Φ(20) ∼ O(ε2δx) (4.11a–c)

and

B(22) ∼ O(ε2δ2
y ). (4.11d)

Moreover, it is understood that the derivative operators (∂t,∇3) on the terms in (4.11)
would lead to an order of magnitude higher in bandwidth δx,y. With the right orders of
magnitude in mind, collecting the terms up to a particular order in ε and δ based on (4.5)
and (4.9b), and, thus, leading-order approximations to (4.9) are obtained. In particular,
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Ocean surface waves of a broad bandwidth

they are expressed in a form, as follows:

∂tA + iω0LA + N (3,j)
≈ = O(ε3δj+1

x,y ) for z = 0, (4.12)

where N (3,j)
≈ denotes an approximation to N correct to O(ε3δ

j
x,y), with j = 0, 1, 2 and 3,

given by

N (3,0)
≈ = − 1

4g
(V̄ · V̄ ∗)k0w̄, (4.13a)

N (3,1)
≈ = N (3,0)

≈ − 1
8g

[∇3(V̄ · V̄ ∗)] · V̄ − k0

2g
A∂t(V̄ · V̄ ∗), (4.13b)

N (3,2)
≈ = N (3,1)

≈ + iω0

g
(∇3Φ

(20)
≈,1 · V̄ )+ N (3,2)

≈,dir, (4.13c)

N (3,3)
≈ = N (3,2)

≈ + iω0

g
(∇3Φ

(20)
≈,2 · V̄ )− 1

g
∂t(∇3Φ

(20)
≈,1 · V̄ )+ N (3,3)

≈,dir, (4.13d)

N (3,4) = N , (4.13e)

where (4.13e) denotes that N (3,4) has an identical expression to N . As noted earlier, the
subscript ‘dir’ means the parameter being composed of nonlinear terms that are non-zero
only for multidirectional waves, given by

N (3,2)
≈,dir = 1

g

(
B(22)

≈,1 − 1
8

V̄ · V̄
)
(ik0 · ū∗ + k0w̄∗), (4.13f )

N (3,3)
≈,dir = − 1

16g
[∇3(|V̄ |2)] · V̄ ∗ − 1

g
∂t[(ik0 · ū∗ + k0w̄∗)B(22)

≈,1 ]

+1
g

B(22)
≈,2 (ik0 · ū∗ + k0w̄∗). (4.13g)

Equation (4.13b) denotes that a leading-order approximation to N , correct to O(ε3δ), does
not require an evaluation of the second-order mean potential. Equation (4.13c) suggests
that the approximations to Φ(20) and B(22) that are presented in § 3.3 are sufficient to give
a leading-order approximation to (4.9), correct up to O(ε3δ3). Any approximations correct
to an order higher than O(ε3δ2) would require the same computational cost as N because
the approximations Φ(20)

≈,2 and B(22)
≈,2 do not lead to enhanced computational efficiency,

compared with solving for Φ(2) by the semianalytical method.

4.3. Comparisons with two reduced-form equations for A
Two limiting cases are considered in this section in order to demonstrate that the new
NLSE can recover two reduced-form equations for A, including the NLSE for the evolution
of a train of Stokes wave (§ 4.3.1) and the NLSEs by Dysthe (1979), Trulsen & Dysthe
(1996) and Trulsen et al. (2000) with a narrow-banded assumption (§ 4.3.2).
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4.3.1. Uniform Stokes waves
For uniform Stokes waves on an infinite depth, that denote A and V̄ having no slow
modulation in x and z, the new NLSE leads to

N = N (3,0) and hence, N = 1
2 ik2

0ω0|A|2A. (4.14)

Introducing ε = k2
0|A|2 and α1 = 1

2 for Stokes waves, we obtain the evolution equation for
A as follows:

∂tA + iα1ε
2ω0A = 0, (4.15)

which agrees with the classic NLSE for a train of Stokes waves as presented in many
papers, e.g. Benjamin & Feir (1967) and Zakharov (1968). Equation (4.15) will be used for
the analysis of sideband instability of Stokes waves presented in § 6.2.

4.3.2. Waves of a narrow bandwidth (O(ε3δx,y))
In order to recover the previous versions of NLSEs by Dysthe (1979), Trulsen & Dysthe
(1996) and Trulsen et al. (2000) from the NLSE (4.9), two aspects are addressed. First,
the term associated with linear dispersion relation iω0L is identical to equations (12) and
(13) in Trulsen et al. (2000) using the dimensional versions. It has been demonstrated in
Trulsen et al. (2000) how this term can recover the terms associated with linear dispersion
relation derived by Trulsen & Dysthe (1996) and Dysthe (1979). Second, the nonlinear
term in the NLSEs by Trulsen et al. (2000) and Trulsen & Dysthe (1996) are directly
obtained from the Dysthe equation by Dysthe (1979). Hence, we only have to demonstrate
that N can recover the nonlinear terms in the Dysthe equation. To this end, we start with
(4.9b) for unidirectional waves as the Dysthe equation has neglected the contribution from
Φ(22) (which is non-zero only for multidirectional waves). Moreover, a narrow-banded
assumption as in Dysthe (1979) is introduced, i.e. O(δx,y) ∼ O(ε) is assumed in this
section.

With a narrow-banded assumption, the velocity (magnitude) V̄ correct to O(εδx,y) reads
(cf. equations (13.2.21) and (13.2.30) by Mei et al. (2005) for deep-water waves)

V̄ (x, z, t) = −ig
ω0

[
k(3d)

0 A +
( −i(k0z + iex)∇A

−i(k0z + 1)∂xA

)]
+ O(εδ2), (4.16)

in which ex = [1, 0] denotes a unit vector along the x direction in the horizontal plane.
Inserting (4.16) into (4.9b) leads to a leading-order approximation to gN , as follows (see
Appendix A.2 for details):

ΓDystheC ≡ −gN = 4k4
0C|C|2 + 8ik3

0C(C∂xC∗ − C∗∂xC)− 4ik0C∂x(C∗C)

+ 2k0ω0C(∂xΦ
(20) − ∂zΦ

(20)), (4.17)

where C is defined as C ≡ B/2 = −iω0A/(2k0). The subscript ‘Dysthe’ means that the
parameter corresponds to the ‘Γ ’ in Dysthe (1979); i.e. (4.17) recovers ‘Γ ’ on the
right-hand side of equation (2.17) of Dysthe (1979), while observing the following two
aspects. Firstly, the notation C defined here is denoted by ‘A’ in Dysthe (1979). Secondly,
there is one misprint in the equation for ‘Γ ’, as also pointed out by Brinch-Nielsen &
Jonsson (1986) (cf. p. 461) and Janssen (1983) – i.e. the second term in the expression
‘3ik(. . .)’ for ‘Γ ’ should read 8ik(. . .). For completeness, the detailed derivations for (4.17)
are presented in Appendix A.2. The modified NLSE by Trulsen et al. (2000) (i.e. equations
(19–22) therein) is essentially a leading-order approximation to (4.9), correct to O(ε3δx,y).
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inverse

Figure 1. Flow diagram of the numerical implementation of the new NLSE for A, and of the numerical
solution of (3.6) for B(2j)(x, z, t). A dot denotes the derivative with respect to time.

4.4. Numerical implementation
Figure 1 shows the detailed procedures of the numerical implementation of the new NLSE
(4.9) for A, including the solution of the second-order equation, (3.6), for B(2j) and the
evaluation of N by a pseudospectral method and a finite-difference method. We remark
here that it is conventional to solve an NLSE numerically for A in a moving coordinate
system through the transforms ξ = x − cg0t and η = t, which would also follow similar
numerical procedures as follows, but for A′(ξ, y, η) with A′(ξ, y, η) = A(x, t) instead.

At any temporal step tn = t0 + n
t with t0 denoting the initial time, it is understood that
the value of A(x, tn) for all xs < x < xe, with xs and xe denoting the start and end position
vector of a chosen spatial domain, respectively, is given from earlier computations. The
spatial domain is discretized by 2Nx × 2Ny points at which A(x, tn) is known, with 2Nx and
2Ny denoting the total number of points in x and y direction, respectively. Transforming
A to the discretized Fourier space using a fast Fourier transform (FFT) (Frigo & Johnson
1998), we obtain

Â(k, tn) = F{A(x, t)}, with k = (kx, ky), (4.18a)

kx = (0,±1,±2, . . . ,±Nx)× dkx, ky = (0,±1,±2, . . . ,±Ny)× dky, (4.18b)

where dkx and dky denote the interval between two adjacent points in the Fourier kx and ky
direction, respectively and F denotes a FFT with respect to x.

As highlighted in grey in figure 1 with the known value of Â(k, tn), the new NLSE
is solved numerically by using a split-step Fourier method (Tappert 1974). The main
difference between the numerical procedures presented here and these presented in Lo
& Mei (1985), lie in the fact that the evaluation of N per time step is obtained differently
as N has different expressions. The numerical procedures for N at t = tn are decomposed
into three consecutive steps, as explained in the following.

(Step I) The first step is to use the known value of Â(k, tn) to evaluate V̄ (x, 0, tn) and its
derivative with respect to t, x, y and z using an inverse FFT, as highlighted in figure 1 in
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blue. Let ̂̄V be the transformed linear velocity, V̄ , in the Fourier k space. We understand
from (2.12) that

̂̄V (k, z) =
[

k + k0
−i|k + k0|

]
cp(k + k0)Â e|k0+k|z−k0z, (4.19a)

and thus

F{[∂t, ∂x, ∂y, ∂z]V̄ } = i[−ω(k + k0)− ω0, kx + k0, ky, |k0 + k| − k0] ˆ̄V (k, z). (4.19b)

Hence, V̄ and also its derivatives [∂t, ∂x, ∂y, ∂z]V̄ are evaluated for all spatial points
through an inverse FFT using (4.19) for z = 0.

(Step II) The second step (highlighted in green in figure 1) is to solve the second-order
equations (3.6) for B(2j) with j = 0 and j = 2 by the semianalytical approach presented
in §3.2. The forcing terms S(2j) for j = 0 and j = 2 are computed based on (3.3) in the
physical plane using ∂tV̄ , V̄ and V̄ ∗ evaluated in step I. The second-order potentials B̂(2j)

and their derivatives with respect to time, ∂tB̂
(2j)

for j = 0 and j = 2, with prescribed
initial conditions, can be evaluated based on (3.6) by using a time-marching method,
e.g. the midpoint method as indicated in figure 1. With the potentials computed per time
step, second-order velocity at different harmonics, V̄ (2j) for j = 0 and j = 2, and their
derivatives with respect to t, x, y and z can be readily obtained by an inverse FFT.

(Step III) The third step, as highlighted in purple in figure 1, is to evaluate N in the
physical space based on (4.9b) using the terms evaluated in step I and step II.

Some remarks on the numerical efficiency of the new NLSE are explained here for
two-dimensional waves, which allow for a fair comparison with the efficiency of existing
NLSEs, e.g. the Dysthe equation as explained in Lo & Mei (1985). In the pseudospectral
method, the nonlinear terms are evaluated through FFT at each x and tn before the
integration in time is performed. The evaluation requires 20 FFTs (cf. the areas highlighted
in blue and green in figure 1). The third-order nonlinear terms are evaluated in the physical
domain, and an additional eight FFT computations arise from the terms associated with
∂t(∂x, ∂z)B(2j) and (∂x, ∂z)B(2j) due to an inverse FFT (cf. the areas highlighted in green
and purple in figure 1). Two FFTs are needed in the linear equation (i.e. the equation
in the last line highlighted in grey in figure 1). If N Fourier modes are used, a total of
30N In(N) operations are needed for advancing the solution by one step in time whereas
10N In(N) operations are required with NLSEs, e.g. the Dysthe equation and modified
NLSE (Dysthe 1979; Lo & Mei 1985; Trulsen et al. 2000). Although a slightly increased
computational cost relative to the previous versions is inevitable, as expected, the new
NLSE offers much better computational efficiency compared with other methods, e.g.
solving the Zakharov integral equation that requires roughly O(N3) operations when an
explicit time-differencing scheme is used. Moreover, it is worth noting that the kinematics
of the system, i.e. the elevation and velocities at the first and second orders, are obtained
at almost no additional cost throughout the numerical implementations of the NLSE.

In contract to the HOS method which is also based on efficient FFTs, a pseudospectral
method and numerical methods for time marching (cf. Dommermuth & Yue 1987; West
et al. 1987), the new NLSE has the following main features. First, as aforementioned,
the new NLSE allows for a computational domain chosen based on the scaling of the
wave envelope (or the maximum of the side bandwidth of a spectrum), in a manner
similar to other NLSE-based models. This suggests a smaller number of discrete points
than the HOS method can be chosen in a computational domain. It is mainly achieved
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Ocean surface waves of a broad bandwidth

by the semianalytical approach for second-order superharmonic bound waves, which
are expressed in an envelope-type form. It is equivalent to shifting the spectrum of the
second-order superharmonic bound waves by 2k0 towards the origin of the Fourier plane.
In practice, the choice of the carrier wave (i.e. k0) allows for flexibility and, therefore, can
contribute to reducing the computational cost, in particular for the ocean spectra of a long
tail. With a reasonable selection of k0, the side bandwidth of an asymmetrical spectrum can
be much reduced and, therefore, a less fine mesh would be allowed for the implementation
of the new NLSE. For example, a numerical test for a JONSWAP spectrum (see Appendix
C) was carried out with k0 = 4kp chosen for computations, where kp denotes the spectrum
peak. Secondly, the new NLSE separately obtains the wave fields due to free waves and
second-order bound waves at a still water surface. Last, with proper separation of the
perturbed solutions and multiple scales in time (in terms of wave steepness), the author
conjectures that one would show that the solution of the third-order HOS method following
Onorato, Osborne & Serio (2007) (i.e. equations (13) and (14) in the paper) can recover the
new NLSE for the envelope of the first-harmonic wave elevation. This will be addressed
in future work.

5. Solutions at third order O(ε3)

For completeness, this section presents the solutions at third order for both potential Φ(33)

given in §5.1 and elevation ζ (3) in § 5.2.

5.1. Potential Φ(33) at third harmonic
Collecting the terms at third order in wave steepness in (2.1)–(2.3) and keeping the terms
that have a factor exp(3ik0 · x − 3iω0t), we obtain the following equations for Φ(33):

∇2
3Φ

(33) = 0 for − ∞ < z < 0, Γ Φ(33) = Q(33) for z = 0 (5.1a,b)

and

∂zΦ
(33) = 0 for z → −∞, (5.1c)

where the third-order term Q(33)(x, t) denotes the forcing of bound waves at third harmonic
on a still water surface, as noted in § 4, expressed as

Q(33) = Q̄(33)(x, z, t) e3ik·x−3iω0t for z = 0 (5.2a)

and

Q̄(33) = 1
2(∂t − 3iω0)[V̄ · (∇3 + 2ik(3d)

0 )B(22)] + 1
16 V̄ · [(∇3 + 2ik(3d)

0 )(V̄ · V̄ )]. (5.2b)

For unidirectional waves, it is understood that both B(22) and (V̄ · V̄ ) have no contribution
to the third-order nonlinear terms as they vanish, meaning Q̄(33) = 0 and thus, Φ(33) = 0.

The solution of equations (5.1a,b,c) for Φ(33) can be obtained in a way similar to the
semianalytical approach for Φ(2), i.e. the solution can be obtained by a finite-difference
method in the Fourier k space based on the forcing equation on a still water surface,
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as follows:

(∂t − 3iω0)
2B̂(33)(k, z, t)+ g|k + 3k0|B̂(33)(k, z, t) = 2Q̂(33)(k, z, t) for z = 0, (5.3)

where, as defined in previous sections, ‘ ˆ(. . .)’ denotes a Fourier transform to the k plane
with respect to x. Thereby, Φ(33) is expressed as

Φ(33) = 1
2 B(33) e3k0z e3ik·x−3iω0t, (5.4a)

with

B(33) =
∫ ∞

−∞
B̂(33)(k, 0, t) e|k+3k0|z−3k0z eik·x dk2. (5.4b)

5.2. Elevation ζ (3) at third order
Based on the boundary conditions (2.2a,b) it is understood that the wave elevation at third
order can be obtained from (cf. (13.2.3) by Mei et al. (2005))

ζ (3) = −1
g

[
∂tΦ

(3) + ζ (1)∂tzΦ
(2) + ζ (2)∂tzΦ

(1) + ∇3Φ
(1) · ∇3Φ

(2)

+ 1
2
(ζ (1))2∂tzzΦ

(1) + 1
2
ζ (1)∂z(∇3Φ

(1) · ∇3Φ
(1))

]
. (5.5)

Based on (5.5), it is understood ζ (3) can be expressed in a form, as follows:

ζ (3) = (1
2 A(31)(x, t) ei(k0·x−ω0t) + c.c.)+ (1

2 A(33)(x, t) e3ik·x−3iω0t + c.c.), (5.6)

where amplitudes A(31)(x, t) and A(33)(x, t) are in a form given by, respectively,

A(31) = − 1
2g

[(∂t − 2iω0)(2k0 + ∂z)B(22)]A∗ − 1
g

A∂tzΦ
(20) − 1

2g
A(22)[(∂t + iω0)w̄∗]

− 1
g
ζ (20)[(∂t − iω0)w̄] − 1

2g
V̄ ∗ · [(2k(3d)

0 + ∇3)B(22)] − A2

8g
(∂t + iω0)(k0 + ∂z)w̄∗

− 1
4g

AA∗(∂t − iω0)(k0 + ∂z)w̄ − 1
8g

A∗[(∂z + 2k0)(V̄ · V̄ )]

− 1
4g

A(∂z + 2k0)(V̄ · V̄ ∗)− 1
g
(∂t + iω0L)B, for z = 0, (5.7)

A(33) = −1
g
(∂t − 3iω0)B(33) − 1

2g
[(∂t − 2iω0)(2k0 + ∂z)B(22)]A − 1

2g
A(22)[(∂t + iω0)w̄]

− 1
2g

V̄ · [(2k(3d)
0 + ∇3)B(22)] − A2

8g
(∂t − iω0)(k0 + ∂z)w̄

− 1
8g

A[(∂z + 2k0)(V̄ · V̄ )], (5.8)

in which the nonlinear terms are obtained in the physical plane using a pseudospectral
method. As noted in §§ 2.4 and 3.3.1, both B(22) and V̄ · V̄ vanish for unidirectional
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waves, under which circumstances the amplitudes at third order embrace a much simpler
expressions given by

A(31)
uni = −1

g
A∂tzΦ

(20) − 1
2g

A(22)(∂t + iω0)w̄∗ − 1
g
ζ (20)(∂t − iω0)w̄

− A2

8g
(∂t + iω0)(k0 + ∂z)w̄∗ − 1

4g
AA∗(∂t − iω0)(k0 + ∂z)w̄

− 1
4g

A[(∂z + 2k0)(V̄ · V̄ ∗)] − 1
g
(∂t + iω0L)B, (5.9a)

A(33)
uni = −A2

8g
(∂t − iω0)(k0 + ∂z)w̄ − 1

2g
A(22)(∂t − iω0)w̄, (5.9b)

in which the subscript ‘uni’ refers to the cases for unidirectional waves. With a
narrow-banded assumption O(δ) � 1, we readily obtain from (5.9) (through omitting
terms associated with the derivatives with respect to t and z and the second-order mean
fields and noting w̄ = −iω0A + O(εδ)), as follows:

A(31)
uni,≈ = −3

8 k2
0|A|2A + O(ε3δ) and A(33)

uni,≈ = 3
8 k2

0A3 + O(ε3δ), (5.10a,b)

in which the subscript ‘≈’ denotes an approximate expression due to a narrow-banded
assumption. Inserting (5.10a,b) into (5.6) leads to a leading-order approximation for ζ (3)
that agrees with (2.12) in Lo & Mei (1985).

6. Results

This section focuses on three aspects in order to explore and validate the theory presented,
including the second-order solutions presented in § 3, sideband instability of Stokes waves
and the roles of wave directionality. They are examined in §§ 6.1, 6.2 and 6.3, respectively.

For numerical implementations, a Gaussian amplitude spectrum (Ξ(k)) in wavenumber
and a (unnormalized) directional distribution (D(θ)) were chosen to generate a short
(focused) wave group, given by, respectively,

Ξ(k) = exp

[
−(k − kp)

2

2k2
w

]
and D(θ) = exp

[
−(θ − θp)

2

2θ2
w

]
, (6.1a,b)

where kp denotes the peak wavenumber and θp denotes the propagation direction of the
peak wave at linear focus, kw and θw denote the standard deviation of the spectrum in
wavenumber and direction, respectively. An asymmetrical Gaussian spectrum is obtained
from (6.1a) through using two different values of kw for the upper sideband k > kp and
lower sideband k ≤ kp, respectively. For the relevant cases computed in this section, we
used θp = 0 and kp = 0.02769 m−1 which is typical of the North Sea (Barratt et al. 2021).
Using the spectra described by (6.1a,b), linear elevation ζ (1) at t = t0 is given as input by

ζ (1)(x, t) = ε0

k0Ξk

Nk∑
n=1

Ξ(kn) cos[kn(x − xf )−
√

gkn(t0 − tf )+ ψf ], (6.2a)

with

Ξk =
Nk∑

n=1

Ξ(kn), (6.2b)
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for unidirectional waves, where ε0 denotes the dimensionless steepness of a wave group
at linear focus; kn and Nk denote the evenly spaced discrete wavenumbers and the total
number chosen for numerical implementations, respectively; the subscript ‘f ’ denotes the
position or time for the wave group at linear focus; ψf denotes the wave phase at linear
focus; for multidirectional waves,

ζ (1)(x, t) = ε0

k0Ξk,θ

Nk∑
n=1

Mθ∑
m=1

Ξ(kn)D(θm) cos[kn,m · (x − xf )− ω(kn,m)(t0 − tf )+ ψf ],

(6.3a)
with

Ξk,θ =
Nk∑

n=1

Mθ∑
m=1

Ξ(kn)D(θm) and kn,m = [kn cos θm, kn sin θm], (6.3b)

where θm and Mθ denote the evenly spaced discrete wave directions in the range of (−π,π)
and the total number chosen for numerical implementations, respectively. Despite that the
directional distribution described by (6.1b) is in an unnormalized form, (6.3a,b) suggest
that the integral unity of the directions of the linear multidirectional waves generated has
implicitly been satisfied due to the additional scaling factor, Ξk,θ , defined in (6.3b).

6.1. Second-order solutions
We validate the second-order solutions presented in § 3 in this section through
comparisons with the analytical method by Dalzell (1999) and with existing approximate
methods. We focus on the temporal–spatial evolution of a wave group. For simplicity,
the effects at third order are neglected in this section as they do not affect, qualitatively,
the discussion presented here. Let a wave group start to propagate at t = t0 at which
the linear elevation ζ (1)(x, t0) of a group is given in space by (6.2) for a unidirectional
group and by (6.3a) for a directionally spread focused wave group. Inserting ζ (1)(x, t0)
into (2.6) leads to an expression for A(x, t). For a fair comparison, the input at t = t0 for
second-order wave fields is based on the results by Dalzell (1999). Following the numerical
procedures explained in § 4.4, ζ (22) and ζ (20) are readily obtained from (3.13b) and (3.13c),
respectively.

6.1.1. Unidirectional and multidirectional wave group
Figure 2 shows a comparison of the second-order superharmonic wave elevation for a
unidirectional wave group at two different times (noting that Φ(22)(x, t) = 0), between
the results predicted by (3.13b), Dalzell (1999) and a leading-order approximation based
on a second-order Stokes theory given by

ζ
(22)
Stokes = 1

2 k0A2(x, t) cos[k0(x − xf )− ω0(t − tf )+ ψ0]. (6.4)

Due to an asymmetrical Gaussian amplitude spectrum chosen in figure 2, a good estimate
of the side bandwidth can be given by δ = 3kw/kp for k > kp, which measures from the
wavenumber (i.e. k = kp + 3kw) dropping by 99 % in magnitude relative to the spectrum’s
peak. This gives δ = 4.86 for the case examined in figures 2 and 3. The good agreement
between (3.13b) and Dalzell (1999) is evident in figure 2, whereas the less satisfactory
agreement between the second-order superharmonic elevation (6.4) and the other two
methods is also shown. For completeness, the expressions for both ζ (22) and ζ (20) based on
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Figure 2. A comparison of second-order superharmonic wave elevation ζ (22) for a unidirectional wave group
at different times between the predictions by (3.13b) (black solid line), Dalzell (1999) (red dashed line) and
(6.4) (blue dot–dashed line) based on a second-order Stokes wave theory. The wave group started to propagate
at an initial time t0 = −15T0 with T0 the period of the peak wave; it focuses linearly at xf = −25λ0 with
λ0 = 2π/kp, k0 = kp and tf = −10T0. At t = t0, an asymmetrical Gaussian spectrum, with kw = 0.27k0 for
k < k0 and kw = 1.62k0 for k > k0 and ε0 = 0.3, was chosen for ζ (1) based on (6.2). Panels (a,b) show for
t = −10T0, (c,d) for t = 20Tp and (e, f ) for t = 40T0. Panels (b,d, f ) show the area highlighted by the thick
blue box in (a,c,e), respectively.

Dalzell (1999) are presented in Appendix B. It is understood Dalzell (1999) is capable of
providing exact predictions of second-order wave fields based on Fourier integrals. The
agreement with Dalzell (1999) in figure 2 clearly demonstrates that the semianalytical
approach presented in § 3.2 can also work for this purpose. Similar observations are also
shown in figure 4 for ζ (22) predicted for the evolution of a directionally spread focused
wave group at different times.

Figure 3 shows a comparison of the elevation for second-order subharmonic waves
forced by a unidirectional linear wave group on a still water surface between the results
predicted by (3.13c), Dalzell (1999) (cf. Appendix B) and Trulsen et al. (2000) (cf.
Appendix D). It is clearly seen in figure 3 that (3.13c) can predict ζ (20) as well as Dalzell
(1999), whereas Trulsen et al. (2000) leads to less satisfactory agreement with Dalzell
(1999), owing to a narrow banded assumption.

6.2. Sideband instability of Stokes waves
In this section, we examine the capabilities of the new NLSE by investigating the
sideband instability of Stokes waves through comparisons with earlier works, e.g.
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Figure 3. A comparison of surface wave elevation ζ (20) for the second-order subharmonic waves forced by
a unidirectional wave group at different times between the prediction by (3.13c) (black solid line), Dalzell
(1999) (red dashed line) and Trulsen et al. (2000) (blue dot–dashed line). In the figure, panels (a,b) show for
t = −10T0, panels (c,d) for t = 20T0 and panels (e, f ) t = 40T0; the parameters were chosen the same as in
figure 2.

Dysthe (1979), Crawford et al. (1981), McLean (1982) and Trulsen et al. (2000). The
approximations to N presented in § 4.2 are used in this section as they are sufficient
to this end. The contribution due to N≈,dir is neglected for simplicity. Based on (4.15),
the stability of Stokes waves to sideband perturbations can be investigated by assuming
small disturbances in amplitude and phase for A in a form given by (cf. Trulsen
et al. 2000)

A = a0(1 + a + iθ) e−iα1ε
2
0ω0t with [a, θ ] = 2[â, θ̂ ] cosψ(x, t), (6.5)

in which a0 denotes the amplitude of a train of Stokes wave, ε0 = k0a0 denotes the
dimensionless steepness of the Stokes wave, â and θ̂ are infinitesimal real parameters
(i.e. � O(1)) that denote small perturbations in amplitude and phase, respectively,
ψ(x, t) = k0[(1 + δx)x + δyy] − ω0δΩ t denotes the modulated phase, with k0 and ω0
the wavenumber and angular frequency of the Stokes wave, respectively, δx and δy the
dimensionless sideband in wavenumber in the longitudinal (kx) and transverse/spanwise
(ky) direction, respectively, and δΩ the dimensionless sideband in frequency; as defined in
§ 4.3.1, α1 is defined as α1 = 1/2.

Treating the expression (6.5) for A as the modulated amplitude of a plane wave k0 and
inserting (6.5) into (2.12) leads to V̄ (x, z, t) given by
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Figure 4. Second-order superharmonic wave elevation ζ (22) for a directionally spread focused wave group at
different times; the left-hand subpanels show the results predicted by (3.13b); the right-hand subpanels show
a comparison of the prediction by (3.13b) (blue dot–dashed line) and Dalzell (1999) (red solid line) for y = 0.
The wave group started to propagate at an initial time t0 = −15T0 with T0 denoting the period of the peak wave
kp = k0; it focuses linearly at xf = 0 and tf = 0. At t = t0, a symmetrical Gaussian spectrum with kw = 0.3k0,
ε0 = 0.3, θw = 15◦ was chosen for ζ (1) based on (6.3a). In the figure, λ0 = 2π/k0 denotes the wavelength of
the carrier wave of the group. Here (a) t = −15T0, (b) t = −1.74T0, (c) t = 11.5T0 and (d) t = 14.8T0.

V̄ = −i
ω0

k0
ε0

⎧⎨⎩
⎡⎣ i

0
1

⎤⎦+
⎡⎣(iâ − θ̂ )Vx,+(z) cosψ + (â + iθ̂ )Vx,−(z) sinψ
(iâ − θ̂ )Vy,+(z) cosψ + (â + iθ̂ )Vy,−(z) sinψ
(â + iθ̂ )Vz,+(z) cosψ + (iâ − θ̂ )Vz,−(z) sinψ

⎤⎦⎫⎬⎭ e−iα1|a0|2t,

(6.6)
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where the z dependent coefficients Vi,±(z) are

Vx,±(z) =
√

1 + δz,+
δz,+

(1 + δx) ek0zδz,+ ±
√

1 + δz,−
δz,−

(1 − δx) ek0zδz,−, (6.7a)

Vy,±(z) =
√

1 + δz,+
δz,+

δy ek0zδz,+ ±
√

1 + δz,−
δz,−

(−δy) ek0zδz,− (6.7b)

and
Vy,±(z) = √

1 + δz,+ ek0zδz,+ ±√
1 + δz,− ek0zδz,−, (6.7c)

with

δz,± =
√
(1 ± δx)2 + δ2

y − 1. (6.7d)

The full solution for V̄ in a form as (6.6) allows for min(|δx|, |δy|) > 1. It should be noted
that, time dependant disturbances (small) for V̄ except for these due to linear dispersion
relation are neglected for simplicity. Otherwise, the derivations following Benjamin (1967)
(e.g. starting from equations (11) and (21) in the paper) are needed that would lead to
numerical analysis for the sideband instability. The insertion of (6.6) into (4.12) for j = 3
leads to an eigenvalues equation for δΩ , with the terms at O(ε2

0δ
2
y ) and higher neglected.

In particular, the eigenvalues equation for δΩ reads

(−δΩ + LI)
2 + (−δΩ + LI)(α11 + α22)+ α12α21 = 0, (6.8)

where Lr = 1
2 [L(ik0δx, ik0δx)+ L(−ik0δx,−ik0δx)] and LI = 1

2 [L(ik0δx, ik0δy)− L
(−ik0δx,−ik0δx)] denote the contribution of the linear dispersion, and coefficients αij are
given by

α11 = 1
4

Vz,−ε2
0 + (Vx,+ + Vz,+)

[
−1

8
δx +

(
1
2
L2 + L2(1 + ε2

0)δ20 − δxL2
2

δ20 − L2
2

)]
ε2

0 ,

(6.9a)

α12 = α1ε
2
0 − Lr − 1

4
Vz,+ε2

0 − (Vx,− − Vz,−)

×
[

1
8
δx − 1

2

(
L2 + 2L2(1 + ε2

0)δ20 − 2δx(L2)
2

δ20 − (L2)2

)]
ε2

0 , (6.9b)

α22 =
[
−1

4
(Vx,− − 2Vz,−)− 1

8
∂z(Vx,− − Vz,−)+ (Vx,− − Vz,−)

×δx(1 + ε2
0)L2 − δ20L2

2

δ20 − L2
2

]
ε2

0 , (6.9c)

α21 = Lr − α1ε
2
0 + 1

4
(Vx,+ + 2Vz,+)ε2

0 + 1
8
∂z(Vx,+ + Vz,+)ε2

0

− ε2
0(Vx,+ + Vz,+)[δx(1 + ε2

0)L2 − δ20L2
2]/(δ20 − L2

2), (6.9d)

in which the z dependent variables associated with Vi,±(z) are evaluated for z = 0,

δ20 =
√
δ2

x + δ2
y denotes the dimensionless magnitude of the sidebands away from the
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Ocean surface waves of a broad bandwidth

wavenumber of the Stokes wave, and the approximation L2 ≈ 1
2(LI + Lr) (cf. equations

(11) and (15) by Crawford et al. (1981) for similar discussions) was used due to the
terms associated with ∂t(V̄ · V̄ ∗) and, therefore, V (20), arising from the symmetry of the
disturbances to the Stokes wave.

It is understood that the instability occurs if (6.8), a quadratic equation in δΩ , has a
positive imaginary root for δΩ . Thereby, the instability occurs if the following inequality
holds:

RΩ ≡ 1
4 (α11 + α22)

2 − α12α21 < 0, (6.10)

in which RΩ is defined for later reference.
Figure 5 shows a comparison of the instability region predicted by (6.10) and its

lower-order expression, equations (18–22) by Trulsen et al. (2000), and the exact
computations by McLean (1982) for three different values of wave steepness. The
equations of Trulsen et al. (2000) are presented in Appendix D for reference. In the
cases chosen by McLean (1982) the value of a different steepness, defined as half the
crest-to-trough height of Stokes waves and referred to as εM here, is given. For a direct
comparison, the identity derived by Trulsen & Dysthe (1996) (i.e. equation (30) therein)
was used to evaluate ε0, as follows:

ε0 = εM − 1
2ε

3
M. (6.11)

It is seen from figure 5(a–c) that, compared with McLean (1982), both approximations
behave similarly; good agreement is shown for small δx and small steepness ε0, whereas
the agreement becomes less satisfactory for larger ε0. As approximations of higher-order
accuracy are used, better agreement with McLean (1982) is clearly seen in figure 5(d–f )
compared with figure 5(a–c). In particular, as seen in figure 5(d–f ), equation (6.10) agrees
with McLean (1982) in a nearly perfect manner for ε0 ≈ 0.1 and ε0 ≈ 0.2 in the range
δx � 1, while the predictions by (6.10) are also satisfactory for ε0 ≈ 0.33. Comparing the
results by Trulsen et al. (2000) and (6.10) with McLean (1982) shown in figure 5(d–f ), it
is clear that (6.10) provides a better prediction for all three cases. In particular, (6.10) is
capable of proving more accurate predictions for the instability of Stokes waves subject
to sidebands in the transverse direction, as clearly shown in figure 5(e, f ). Focusing on
the instability due to transverse sidebands (δy), figure 5 shows that equations (19–22) in
Trulsen et al. (2000) fail to improve the accuracy of the lowest-order approximation (i.e.
equation (18) by Trulsen et al. (2000)) for small δx for all three cases. The reason to this is
explained as follows. Equations (19–22) of Trulsen et al. (2000), with the notation in this
paper, lead to the instability region described by the inequality, as follows:

RT ≡ Lr

[
Lr + ε2

0

(
1 − δ2

x

δ20

)]
+ ε4

0δ
2
x

16
< 0, (6.12)

where RT is introduced for later reference. Equation (6.12) gives the instability region
based on equation (18) by Trulsen et al. (2000) by setting δx to zero. For small ε0 (ε0 �
0.5), the last term in RT is negligible, which gives two conditions for instability to occur,

Lr < 0 or Lr + ε2
0

(
1 − δ2

x

δ20

)
< 0. (6.13)

Noting that δ2
x/δ20 < 1 for δx � 1, the first condition in (6.13) dominates for small δx.

Using a leading-order approximation to Lr, i.e. Lr ≈ (2δ2
y − δ2

x )/8, the first condition is
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Figure 5. A comparison of the instability region predicted by Trulsen et al. (2000), the exact computations
based on McLean (1982) and the present theory based on (6.10) for three different values of wave steepness
defined as ε0 = k0a0: (a,d) ε0 = 0.0995, (b,e) ε0 = 0.197 and (c, f ) ε0 = 0.327. (a–f ) The exact results based
on McLean (1982) (indicated by black dashed lines) are computed; (a–c) computations are based on equation
(18) by Trulsen et al. (2000) (blue dots) and a leading-order approximation based on (4.12) and (4.13a)
(red solid) – both approximations are correct to O(ε3

0δ
0) with the exact linear dispersion relation; (d–f ) the

approximations based on equations (19–22) by Trulsen et al. (2000) (blue dot–dashed), correct to O(ε2
0δ

2
x , ε

2
0δ

0
y )

and (6.10) derived in this paper (red dot–dashed).

approximately

2δ2
y − δ2

x < 0, (6.14)

which corresponds to a (neutral) instability slope near the origin defined by δy/δx =
±1/

√
2 (corresponding to ∼ ±35.26◦ to the carrier wave k0), as pointed out by

Longuet-Higgins (1976) for the analysis of resonant energy transfer in a narrow spectrum
and clearly shown by the predictions based on Trulsen et al. (2000) in figure 5 (see also
§ 6.3.2).

In contrast, (6.10) is capable of providing an accurate prediction of the instability region
of Stokes waves subject to spanwise (y direction) sideband perturbations for moderate
values of wave steepness, ε0 � 0.2, as can be clearly seen in figure 5(d,e). This is due to
that (6.6) has taken into account the transverse sidebands δy in δz,± which denotes the
effects on wave kinematics (i.e. V̄ ) in addition to the wave envelope A. For ε0 ≈ 0.33, the
difference between (6.10) and McLean (1982) is likely due to that the terms described by
N≈,dir presented in § 4.2 at O(ε2

0δ
2
y ) were neglected in the computations.
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Figure 6. The growth rate Im(δΩ) varying with the longitudinal bandwidth δx (a) and ε0 = k0a0 (b) when
the instability of Stokes waves occurs. In the figure, the predictions are computed based on Crawford et al.
(1981), (6.15), and equations (19–22) by Trulsen et al. (2000) for three different values of steepness (a) and two
different values of δx (b). Panel (b) shows, in addition, experimental measurements by Benjamin & Feir (1967)
and Lake et al. (1977).

We now proceed to examining the energy growth rate of Stokes waves, which can be
defined as the positive imaginary component of the roots of (6.8), as follows:

Im(δΩ) = Im(
√

RΩ), (6.15)

where Im denotes the imaginary component. When instability occurs, the rate of amplitude
growth/decline behaves like exp[ 1

2 Im(δΩ)ω0t] based on (6.5). This will be further
examined in § 6.3.2.

Figure 6 shows the energy growth rate, Im(δΩ), varying with the sideband δx for five
values of ε0 and varying with ε0 for two values of δx. In addition to the experimental
measurements and the predictions of (6.15), figure 6 also presents the results due to
Crawford et al. (1981), for which small corrections following Krasitskii (1994) and Janssen
(2004) (cf. § 4.11) were used. Crawford et al. (1981) is based on the Zakharov integral
equation for the study of a uniform wave train and the results are correct to third order in
wave steepness with all higher-order dispersion effects included. It is seen in figure 6 that
(6.15) shows better agreement with Crawford et al. (1981) than Trulsen et al. (2000) (i.e.
predicted by Im

√
RT ), which is more so for 0.15 � ε0 and 0.4 � δx.

Figure 7 shows the instability boundary for growth of unstable perturbations for
two-dimensional wave trains, predicted due to Benjamin & Feir (1967), Longuet-Higgins
(1978), Crawford et al. (1981) and by this paper based on (6.15). Compared with the exact
numerical results due to Longuet-Higgins (1976), (6.15) is in qualitative good agreement
whereas the quantitative discrepancy is ∼23 % for the restabilization of steeper waves
perturbed by long waves with δx → 0. Although the results based on (6.15) in figure 7
show slightly worse performance than the Zakharov equation, it can obviously yield
restabilization for larger wave steepness, being an improvement over earlier versions of
NLSEs.

For large values of wave steepness, i.e. 0.2 � ε0, as shown in figures 6(a,b) and 7, the
disagreement between (6.15) and Crawford et al. (1981) can be observed, which likely
arises from that the additional time-dependant (small) disturbances are neglected in (6.15)
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Figure 7. Stability boundary for growth of unstable perturbations for two-dimensional wave trains predicted
based on (6.15), compared with the results of Benjamin & Feir (1967), Longuet-Higgins (1978) and the
Zakharov equation due to Crawford et al. (1981).

to the linear velocity envelope (vector), V̄ . The analysis in this section shows the results
due to (6.15) are satisfactory.

Figures 5–7 suggest that the new NLSE described by (4.9) should work for ε0 � 0.25
and δx,y > 1 for the evolution of surface waves with directional spread.

6.3. Effects of wave directionality
The presented theory permits us to investigate the effects of wave directionality based on
an order in wave steepness. Thereby, we focus the wave-directionality effects on waves
at second order (§ 6.3.1) and on nonlinear energy transfer in a narrow wave spectrum by
implementing the new NLSE numerically in § 6.3.2.

6.3.1. Waves at second order
As explained in § 2.4, one of the major effects of wave directionality arises from the
fact that the superharmonic velocity head H(22)

v throughout the water columns becomes
non-zero for directionally spread waves. This leads to both non-zero Φ(22), additional
contributions to elevation ζ (22) due to bothΦ(22) and H(22)

v . These second-order effects on
the spatial–temporal evolution of potential or elevation envelope of the first harmonic are
considered negligible in most models based on an earlier version of NLSE, e.g. the NLSE
by Dysthe (1979), Stiassnie (1984) and Trulsen et al. (2000). We focus on examining the
velocity head H(22)

v and H(20)
v by studying the evolution of a directionally spread focused

wave group at different times. For simplicity, third-order effects were neglected in the
computations as they do not affect the discussions here in a qualitative manner.

Figures 8 and 9 show the dimensionless superharmonic and subharmonic velocity head
defined in § 2.4, respectively. It is seen from figure 8 that, except for the group at linear
focus (figure 8b,e,h), larger values of directional spread lead to smaller magnitudes in
superharmonic velocity head, owing to the fact that, as the total wave energy is kept the
same, the wave energy distributes in larger areas for larger values of directional spread.
The magnitude of the superharmonic velocity head is shown to be � 10 ∼ 30 % × ε0
in figure 8. Similar observations can be found in figure 9 for the subharmonic velocity
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Figure 8. The non-dimensional superharmonic velocity head k0(H
(22)
v + c.c.) for the evolution of a focused

wave group at different times for z = 0. The parameters are the same as figure 4 except that θw differs: (a–c)
θw = 15 deg; (d–f ) θw = 30 deg; (g–i) θw = 45 deg; (a,d,g) t = −15 × T0; (b,e,h) t = 0 for the groups at linear
focus with ε0 = 0.3; (c, f,i) t = 15 × T0 after focus.

head which is of a similar order of magnitude to the superharmonic velocity head shown
in figure 8. This indicates both components can be equally important for waves with
directional spread.

6.3.2. Nonlinear energy transfer in a narrow wave spectrum
In order to examine the nonlinear energy transfer in a narrow wave spectrum, the temporal
evolution of a ‘steep’ wave group is investigated numerically with the implementation
of the new NLSE and equations (19–22) by Trulsen et al. (2000). Figure 10 shows the
evolution of the discrete amplitude spectra, Â(k, t), in the first quadrant of the Fourier
space for a wave group at different times with ε0 = 0.2. It is seen in figure 10 that the
results based on (4.9) and Trulsen et al. (2000) do not show differences in a qualitative
manner and the energy conservation described by∫ xe

xs

|A(x, t)|2 dx = constant, (6.16)
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Figure 9. The dimensionless velocity head k0H(20)
v at different times for z = 0. See the caption of figure 8 for

the specific parameters.

were verified (not shown) to be within 0.01 % for both models. The dimensionless
sidebands in the longitudinal and transverse direction are defined as, respectively,

δx = kx − k0

k0
and δy = ky

k0
, (6.17a,b)

in which k0 was chosen to be the peak wavenumber of the initial wave spectrum, δx > 0
and δx < 0 denote the region of upper and lower sidebands in the longitudinal direction,
respectively.

Compared with the initial time shown in figure 10(a,d), figure 10(b,e) shows broadened
spectral amplitude in both the lower and higher sidebands in the longitudinal direction
but narrowed in the region of larger sidebands in the transverse (ky) direction, suggesting
energy transfers from the latter to the former.

From t = 0 to t = 24 × T0 with T0 denoting the wave period of the spectral peak, two
main features can be observed in figure 10. Firstly, oblique energy transfers are clear and
the change of the spectral amplitude in the regions of the lower (kx/k0 < 1 or δx < 0) and
upper (kx/k0 > 1 or δx < 0) sidebands behaves differently. This indicates asymmetrical
change rate of the spectral amplitude in sidebands. Particularly, in the region of the lower
sidebands described by 0 < δx = (kx − k0)/k0 < −√

2ky/k0, a decline in the amplitude
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Figure 10. Discrete dimensionless amplitude spectra, k0|Â(k, t)|, in the Fourier space at different times in
the first quadrant for the spatial evolution of a wave group with ε0 = 0.2. The group starts to propagate at
t = −15T0 and focuses linearly at xf = 0 and tf = 0. (a–c) The approximate NLSE with (4.13b) was used for
computations; (d–f ) (19–22) by Trulsen et al. (2000) were implemented. Contour levels (black solid line) are
evenly distributed between 0.005 and 0.12 m in intervals of 0.005 m. (a) The red circles denote the wavenumbers
chosen to investigate the growth rate of |Â(k, t)| in figure 11. The longitudinal and transverse sidebands are
defined as δx = (kx − k0)/k0 and δy = ky/k0, respectively.

is indicated whereas an energy expansion is obvious in the region of upper sidebands,
especially for δy > δx/

√
2. Secondly, relative to the original spectral peak at kx/k0 = 1, a

small downward shift of the spectral peak can be observed in figure 10(c, f ), as is clearly
shown by the nearest contour in the vicinity of (1, 0) that is no longer symmetrical relative
to kx/k0 = 1.

In order to examine the change rate of the spectral amplitude in time, |Â(k, t)| were
calculated based on (4.9) at different times, and |Â(k, t)| at 35 different wavenumbers were
chosen and shown in figure 11. Figure 11 shows the non-dimensional spectral amplitude
as a function of the dimensionless time 1

2ε
2
0ω0t. As is seen in figure 11, the change rate

of |Â(k, t)| behaves differently at different wavenumbers. The most interesting range is
obviously for 1

2ε
2
0ω0(t − t0) in ∼ [1, 3] in which the amplitude changes rapidly. This range

is in the vicinity of t = tf at which the wave group focuses linearly. We refer to t � tf and
tf � t in this time range as the prefocus and postfocus phase, respectively.

Focusing on the prefocus phase first, figure 11 shows the amplitude grows for the
wavenumbers in the range δy � 0.1 and wavenumbers in the upper sidebands with δx =
0.36 for δy � 0.35. In contrast, the amplitudes for larger sidebands in the transverse
direction, i.e. for 0.18 � δy, experience a decline except for δx = 0.36. In the postfocus
phase, the amplitudes that have experienced a growth (decline) in the prefocus phase tend
to decrease (grow) exponentially. Especially, for the amplitudes at the wavenumbers in
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Figure 11. Amplitude spectra k0|Â(k, t)| at 35 wavenumbers in the first quadrant of the Fourier k space
as a function of the dimensionless time 1

2 ε
2
0ω0(t − t0). The results are based on the new NLSE and the

parameters were chosen the same as figure 10. In the figure, δx = (kx − k0)/k0 and δy = ky/k0 denote the
dimensionless sidebands in the longitudinal and transverse/spanwise direction, respectively. Short vertical lines
near 1

2 ε
2
0ω0(t − t0) = 2 indicates for t = tf at which the wave group focuses linearly.

small transverse sidebands, i.e. δy � 0.09, the rate of decline is larger than that of increase.
The asymmetry in the rate of amplitude change in different regions is likely the cause for
the downward shift of the spectral peak shown in figure 10(c, f ).

The change rate of In(k0|Â|) in the range for 1
2ε

2
0ω0(t − t0) in ∼ [1, 3] in figure 11 shows

that In(k0|Â|) decreases/grows with 1
2ε

2
0ω0(t − t0) (approximately) linearly with absolute

slopes �1. This suggests that |Â(k, t)| changes exponentially with the dimensionless time
1
2ε

2
0ω0(t − t0), unlikely arising from resonant energy transfers as resonance would lead to

the change rate to be linear in time. The rapid change of the spectral amplitudes shown in
figure 11 may be due to instability. This paper argues that it is likely due to a mechanism
similar to oblique sideband instability of Stokes waves. To illustrate this, the amplitude
change rate in the instability region of Stokes waves is shown in figure 12 for five different
values of wave steepness. The results in figure 12 were computed based on (6.15) and
equations (19–22) in Trulsen et al. (2000) (i.e. Im

√
RT ). As noted in § 6.2, it is understood

that, when instability occurs, the amplitude behaves like

|A| ∼ a0 eIm(δΩ)ω0(t−t0) and thus, Rc ≡ In(k0|A|)
1
2ω0ε

2
0(t − t0)

∼ In(ε0)
Im(δΩ)

1
2ε

2
0

, (6.18a,b)

where Rc denotes the change rate of amplitude in the logarithmic scale, introduced for
convenience. It also corresponds to the gradient of In(k0|A|) with respect to 1

2ω0ε
2
0(t − t0)

shown in figure 11.
Based on (6.18b), it is clear that Rc depends on both ε0 and the magnitude of Im(δΩ).

Due to ε0 < 0.5 in general, which means In(ε0) < 0, whether or not the amplitude grows
in time depends on the sign of Im(δΩ); a positive sign leads to a decline whereas a
negative sign a growth. In practice 0.1 � ε0 � 0.3 would give a good estimate of the
steepness range, yielding −2.3 � In(ε0) � −1.2. Figure 12 shows δΩ/(1

2ε
2
0) varying with
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Figure 12. Instability growth rate of Stokes waves, defined as Im(δΩ)/(ε2
0/2), subject to oblique sideband

perturbations for five values of wave steepness ε0 = k0a0, obtained using the prediction by (6.8) (a–e) and
equations (19–22), ( f –j) by Trulsen et al. (2000) for five different values of steepness.

transverse and longitudinal sidebands at five different values of ε0 varying from 0.1 to 0.3.
The contours of large growth rates shown in figure 12 suggest that oblique energy transfers
would be favoured when instability occurs, although the maximum δΩ always lies on the
δx axis for deep-water Stokes waves. The magnitude of δΩ/(1

2ε
2
0) predicted by both the

present theory and Trulsen et al. (2000) is � 1. Obvious ‘coincidences’ between figures 11
and 12 are that both indicate the same magnitude for Rc, i.e. � 1, and that the wave
amplitude in both cases changes exponentially. Due to the two points, this paper argues the
instability of Stokes waves subject to sidebands disturbances in oblique directions would
be a possible cause for the rapid change of wave amplitude shown in figure 11 in the
neighbourhood of the linear focused time t = tf .

Examining figures 10, 11 and 12 together, the following features are highlighted.

(i) The rapid energy transfers between upper and lower sidebands shown in figure 10
are likely due to the instability of Stokes waves in addition to the degenerate
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resonant interaction in the ‘figure of eight’ quartet resonant loop (Phillips 1967),
as a result of that, the change rate of the amplitude shown in figure 11 is of
the same order of magnitude as those in figure 12 when instability occurs. It is
well understood that the instability of Stokes waves is mostly accompanied by the
degenerate resonant interaction, as pointed out by Phillips (1967) where it is shown
that the neutral instability modes (i.e. Im(δΩ) = 0) of Stokes waves can be directly
derived from the degenerate resonant interaction (Hammack & Henderson 1993)
and, most importantly, the instability of Stokes waves subject to oblique wave-train
disturbances is likely to occur in a narrow spectrum.

(ii) A downward shift of the spectral peak arises probably from the asymmetrical change
rates of energy between the different regions of sidebands. This shift is consistent
with the finding of Trulsen & Dysthe (1997). When a downward shift of spectral peak
is observed, rapid energy transfers are shown between lower and upper sidebands in
the longitudinal direction, and between the transverse and longitudinal sidebands.

(iii) Oblique energy transfers towards large upper sidebands (0.3 � δx or 0.27 � δy) are
obviously seen in figure 10(c, f ), probably due to the different change rates within
the instability region of Stokes waves; the contour levels of large change rates of
amplitude have demonstrated that the change of energy favours more in oblique
directions. This observation is consistent with Trulsen & Dysthe (1997) and the
rapid energy transfer reported in Barratt et al. (2021). Barratt et al. (2021) focus
on a numerical study of the propagation of a steep wave group based on direct
numerical solutions of fully nonlinear potential flow equations. Barratt et al. (2021)
reports an angle along ang(δy/δx) = ±55◦ to the spectral peak in the region of
upper sidebands. This paper argues that the angle as such, ±55◦, may not exist.
It is likely a coincidence of the effect shown in figure 11(d,e) that larger upper
sidebands (0.3 � δx or 0.27 � δy) tend to grow exponentially at a rate among the
largest. Moreover, Barratt et al. (2021) attribute the rapid oblique energy transfers,
similar to those shown in the region (i.e. δy > δx/

√
2 for 0.3 � δx) of the upper

sidebands in figure 10(c, f ), to non-degenerate resonant interaction. This argument is
different from what is shown in figures 10, 11 and 12, i.e. that the amplitude changes
exponentially is unlikely a result of resonant interactions.

7. Concluding remarks

Using a perturbation expansion, this paper has derived a new NLSE for the linear envelope
evolution of three-dimensional surface gravity waves without the assumption of a narrow
bandwidth. The new NLSE can be extended for more general cases, e.g. waves on water
of finite uniform or slowly varying depth. Simple numerical implementations of the
NLSE for the wave envelope using a pseudospectral, a split-step and a finite-difference
method are demonstrated. The computational cost is of the same order as the numeral
implementations of an existing NLSE, e.g. the Dysthe equation of Dysthe (1979) and the
modified NLSE of Trulsen et al. (2000). With leading-order approximations to the NLSE,
its capabilities for studying the instability region and energy growth rate of Stokes waves
are demonstrated. The approximation is shown to be capable of providing satisfactory
predictions of the instability region, compared with the exact computations by McLean
(1982) for dimensionless wave steepness equal to as large as 0.33. It can also provide
good estimates of the energy growth rate and stability boundary of unstable perturbations
for two-dimensional wave trains, compared with the results due to Crawford et al. (1981)
and the exact numerical results based on Longuet-Higgins (1978). In these comparisons,
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the approximation has been demonstrated to provide a better performance than the
modified NLSE by Trulsen et al. (2000), particularly for sideband disturbances of waves
in an oblique direction to a train of Stokes waves.

This paper has also proposed a semianalytical approach for the description of
wave fields at second order in wave steepness, based on a pseudospectral and a
finite-difference method. It is demonstrated that the semianalytical approach is capable
of providing exact predictions as that of Dalzell (1999). Compared with Dalzell (1999),
the semianalytical approach can significantly improve the computational efficiency; the
numerical implementations of Dalzell (1999) require computational operations at O(N2)

and the semianalytical approach requires O(N In(N)) if N Fourier modes are used. In the
analysis of a velocity head at second order in wave steepness, it is suggested that the
superharmonic and subharmonic waves may be equally important in directional sea states
due to the same order of magnitude.

Through a study of the temporal evolution of a steep focused wave group, energy
transfers in a narrow spectrum have been investigated. For the time range in the vicinity
of the group at linear focus, rapid oblique energy transfers between different regions
of sidebands are observed, likely arising from degenerate resonant interactions in the
so-called ‘figure of eight’ quartet resonant loop (Phillips 1967) and the instability of Stokes
waves subject to oblique sideband perturbations. The change rate of wave amplitude is
found to be of the same order of magnitude as that of oblique instability of Stokes waves.
A downward shift of the spectral peak is also observed in this paper, consistent with the
finding in Trulsen & Dysthe (1997). This shift is observed in the course of rapid energy
transfers between different sideband regions when oblique modulational instability occurs,
in contrast to the temporal evolution of a unidirectional spectrum which is found to lead to
a permanent shift of the spectrum peak only in a quasi-steady state in Dysthe et al. (2003).
Rapid energy transfers towards the angle, ∼ ± 55◦, to the spectral peak in the region of
upper sideband, that are reported in Barratt et al. (2021), are not supported by this study.
Instead, the upper sideband range of large oblique directions (>45◦) to the spectral peak is
found to be favoured the most for the energy growth, coinciding with the sideband region
where the instability growth rate of three-dimensional Stokes waves is among the largest.
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Appendix A. Third-order forcing term for the first harmonic

A.1. Full expression of Q(31)

The first term that has non-zero contribution to Q(31) is denoted by Q(31)
1 , expressed as

Q(31)
1 = 2∂t(∇3Φ

(1) · ∇3Φ
(2)), (A1)

which leads to

Q(31)
1 = E(x, t)(−iω0 + ∂t){1

2 [(2k(3d)
0 + ∇3)B(22)] · V̄ ∗ + ∇3Φ

(20) · V̄ } + c.c., (A2)
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where E(x, t) = exp(ik0 · x − ω0t). The second term that has non-zero contribution to
Q(31) is denoted by Q(31)

2 in a form as

Q(31)
2 = 1

2∇3Φ
(1) · [∇3(|∇3Φ

(1)|2)], (A3)

yielding

Q(31)
2 = { 1

16 [(2k(3d)
0 + ∇3)|V̄ |2] · V̄ ∗ + 1

4∇3[(V̄ · V̄ ∗) e2k0z] · 1
2 V̄ }E(x, t)+ c.c. (A4)

The third term that contribute to Q(31) is defined as

Q(31)
3 = k0ζ∂t(V̄ · V̄ ∗), (A5)

which leads to
Q(31)

3 = 1
2 k0A∂t(V̄ · V̄ ∗)E(x, t)+ c.c. (A6)

The summation of the three terms for Q(31) yields

Q̄(31) = (−iω0 + ∂t)(∇3Φ
(20) · V̄ )+ 1

8 [∇3(V̄ · V̄ ∗)] · V̄

+ 1
4(k0w̄ + 2k0A∂t)(V̄ · V̄ ∗)+ (−iω0 + ∂t){1

2 [(2k(3d)
0 + ∇3)B(22)] · V̄ ∗}

+ 1
16 [(2k(3d)

0 + ∇3)(|V̄ |2)] · V̄ ∗, for z = 0. (A7)

For unidirectional waves we note that

B(22) = 0 and V̄ · V̄ = 0, (A8a,b)

which leads to

Q̄(31)
all = (−iω0 + ∂t)(∇3Φ

(20) · V̄ )+ 1
8 [∇3(V̄ · V̄ ∗)] · V̄

+ 1
4 (k0w̄ + 2k0A∂t)(V̄ · V̄ ∗). (A9)

Combining (A7) and (A9), (4.5) in the main is obtained.

A.2. Details for ΓDysthe based on a narrow banded assumption

With a narrow-banded assumption, i.e. δ � O(1), V̄ and V̄ ∗ read, respectively,

V̄ = −iω0

k0

⎧⎨⎩
⎡⎣ik0

0,
k0

⎤⎦A +
⎡⎣i(k0z + 1)

0,
1 + k0z

⎤⎦ (−i∂xA)

⎫⎬⎭+ O(εδ2), (A10)

that leads to

V̄ · V̄ ∗ = 2ω2
0AA∗ + ω2

0
k0

[iA∂xA∗(2 + 2k0z)− iA∗∂xA(2 + 2k0z)]

+ O(ε2δ2), (A11a)

∇3(V̄ · V̄ ∗ e2k0z) = 2ω2
0[∇, 2k0](AA∗)+ ω2

0
k0

[0, 0, 6k0](iA∂xA∗ − iA∗∂xA)

+ O(ε2δ2) for z = 0 (A11b)
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Figure 13. A comparison of second-order superharmonic wave elevation ζ (22) for a unidirectional wave group
at different times between the predictions by (3.13b) (black solid line), Dalzell (1999) (red dashed line) and
(6.4) (blue dot–dashed line) that is based on a second-order Stokes wave theory. The values for kp, xf , tf and
t0 are the same as figure 2 except that a JONSWAP (amplitude) spectrum with the peak enhancement factor of
3.3 in frequency was used in this figure: (a,b) t = −10T0 with T0 the peak wave period; (c,d) t = 20Tp; (e, f )
t = 40T0. Panels (a,c,e) show the area highlighted by the thick blue box in the panels (b,d, f ), respectively.

and

∂t(V̄ · V̄ ∗) = −ω
3
0

k0
(A∗∂xA + A∂xA∗)+ O(δ2ε2), (A11c)

where the relations ∂tA = −ω0∂xA/(2k0) and ∂t∂xA∗ = −ω0A∗A/(2k0) were used in
(A11c). Thus, we obtain for unidirectional waves

1
8∇3[(V̄ · V̄ ∗) e2k0z] · V̄ + 1

2 k0A∂t(V̄ · V̄ ∗) = −1
2 iω3

0k0A2A∗ − 1
2ω

3
0A∂x(AA∗)

+ ω3
0(A

2∂xA∗ − AA∗∂xA)+ O(ε3δ2) for z = 0. (A12)

Moreover, the second term in (4.5b) reads

(−iω0 + ∂t)[∇3Φ
(20) · V̄ ] = −ω

2
0

k0
A[ik0∂xΦ

(20) + k0∂zΦ
(20)] + O(ε3δ2). (A13)

Combing (A12) and (A13) leads to

Q̄(31) = −1
2 iω3

0k0A2A∗ + ω3
0(A

2∂xA∗ − AA∗∂xA)− 1
2ω

3
0A∂x(AA∗)

− iω2
0A∂xΦ

(20) − ω2
0A∂zΦ

(20) + O(ε3δ2). (A14)

Introducing C = −iω0A/2k0 and inserting it for A into (A14) yields (4.17) in the main.
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Figure 14. A comparison of elevation ζ (20) for the second-order subharmonic waves forced by a unidirectional
wave group at different times between the predictions by (3.13c) (black solid line), Dalzell (1999) (red dashed
line) and Trulsen et al. (2000) (blue dot–dashed line). The detailed parameters are the same as figure 13.

Appendix B. Wave elevation at second order by Dalzell (1999)

Based on Dalzell (1999), ζ (20) and ζ (22) are given by, respectively,

ζ (20)(x, t) = 1
2

N∑
n=1

M∑
m=1

A(20)
m |ζ̂ (1)(kn)||ζ̂ (1)(km)| cos(ψn − ψm), (B1)

ζ (22)(x, t) = 1
2

N∑
n=1

M∑
m=1

A(22)
m |ζ̂ (1)(kn)||ζ̂ (1)(km)| cos(ψn + ψm), (B2)

where ζ̂
(1)
n and ζ̂

(1)
m denotes the Fourier transform of ζ (1)(x, t), ψn = kn · x +

ang(ζ̂ (1)(kn)),ψm = km · x + ang(ζ̂ (1)(km)), kn = |kn|(cos θn, sin θn), km = |km|(cos θm,
sin θm),

A(20)
m = ω2

n + ω2
m

2g
+ ω1ω2

2g
(1 + cos(θn − θm))

(ω1 − ω2)
2 + g(|kn| − |km|)

(ω1 − ω2)2 − g(|kn| − |km|) , (B3)

A(22)
p = ω2

n + ω2
m

2g
− ω1ω2

2g
(1 − cos(θn − θm))

(ω1 + ω2)
2 + g(|kn| + |km|)

(ω1 + ω2)2 − g(|kn| + |km|) . (B4)

Appendix C. Additional results

This section shows additional results for second-order superharnonic and subharmonic
elevations predicted by the present paper, compared with these due to Dalzell (1999) and
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two other methods, as shown in figures 13 and 14, respectively. Figures 13 and 14 show
the spatial distribution of the second-order elevations driven by a focused wave group at
three instants, based on a JONSWAP (amplitude) spectrum with the peak enhancement
factor of 3.3 in frequency. For the results based on the semianalytical approach, the
spectrum was truncated at the high wavenumber side up to k = 15kp with kp the spectrum
peak wavenumber. Agreement between Dalzell (1999) and the semianalytical approach is
clearly seen in figures 13 and 14.

Appendix D. The modified evolution equation for A by Trulsen et al. (2000)

Using the notation herein, equations (19–22) by Trulsen et al. (2000) read

∂tA + iω0LA + ik2
0ω0

2
|A|2A + 3k0ω0

2
|A|2∂xA − k0ω0

4
A2∂xA∗ + ik0∂xΦ

(20) = 0, (D1a)

∂zΦ
(20) = ω0

2
∂x|A|2 for z = 0, (D1b)

∂zΦ
(20) = 0 for z → −∞; (D1c)

it should be noted that the sign in front of the term that reads ‘k0ω0A2∂xA∗/4’ is positive
in Trulsen et al. (2000) whereas the negative sign is used in this paper due to the different
definition of A in this paper from that by Trulsen et al. (2000), consistent with equation
(2.1) in Lo & Mei (1985) and equation (14) by Stiassnie (1984). In Trulsen et al. (2000), A
is defined as the sum of the first- and third-order elevation envelope of the first harmonic.
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