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Abstract
For certain quasismooth Calabi–Yau hypersurfaces in weighted projective space, the Berglund-Hübsch-Krawitz
(BHK) mirror symmetry construction gives a concrete description of the mirror. We prove that the minimal log
discrepancy of the quotient of such a hypersurface by its toric automorphism group is closely related to the weights
and degree of the BHK mirror. As an application, we exhibit klt Calabi–Yau varieties with the smallest known
minimal log discrepancy. We conjecture that these examples are optimal in every dimension.
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1. Introduction

We say that a normal projective variety X is Calabi–Yau if the canonical class 𝐾𝑋 isQ-linearly equivalent
to zero. Similarly, a pair (𝑋, 𝐷) is Calabi–Yau if 𝐾𝑋 + 𝐷 ∼Q 0. Many theorems and conjectures
in algebraic geometry assert that the numerical invariants of Calabi–Yau pairs with relatively mild
singularities and a fixed dimension are bounded in various ways. For instance, the volume of an ample
Weil divisor on a klt Calabi–Yau pair of dimension n with coefficients in a DCC set I is known to have
a positive lower bound depending only on n and I, by a result of Birkar [4, Corollary 1.4]. The index
conjecture predicts that the index of X, the smallest positive integer m such that 𝑚(𝐾𝑋 + 𝐷) ∼ 0, is
uniformly bounded for the same class of pairs.

A series of papers by Totaro, Wang and the author [11, 12] laid out examples of Calabi–Yau varieties
and pairs that are particularly extreme with respect to the two invariants mentioned: volume and index.
Several of these examples are, in fact, conjecturally optimal with respect to the invariant of interest.
Surprisingly, the conjecturally optimal examples for volume and index are related by mirror symmetry
[12, Remark 3.8]. In this paper, we describe another connection between mirror symmetry and the
birational geometry of Calabi–Yau pairs, this time relating to the minimal log discrepancy.

© The Author(s), 2024. Published by Cambridge University Press. This is an Open Access article, distributed under the terms of the Creative
Commons Attribution licence (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in
any medium, provided the original work is properly cited.

https://doi.org/10.1017/fms.2024.10 Published online by Cambridge University Press

doi:10.1017/fms.2024.10
https://orcid.org/0000-0002-1958-3029
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/fms.2024.10&domain=pdf
https://doi.org/10.1017/fms.2024.10


2 L. Esser

When a pair (𝑋, 𝐷) has relatively mild singularities, the minimal log discrepancy (or mld for short)
is a way of quantifying how singular it is. A pair is Kawamata log terminal (klt) if the minimal log
discrepancy is positive. It follows from results of Hacon, McKernan and Xu that there is a positive lower
bound on the mld among all klt Calabi–Yau pairs of a fixed dimension n with coefficients in a fixed
DCC set I (see Proposition 2.1).

The framework of mirror symmetry suggests that there is a mirror dual associated to a Calabi–Yau
variety. In certain special cases, an explicit construction for the mirror is known. The example we
will focus on in this paper is Berglund-Hübsch-Krawitz (BHK) mirror symmetry, which describes how
to find the mirror for certain orbifolds which are quotients of Calabi–Yau hypersurfaces in weighted
projective space.

Our main result shows that the mld of the ‘maximal toric quotient’ of any Calabi–Yau weighted
projective hypersurface to which BHK mirror symmetry applies has a remarkably simple description
in terms of the mirror. This gives a new connection between mirror symmetry and invariants from
birational geometry.

Theorem 1.1 (Theorem 3.1). Let 𝑉𝑑 ⊂ PC (𝑎0, . . . , 𝑎𝑛+1) be a well-formed quasismooth Calabi–Yau
hypersurface defined by a polynomial equation of degree d with the same number of monomials as
variables such that its matrix of exponents is invertible (also called a Delsarte polynomial). Suppose
that Aut𝑇 (𝑉) is the toric automorphism group of V. Let 𝑑T and 𝑎T

0 , . . . , 𝑎
T
𝑛+1 be the mirror degree and

mirror weights of V, respectively. Then, the minimal log discrepancy of the quotient pair 𝑉/Aut𝑇 (𝑉) is

mld(𝑉/Aut𝑇 (𝑉)) =
min{𝑎T

0 , . . . , 𝑎
T
𝑛+1}

𝑑T . (1)

Using this result, we compute the mld for some special examples. For instance, we write down
examples of klt Calabi–Yau varieties (rather than pairs) with the smallest known mld. Some of the
properties of these examples are explicated in a separate paper [10]. Their mld decreases doubly
exponentially with dimension, and we expect that they achieve the smallest mld of any klt Calabi–Yau
variety in each dimension (Conjecture 4.4). This conjecture is supported by low-dimensional evidence.
These results complement known examples of klt Calabi–Yau pairs with standard coefficients due to
Jihao Liu [20, Remark 2.6] that have similar asymptotics. We also show how the properties of these
latter examples can be deduced as a special case of Theorem 3.1.

The key idea of the proof of Theorem 3.1 will be to view quotients of hypersurfaces as above as
hypersurfaces in fake weighted projective stacks, a special case of toric Deligne-Mumford stacks. We
then use the geometric description of the mld for toric singularities to verify (1). The outline of the
paper is as follows. In Section 2, we explain the necessary background on hypersurfaces in fake weighted
projective stacks and their singularities; these results generalize more familiar ones for hypersurfaces in
weighted projective space, but to the author’s knowledge have not appeared in the literature. The end
of Section 2 also summarizes the construction of the Berglund-Hübsch-Krawitz mirror. Section 3 is
devoted to the proof of Theorem 3.1, while Section 4 applies this result by constructing examples of klt
Calabi–Yau pairs and varieties with the smallest known minimal log discrepancy.

2. Notation and background

Throughout the paper, we will work over the complex numbers C.

2.1. Minimal log discrepancies and toric stacks

The minimal log discrepancy (or mld) of a pair (𝑋, 𝐷) is a numerical measure of its singularities.
For us, a pair (𝑋, 𝐷) consists of a normal projective variety X and an effective Q-divisor D with the

property that 𝐾𝑋 +𝐷 is a Q-Cartier divisor. Then, for a proper birational morphism 𝜇 : 𝑋 ′ → 𝑋 , where
𝑋 ′ is again normal, and any irreducible divisor 𝐸 ⊂ 𝑋 ′, we may define the log discrepancy of E (with
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respect to 𝜇) as follows:

𝑎𝐸 (𝑋, 𝐷) � ord𝐸 (𝐾𝑋 ′ + 𝐸 − 𝜇∗(𝐾𝑋 + 𝐷)).

The log discrepancy 𝑎𝐸 (𝑋, 𝐷) only depends on the valuation defined by E on the function field of X
and not on the particular birational model 𝜇 : 𝑋 ′ → 𝑋 for E. The center 𝑐𝑋 (𝐸) of E in X is the image
𝜇(𝐸) ⊂ 𝑋 , which again depends only on the valuation. For any point x of the scheme X, the minimal
log discrepancy of the pair (𝑋, 𝐷) at the point x is defined as

mld𝑥 (𝑋, 𝐷) � inf{𝑎𝐸 (𝑋, 𝐷) : 𝑐𝑋 (𝐸) = 𝑥}.

The (global) minimal log discrepancy of (𝑋, 𝐷) is

mld(𝑋, 𝐷) � inf
𝑥∈𝑋

mld𝑥 (𝑋, 𝐷),

where the infimum is taken over all points x of the scheme X. Whenever the pair (𝑋, 𝐷) is log canonical
(lc) – that is, whenever mld(𝑋, 𝐷) is nonnegative – the global mld can be computed using a single log
resolution of (𝑋, 𝐷) and hence is a nonnegative rational number [17, Definition 7.1]. A pair (𝑋, 𝐷) is
Kawamata log terminal (klt) if mld(𝑋, 𝐷) > 0.

Recall that (𝑋, 𝐷) is Calabi–Yau if 𝐾𝑋 + 𝐷 ∼Q 0. For klt Calabi–Yau pairs (𝑋, 𝐷) with X of a fixed
dimension n and D with coefficients belonging to a fixed set I satisfying the descending chain condition,
there is a positive lower bound on the minimal log discrepancy:

Proposition 2.1. Let n be a positive integer and I a DCC set. Then there is a positive number 𝜖 = 𝜖 (𝑛, 𝐼)
such that every klt Calabi–Yau pair (𝑋, 𝐷) with dimension n and coefficients in I has mld at least 𝜖 .

This follows from work of Hacon-McKernan-Xu [13]; see [12, Proposition 2.1] for a proof, which
uses ideas from [8, Lemma 3.13].

In this paper, we will focus primarily on klt Calabi–Yau pairs with standard coefficients, meaning
that 𝐼 = {0} ∪ {1 − 1

𝑏 : 𝑏 ∈ Z+}. These pairs arise naturally as certain quotients of varieties by finite
groups: more precisely, if Y is a normal projective variety with Q-Cartier canonical class and an action
by a finite group G, then the variety 𝑋 � 𝑌/𝐺 is naturally equipped with a divisor D such that (𝑋, 𝐷)

is a pair with standard coefficients. This D has the property that 𝐾𝑌 = 𝜋∗(𝐾𝑋 +𝐷), where 𝜋 : 𝑌 → 𝑋 is
the quotient morphism. The divisor is determined from the G-action in the sense that D has coefficient
1 − 1

𝑏 on the image of a prime divisor in Y for which the subgroup of G acting as the identity on the
divisor has order b.

Throughout the paper, we will need the explicit description of the minimal log discrepancy of toric
pairs. A toric pair is a pair (𝑋, 𝐷) with X a normal Q-factorial toric variety and D a torus-invariant Q-
divisor. When describing the fans of toric varieties and stacks, we will use the notation cone{𝑣1, . . . , 𝑣𝑘 }
to mean the cone generated by vectors 𝑣1, . . . , 𝑣𝑘 ∈ R𝑁 (i.e., the set of points which are a nonnegative
linear combination of these vectors).

It will be geometrically convenient to phrase our results in the language of toric Deligne-Mumford
stacks [6, Section 3]. In the same way that the datum of a simplicial fan corresponds to a normal, Q-
factorial toric variety, the datum of a stacky fan corresponds to a toric Deligne-Mumford stack. A stacky
fan 𝚺 consists of a triple (𝑁, Σ, 𝛽). Here, N is a finitely generated abelian group, Σ is a full-dimensional
and strictly convex rational simplicial fan in �̄� � 𝑁 ⊗Z R with r rays 𝜌1, . . . , 𝜌𝑟 , and 𝛽 is a collection
of r elements {𝛽1, . . . , 𝛽𝑟 } of N such that the image 𝛽𝑖 of 𝛽𝑖 in �̄� spans 𝜌𝑖 . The list {𝛽1, . . . , 𝛽𝑟 } is the
same as a map 𝛽 : Z𝑟 → 𝑁 with a finite cokernel, where the ith standard basis element of Z𝑟 maps to 𝛽𝑖 .

The Deligne-Mumford stack associated to 𝚺 will be denoted Y (𝚺). We will only explain the con-
struction of this stack when N is torsion-free, which corresponds to the stack having trivial generic
stabilizer. This assumption will hold for the rest of the paper. We can then view 𝑁 � Z𝑑 as a lattice
inside 𝑁R, and for simplicity, we will use the notation 𝛽𝑖 rather than 𝛽𝑖 for the images of elements of
N distinguished by 𝛽. To construct the stack in that case, we take a quotient of an open subset of A𝑟 ,
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4 L. Esser

with coordinates 𝑧1, . . . , 𝑧𝑟 , as follows. Let 𝐽Σ be the monomial ideal generated by the set of products∏
𝑖:𝜌𝑖∉𝜎 𝑧𝑖 , where 𝜎 ranges over all cones in Σ. Denote by 𝛽★ : 𝑀 → (Z𝑟 )★ the dual to 𝛽 (where M is

the dual lattice to N) and consider the following exact sequence:

0 → 𝑀
𝛽★

−−→ (Z𝑟 )★ → 𝑆(𝚺) → 0.

Here, 𝑆(𝚺) is a finitely generated abelian group which is the cokernel of the map 𝛽★. Then
𝐺 (𝚺) � Spec(C[𝑆(𝚺)]) carries the structure of an algebraic group, canonically embedded in
(C∗)𝑟 = Spec(C[(Z𝑟 )★]) via the surjection C[(Z𝑟 )★] → C[𝑆(𝚺)]. The group G also has an action on
A𝑟 inherited from the diagonal action of (C∗)𝑟 on this space. Then Y (𝚺) is then defined as the quotient
stack [(A𝑟 \𝑉 (𝐽Σ))/𝐺]. This is, in fact, a Deligne-Mumford stack [6, Proposition 3.2].

By [6, Proposition 3.7], the coarse moduli space of the stack Y (𝚺) is the ordinary toric variety
𝑌 � 𝑌 (Σ) associated to the fan Σ in N. Thus, there is a natural toric pair structure (𝑌, 𝐷) associated to
the stack Y , where the coefficient of the torus-invariant divisor corresponding to 𝜌𝑖 in D is 1− 1

𝑚𝑖
; here,

𝑚𝑖 denotes the order of the subgroup which acts as the identity on the divisor under the 𝐺 (𝚺)-action.
The minimal log discrepancy of the stack Y is by definition the mld of the associated pair (𝑌, 𝐷).

Since the fan Σ is rational simplicial, there exists a unique piecewise linear function 𝜓 : |Σ | → R

which has value 1 on each 𝛽𝑖 and is linear on each cone 𝜎 ∈ Σ. We will call this the log discrepancy
function of the toric stack Y . The lemma below justifies this terminology. It is the analog for toric stacks
of the geometric description of the mld of toric singularities due to A. Borisov [5, section 2].

Lemma 2.2. Let Y (𝚺) be a toric Deligne-Mumford stack with trivial generic stabilizer, and let 𝜓 be the
log discrepancy function of Y . Then the minimal log discrepancy of Y is

mld(Y) = min{𝜓 |(𝑁∩|Σ |)\{0}}.

Proof. Since the mld is a local invariant, it suffices to consider the affine case where there is a single
cone in the fan Σ. If d is the rank of N, then the cone has 𝑟 = 𝑑 rays since it is simplicial; these rays are
spanned by 𝛽1, . . . , 𝛽𝑑 , respectively. The image of the map 𝛽 : Z𝑑 → 𝑁 is a finite index sublattice of
N. We will use 𝑒1, . . . , 𝑒𝑑 for the standard basis of Z𝑑 , so 𝛽(𝑒𝑖) = 𝛽𝑖 . In this case, 𝑉 (𝐽Σ) = ∅ and the
stack Y is the quotient of A𝑑 by the finite group 𝐺 = Spec(C[𝑆(𝚺)]). This is equivalent to the usual
toric description of a (possibly ill-formed) affine abelian quotient singularity.

Let 𝑝𝑖 be the primitive lattice point on the ray spanned by 𝛽𝑖 . We claim that the order of the subgroup
of G acting as the identity on {𝑧𝑖 = 0} ⊂ A𝑑 is precisely the ratio 𝛽𝑖/𝑝𝑖 . Indeed, the subscheme G of
(C∗)𝑑 = C[(Z𝑑)★] is defined by the ideal C[𝑀] ⊂ C[(Z𝑑)★]. The subgroup acting as the identity on
{𝑧𝑖 = 0} in (C∗)𝑑 is defined by the ideal C[𝐻𝑖], where 𝐻𝑖 ⊂ (Z𝑑)★ is the subgroup generated by the
dual standard basis vectors 𝑓1, . . . , 𝑓𝑖 , . . . , 𝑓𝑑 in (Z𝑑)★. The intersection of G with this subgroup is then
the spectrum of the group algebra of

coker(𝑀
𝛽★

−−→ (Z𝑑)★ → (Z𝑑)★/𝐻𝑖). (2)

The quotient (Z𝑑)★/𝐻𝑖 is the dual of the sublattice Z · 𝑒𝑖 ⊂ Z𝑑 ⊂ 𝑁 . Therefore, the image of the
composition in (2) can be thought of as the collection of linear maps Z · 𝑒𝑖 → Z which extend to the
ambient lattice N. The cokernel therefore has order equal to 𝛽𝑖/𝑝𝑖 , so the spectrum of its group algebra
is a finite discrete algebraic group of that same order.

Since the log discrepancy function 𝜓 is 1 at 𝛽𝑖 , it has value 𝑝𝑖/𝛽𝑖 at the primitive lattice point 𝑝𝑖 . In
addition, 1− 𝑝𝑖/𝛽𝑖 is the coefficient of the image of the divisor {𝑧𝑖 = 0} in the pair (𝑌, 𝐷) associated to
Y . The usual log discrepancy function of a toric pair is defined by precisely these conditions – that is, by
linearity on every cone of the fan and a value of 1− coeff𝐷𝑖𝐷 on the primitive lattice point spanning the
ray associated to each torus-invariant divisor 𝐷𝑖 [1, Section 1]. Therefore, this calculation confirms that
the function 𝜓 deserves the name ‘log discrepancy function’: for any primitive lattice point 𝑒 ∈ 𝑁 ∩ |Σ |,
the prime divisor 𝐸𝑒 over X corresponding to the barycentric subdivision of Σ with center e has log
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discrepancy 𝑎𝐸𝑒 (𝑌, 𝐷) = 𝜓(𝑒). The minimum value of 𝜓 on (𝑁 ∩ |Σ |) \ {0} is therefore the mld of
(𝑌, 𝐷), as required. �

2.2. Hypersurfaces in fake weighted projective stacks

In the main theorem, we will be interested in computing the mld of certain pairs which are quotients of
hypersurfaces in weighted projective space by finite groups. Since these pairs are quotients of varieties
with canonical singularities by finite groups, they are klt and therefore have positive mld. It will be useful
for us to view these same quotients as hypersurfaces inside of what we call fake weighted projective
stacks.

A fake weighted projective stack is a toric Deligne-Mumford stack Y (𝚺) = (𝑁, Σ, 𝛽) for which
𝑁 � Z𝑛+1 and the fan Σ, which is complete and generated by 𝑟 = 𝑛 + 2 rays 𝜌0, . . . , 𝜌𝑛+1, defines a Q-
factorial projective toric variety of Picard number 1. The 𝛽𝑖 are not required to be primitive lattice points
on these rays, so this construction is slightly more general than the usual definition of fake weighted
projective spaces, which in turn generalize ordinary weighted projective space P(𝑎0, . . . , 𝑎𝑛+1). This
subsection will generalize some of the theory of weighted projective hypersurfaces and their singularities
(see [15] or [11, Section 2]) to this more general setting.

The top-dimensional cones of the fan Σ will be denoted 𝜎𝑖 , 𝑖 = 0, . . . , 𝑛 + 1. Here, 𝜎𝑖 �
cone{𝛽0, . . . , 𝛽𝑖 , . . . , 𝛽𝑛+1}. We will use the coordinates 𝑥0, . . . , 𝑥𝑛+1 for affine space A𝑛+2. It follows
that 𝐽Σ has generators 𝑥0, . . . , 𝑥𝑛+1, so that Y = [(A𝑛+2 \ {0})/𝐺]. In this case, 𝐺 = Spec(C[𝑆(𝚺)])
is a one-dimensional algebraic group of multiplicative type (or equivalently, the product of Gm with a
finite abelian group).

There is a unique collection of positive integers 𝑎0, . . . , 𝑎𝑛+1 for which 𝑎0𝛽0 + · · · +𝑎𝑛+1𝛽𝑛+1 = 0 and
gcd(𝑎0, . . . , 𝑎𝑛+1) = 1. These are the weights of the fake weighted projective stack Y . The toric variety
corresponding to Σ in the lattice generated by 𝛽0, . . . , 𝛽𝑛+1 is simply the usual weighted projective space
P(𝑎0, . . . , 𝑎𝑛+1), so Y is naturally the quotient of this space by a finite group. To refer to a point of the
coarse moduli space Y of Y , we sometimes use homogeneous coordinates (𝑥0 : · · · : 𝑥𝑛+1).

The action of G on A𝑛+2 also gives an action of G on the polynomial ring C[𝑥0, . . . , 𝑥𝑛+1], which in
turn gives a grading on this ring by the group of characters 𝑆 � 𝑆(𝚺) of G (this is the same 𝑆(𝚺) as
above – namely, the cokernel of the dual of 𝛽). Suppose that 𝜒 : 𝐺 → C∗ is a character of G. An element
𝑓 ∈ C[𝑥0, . . . , 𝑥𝑛+1] is called homogeneous of degree 𝜒 if 𝑔 · 𝑓 = 𝜒(𝑔) 𝑓 for all 𝑔 ∈ 𝐺. For example,
when the stack Y equals P(𝑎0, . . . , 𝑎𝑛+1), the group of characters is simply Z and ‘homogeneous of
degree 𝑑 ∈ Z’ means ‘homogeneous of weighted degree d’ in the usual sense. Since the action of
G is diagonal, every monomial is homogeneous of some degree. We will write 𝜃0, . . . , 𝜃𝑛+1 for the
characters of 𝑥0, . . . , 𝑥𝑛+1, respectively. The datum consisting of the group G and these coordinate
characters 𝜃0, . . . , 𝜃𝑛+1 also determines the fake weighted projective stack Y .

For any subset 𝐼 ⊂ {0, . . . , 𝑛 + 1} of size k, there is an associated toric stratum 𝑊𝐼 ⊂ A𝑛+2 \ {0}
where precisely the coordinates in I are nonvanishing. We have 𝑊𝐼 � (C∗)𝑘 . We will use 𝑈𝐼 to denote
the image of this stratum in Y, which is also the set where the homogeneous coordinates indexed by I
are nonzero; then 𝑈𝐼 � (C∗)𝑘−1 if 𝑘 > 1 and 𝑈𝐼 is a point if 𝑘 = 1.

In this language, it is straightforward to identify the quotient singularities of a fake weighted projective
stack Y in terms of the coordinate characters 𝜃0, . . . , 𝜃𝑛+1. To write down these singularities, we use the
following notation. Let H be a finite group and 𝜒1, . . . , 𝜒𝑙 be characters of this group. A pair (𝑉, 𝐷𝑉 )

has a quotient singularity of type 1
𝐻 (𝜒1, . . . , 𝜒𝑙) at a closed point 𝑝 ∈ 𝑉 if there is an étale neighborhood

of p which is isomorphic to the quotient pair A𝑙/𝐻, where H acts diagonally by characters 𝜒1, . . . , 𝜒𝑙 .
We will often abuse notation slightly and say that the smooth Deligne-Mumford stack V with trivial
generic stabilizer and coarse moduli pair (𝑉, 𝐷𝑉 ) has a quotient singularity of the given type at 𝑝 ∈ 𝑉 .

Now, we can precisely describe the singularities of Y (cf. [11, Proposition 2.3]):

Proposition 2.3. Let Y = [(A𝑛+2 \ {0})/𝐺] be a fake weighted projective stack with coordinate
characters 𝜃0, . . . , 𝜃𝑛+1 and coarse moduli pair (𝑌, 𝐷𝑌 ). Let 𝐼 ⊂ {0, . . . , 𝑛 + 1} be a subset of size
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|𝐼 | = 𝑘 and 𝐺 𝐼 be the intersection
⋂

𝑖∈𝐼 ker(𝜃𝑖). Then at any point p of the toric stratum 𝑈𝐼 ⊂ 𝑌 where
exactly the coordinates indexed by I are nonvanishing, Y has quotient singularity

1
𝐺 𝐼

(𝜃𝑖 |𝐺𝐼 : 𝑖 ∉ 𝐼) × A𝑘−1.

Proof. Let q be a preimage of p in A𝑛+2. Precisely the coordinates of q indexed by I are nonvanishing,
so the stabilizer of q is the subgroup 𝐺 𝐼 of G on which all coordinate characters 𝜃𝑖 , 𝑖 ∈ 𝐼 are trivial. The
stratum 𝑈𝐼 ⊂ 𝑌 is isomorphic to (C∗)𝑘−1 and has the same singularities at every point. The action of
𝐺 𝐼 on the coordinates not in I gives the quotient singularity shown. �

When f is homogeneous of degree some character 𝜒, it defines a hypersurface X in Y; indeed, let
𝐶 𝑓 � { 𝑓 = 0} ⊂ A𝑛+2 be the affine cone of f and 𝐶∗

𝑓 � 𝐶 𝑓 \ {0} the punctured affine cone. Then 𝐶∗
𝑓

is G-invariant, so there is a stack X = [𝐶∗
𝑓 /𝐺]. When 𝐶∗

𝑓 is smooth, we say that X is a quasismooth
hypersurface in Y . When X is quasismooth, it is a smooth Deligne-Mumford stack. We will only deal
with quasismooth hypersurfaces in this paper, and we will furthermore assume that 𝐶∗

𝑓 is not a linear
cone (i.e., f does not contain the monomial 𝑥𝑖 for any i). This has the particular consequence that 𝐶∗

𝑓 is
not contained in any coordinate hyperplane of A𝑛+2, and so X = [𝐶∗

𝑓 /𝐺] has trivial generic stabilizer.
It therefore makes sense to define the minimal log discrepancy of X as the mld of the associated pair
(𝑋, 𝐷), where 𝑋 ⊂ 𝑌 (Σ) is the coarse moduli space of X and, as usual, D has coefficient 1 − 1

𝑏 on the
image of a prime divisor where the subgroup of G acting trivially is of order b.

We will use the following criterion for quasismoothness in linear systems, which is a generalization
of a very similar statement due to Iano-Fletcher [15, Theorem 8.1]:

Proposition 2.4. Let Y = [(A𝑛+2 \ {0})/𝐺] be a fake weighted projective stack and T be a set of
monomials which are homogeneous of degree 𝜒, where 𝜒 is not a coordinate character. Then a general
linear combination of monomials in T defines a quasismooth hypersurface X ⊂ Y if and only if for
every nonempty set 𝐼 = {𝑖1, . . . , 𝑖𝑘 } ⊂ {0, . . . , 𝑛 + 1}, one of the following two conditions holds:

a. there exists a monomial in T of the form 𝑥𝑚1
𝑖1

· · · 𝑥𝑚𝑘

𝑖𝑘
(for some nonnegative 𝑚1, . . . , 𝑚𝑘 ), or

b. there is another subset 𝐽 = { 𝑗1, . . . , 𝑗𝑘 } ⊂ {0, . . . , 𝑛 + 1} of size k disjoint from I such that for
each 𝜇 = 1, . . . , 𝑘 , there exists a monomial in T of the form 𝑥

𝑚1,𝜇
𝑖1

· · · 𝑥
𝑚𝑘,𝜇

𝑖𝑘
𝑥 𝑗𝜇 (for some nonnegative

𝑚1,𝜇, . . . , 𝑚𝑘,𝜇).

Proof. For completeness, we will include the proof, which proceeds along the same lines as Iano-
Fletcher’s. Denote by L the linear system of punctured affine cones 𝐶∗

𝑓 ⊂ A𝑛+2 \ {0} of linear combi-
nations f of monomials in T. By Bertini’s theorem, a general member of L is smooth away from the
base locus Bs(𝐿), which is a union of coordinate strata. Therefore, it will suffice to check smoothness
at points in the base locus.

Given a stratum𝑊𝐼 of dimension k, we may renumber indices so that 𝐼 = {0, . . . , 𝑘 −1}. If condition
(a) holds for I, then there is some monomial in T containing only the variables 𝑥0, . . . , 𝑥𝑘−1, so in
particular, a general f is nonvanishing at any given point 𝑝 ∈ 𝑊𝐼 . We have shown 𝑊𝐼 ∩ Bs(𝐿) = ∅, so
a general f intersects 𝑊𝐼 transversely and is smooth along this intersection.

In the event that (a) does not hold for I, we have 𝑊𝐼 ⊂ Bs(𝐿), but condition (b) must hold. Then we
may expand f as

𝑓 =
𝑛+1∑
𝑖=𝑘

𝑥𝑖𝑔𝑖 (𝑥0, . . . , 𝑥𝑘−1) + ℎ,

where monomials in h have total exponent of at least 2 in the variables 𝑥𝑘 , . . . , 𝑥𝑛+1 (here we have used
that there are no monomials in T using only the first k variables). The partial derivatives of f with respect
to 𝑥0, . . . , 𝑥𝑘−1 vanish on 𝑊𝐼 , but by condition (b), at least k of the remaining partial derivatives 𝑔𝑖 are
not identically zero on 𝑊𝐼 . Hence, the locus in 𝑊𝐼 where the general f is singular is the intersection of
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the base loci of k free linear systems on A𝑛+2 with 𝑊𝐼 ; this intersection has dimension at most 0. Since
this locus is also G-invariant, it is empty. Hence, the general 𝐶∗

𝑓 is smooth on 𝑊𝐼 .
Conversely, if both conditions fail, then no linear combination of monomials in T defines a qua-

sismooth hypersurface. Indeed, using the same expansion for f above with respect to an I for which
(a) and (b) fail, there are fewer than k nonvanishing 𝑔𝑖 in the sum for general f. The intersection
𝑍 �

⋂𝑛+1
𝑖=𝑘 {𝑔𝑖 = 0} ∩𝑊𝐼 ⊂ 𝑊𝐼 then has dimension at least 1. It follows that all derivatives of f vanish

on Z for any linear combination f of monomials in T, so 𝐶∗
𝑓 is singular on the nonempty set Z. �

As above, let T be a set of monomials of degree 𝜒, and let L be the linear system spanned by T. When
the general member of L is quasismooth, then we can describe the singularities of X very explicitly (cf.
[11, Proposition 2.6]):

Proposition 2.5. Let Y = [(A𝑛+2 \ {0})/𝐺] be a fake weighted projective stack and T be a set of
monomials of degree 𝜒 spanning a linear system L. Suppose that the general hypersurface X in L (with
coarse moduli space X) is quasismooth. Let 𝑝 ∈ 𝑋 be a closed point of the toric stratum 𝑈𝐼 ⊂ 𝑌 for
|𝐼 | = 𝑘 , and let 𝐺 𝐼 =

⋂
𝑖∈𝐼 ker(𝜃𝑖). Then,

1. If 𝑈𝐼 is not in the base locus of L, then X has a quotient singularity of type 1
𝐺𝐼

(𝜃𝑖 |𝐺𝐼 : 𝑖 ∉ 𝐼) ×A𝑘−2

at p.
2. If 𝑈𝐼 is in the base locus of L, then there exists a 𝐽 ⊂ {0, . . . , 𝑛 + 1} satisfying the conditions of

Proposition 2.4(b), and in particular, an index 𝑗 ∈ 𝐽. Then X has a quotient singularity of type
1
𝐺𝐼

(𝜃𝑖 |𝐺𝐼 : 𝑖 ∉ 𝐼, 𝑖 ≠ 𝑗) × A𝑘−1 at p.

Proof. In both cases, the quasismoothness condition guarantees that X is locally given by a coordinate
hyperplane slice through p in Y . The resulting singularity will thus be the same as the singularity in
Y , with an appropriate weight removed. Indeed, let f be the polynomial defining X . In case (1), 𝐶∗

𝑓
intersects the stratum 𝑊𝐼 transversely, so near a preimage of p, we can take it to have equation 𝑥𝑖 = 0
for some 𝑖 ∈ 𝐼.

In case (2), Proposition 2.4 guarantees that there is a set J of k indices so that the derivative 𝜕 𝑓
𝜕𝑥 𝑗

does
not vanish identically on 𝑊𝐼 for each 𝑗 ∈ 𝐽. There must be some 𝑗 ∈ 𝐽 such that the corresponding
partial derivative does not vanish at a preimage of p, so we can take the remaining coordinates as local
coordinates of 𝐶∗

𝑓 by the inverse function theorem. Therefore, the quotient singularity of X at p is the
same as atY with the jth coordinate character removed. Furthermore, this singularity type is independent
of which j we choose: indeed, for every 𝑗 ∈ 𝐽, by assumption, 𝜃−1

𝑗 𝜒 is a product of nonnegative powers
of the characters 𝜃𝑖 with 𝑖 ∈ 𝐼. Upon restricting to 𝐺 𝐼 , however, the latter characters become trivial.
Therefore, 𝜃 𝑗 |𝐺𝐼 = 𝜒 |𝐺𝐼 for any 𝑗 ∈ 𝐽, as expected. �

Remark 2.6. As a particular consequence of this lemma, for any fixed toric stratum𝑈𝐼 , the hypersurface
X has the same quotient singularity type at any intersection point with𝑈𝐼 . Further, the worst singularities
with respect to minimal log discrepancy occur on the smallest toric strata. Therefore, to compute the
mld of X , it suffices to check singularities (1) on toric 1-strata whose closures do not intersect Bs(𝐿),
and (2) at coordinate points (0-dimensional strata) in the base locus of L.

2.3. Berglund-Hübsch-Krawitz mirror symmetry

Our main results on the minimal log discrepancies of certain Calabi–Yau pairs will be phrased in terms
of mirror symmetry. This takes advantage of a construction of mirror pairs due to Berglund-Hübsch-
Krawitz (BHK) [3, 18]. We will review the BHK mirror symmetry construction in this section, but see
[2] for further details.

Let 𝑉 � { 𝑓 = 0} ⊂ P(𝑎0, . . . , 𝑎𝑛+1) be a hypersurface of dimension n and weighted
degree d, which is well-formed and quasismooth. Under these assumptions, V is Calabi–Yau
if and only if 𝑑 = 𝑎0 + · · · + 𝑎𝑛+1. Suppose that the weighted homogeneous polynomial (or potential) f
defining the Calabi–Yau hypersurface X has the same number of monomials as variables – namely, 𝑛+2.
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Figure 1. The directed graph corresponding to a Delsarte potential function of shape 𝑓 = 𝑥𝑏1
1 𝑥4 + 𝑥

𝑏2
2 +

𝑥𝑏3
3 𝑥6 + 𝑥𝑏4

4 𝑥7 + 𝑥𝑏5
5 𝑥1 + 𝑥𝑏6

6 + 𝑥𝑏7
7 𝑥5. This potential is composed of three atoms.

Then we may write

𝑓 =
𝑛+1∑
𝑖=0

𝑐𝑖

𝑛+1∏
𝑗=0

𝑥
𝑎𝑖 𝑗
𝑗 .

The exponents 𝑎𝑖 𝑗 determine an (𝑛 + 2) × (𝑛 + 2) matrix A. When this matrix is invertible, we say that f
is of Delsarte type (this terminology will only be used for polynomials defining quasismooth Calabi-Yau
hypersurfaces).

When f is of Delsarte type, it follows from [19, Theorem 1] that f can be written as a sum of atomic
potentials (up to coefficients). There are three sorts of atomic potentials [2, Section 2.2]:

𝑓fermat = 𝑥𝑏 ,

𝑓loop = 𝑥𝑏1
1 𝑥2 + 𝑥𝑏2

2 𝑥3 + · · · + 𝑥𝑏𝑘−1
𝑘−1 𝑥𝑘 + 𝑥𝑏𝑘

𝑘 𝑥1, and

𝑓chain = 𝑥𝑏1
1 𝑥2 + 𝑥𝑏2

2 𝑥3 + · · · + 𝑥𝑏𝑘−1
𝑘−1 𝑥𝑘 + 𝑥𝑏𝑘

𝑘 .

The exponents 𝑏𝑖 in these equations are at least 2, or else the degree would be the sum of just one or two
weights, contradicting the fact that V is Calabi–Yau. It is helpful to visualize potentials of Delsarte type
as directed graphs, where an index i points to j if only if 𝑥𝑏𝑖𝑖 𝑥 𝑗 is a monomial in f (see Figure 1). This
directed graph has the property that there is at most one arrow into and at most one arrow out of each
node. The connected components of the graph correspond to atomic potentials. In terms of the matrix
A, the index i points to an index j in the graph of the potential if and only if 𝑎𝑖 𝑗 = 1.

From now on, suppose we are working with a V defined by a potential of Delsarte type with
associated matrix A. By the classification of atomic potentials, A has nonnegative integer entries, the
diagonal entries are at least 2, and every row or column contains at most one nonzero off-diagonal entry,
which must be a 1. Without loss of generality, we can ignore the coefficients 𝑐𝑖 in f and take them to
be general nonzero constants. This is because any two members of the linear system generated by the
monomials

∏𝑛+1
𝑗=0 𝑥

𝑎𝑖 𝑗
𝑗 , 𝑖 = 0, . . . , 𝑛 + 1, are isomorphic after multiplying by some element of the torus.

The matrices corresponding to the atomic potentials 𝑓loop and 𝑓chain above are

𝐴loop =

��������

𝑏1 1
𝑏2 1

. . .
. . .

𝑏𝑘−1 1
1 𝑏𝑘

	





�
and 𝐴chain =

��������

𝑏1 1
𝑏2 1

. . .
. . .

𝑏𝑘−1 1
𝑏𝑘

	





�
,

respectively. We will need the form of the inverses of these two types of matrices later, which may be
readily computed via a cofactor expansion:
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Lemma 2.7. Let 𝐴loop and 𝐴chain be the matrices above. Then

𝐴−1
loop =

1
𝑏1 · · · 𝑏𝑘 + (−1)𝑘−1

��������

𝑏2 · · · 𝑏𝑘 −𝑏3 · · · 𝑏𝑘 · · · (−1)𝑘−2𝑏𝑘 (−1)𝑘−1

(−1)𝑘−1 𝑏3 · · · 𝑏𝑘𝑏1 · · · (−1)𝑘−3𝑏𝑘𝑏1 (−1)𝑘−2𝑏1
...

...
...

...
...

𝑏2 · · · 𝑏𝑘−2 · · · (−1)𝑘−1 𝑏𝑘𝑏1 · · · 𝑏𝑘−2 −𝑏1 · · · 𝑏𝑘−2
−𝑏2 · · · 𝑏𝑘−1 · · · (−1)𝑘−2𝑏𝑘−1 (−1)𝑘−1 𝑏1 · · · 𝑏𝑘−1

	





�

and 𝐴−1
chain =

1
𝑏1 · · · 𝑏𝑘

��������

𝑏2 · · · 𝑏𝑘 −𝑏3 · · · 𝑏𝑘 · · · (−1)𝑘−2𝑏𝑘 (−1)𝑘−1

0 𝑏3 · · · 𝑏𝑘𝑏1 · · · (−1)𝑘−3𝑏𝑘𝑏1 (−1)𝑘−2𝑏1
...

. . .
. . .

...
...

0 · · · 0 𝑏𝑘𝑏1 · · · 𝑏𝑘−2 −𝑏1 · · · 𝑏𝑘−2
0 · · · 0 0 𝑏1 · · · 𝑏𝑘−1

	





�
.

Define the charge 𝑞𝑖 to be the sum of the entries of the ith row of 𝐴−1. Then the degree d of X is
the least common denominator of the charges, and the weights satisfy 𝑎𝑖 = 𝑞𝑖𝑑 [2, Section 2.2]. The
transpose of A defines a new potential 𝑓 T. The mirror charge 𝑞T

𝑖 is defined analogously as the sum of the
entries of the ith column of 𝐴−1. Then 𝑓 T defines a Calabi–Yau hypersurface 𝑋T with degree 𝑑T equal
to the least common denominator of the 𝑞T

𝑖 in the weighted projective space P(𝑎T
0 , . . . , 𝑎

T
𝑛+1), where

𝑎T
𝑖 = 𝑑T𝑞T

𝑖 . We will refer to 𝑑T and 𝑎T
0 , . . . , 𝑎

T
𝑛+1 as the mirror degree and mirror weights, respectively.

Let Aut( 𝑓 ) be the group of diagonal automorphisms of C𝑛+2 which preserve the potential f. This is
a finite group and is generated by the columns of 𝐴−1, where a column (𝑐0, . . . , 𝑐𝑛+1)

T is interpreted
as the diagonal automorphism diag(𝑒2𝜋𝑖𝑐0 , . . . , 𝑒2𝜋𝑖𝑐𝑛+1 ) [2, Section 3]. The action of the group Aut( 𝑓 )
descends to X via the surjective homomorphism 𝜋 : Aut( 𝑓 ) → Aut𝑇 (𝑉), where Aut𝑇 (𝑉) denotes
the group of toric automorphisms of the weighted projective hypersurface V. Let 𝐽 𝑓 � ker(𝜋) and
𝑆𝐿( 𝑓 ) � Aut( 𝑓 ) ∩ SL𝑛+2 (C). To any group 𝐽 𝑓 ⊂ 𝐺 𝑓 ⊂ 𝑆𝐿( 𝑓 ), one can associate a group 𝐺T

𝑓

satisfying 𝐽 𝑓 T ⊂ 𝐺T
𝑓 ⊂ SL( 𝑓 T). The details of how to define this group will not be needed here. Set

𝐺 𝑓 � 𝐺 𝑓 /𝐽 𝑓 ⊂ Aut𝑇 (𝑉) and 𝐺T
𝑓 � 𝐺T

𝑓 /𝐽 𝑓 T ⊂ Aut𝑇 (𝑉T).
We can now state the main theorem of BHK mirror symmetry ([2, Theorem 2.3]):

Theorem 2.8. The Calabi–Yau orbifolds [𝑉/𝐺 𝑓 ] and [𝑉T/𝐺T
𝑓 ] form a mirror pair, in the sense that

𝐻 𝑝,𝑞
CR ([𝑉/𝐺 𝑓 ],C) � 𝐻𝑛−𝑝,𝑞

CR ([𝑉T/𝐺T
𝑓 ],C),

where 𝐻 𝑝,𝑞
CR (−,C) denotes Chen-Ruan orbifold cohomology [9].

3. Minimal log discrepancies of hypersurface quotients

In this section, we will compute the minimal log discrepancies of certain klt Calabi–Yau pairs with
standard coefficients which are quotients of hypersurfaces in weighted projective space. It is conjectured
that examples of this type achieve the smallest possible mld in each dimension, along with other extreme
properties [12, Conjectures 3.2, 3.4, 7.10]; these conjectures are known to be true in low dimensions.
Our main result gives a connection between the mld’s of these quotients and mirror symmetry:

Theorem 3.1. Let 𝑉𝑑 ⊂ P(𝑎0, . . . , 𝑎𝑛+1) be a well-formed quasismooth Calabi–Yau hypersurface
defined by a polynomial of Delsarte type and Aut𝑇 (𝑉) the group of toric automorphisms of V. Then,
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the minimal log discrepancy of the quotient pair 𝑉/Aut𝑇 (𝑉) is

mld(𝑉/Aut𝑇 (𝑉)) =
min{𝑎T

0 , . . . , 𝑎
T
𝑛+1}

𝑑T .

Proof. Let f be the Delsarte-type equation defining the Calabi–Yau hypersurface V. We may assume
that f has general coefficients, since any two quasismooth members of the linear system spanned by
the monomials of f differ by an automorphism of the torus. Let L be the linear system generated by
monomials in f. Following the notation of Section 2.3, let A be the (𝑛 + 2) × (𝑛 + 2) matrix determined
by the exponents in f.

Since Aut𝑇 (𝑉) is a finite subgroup of the torus, we may view 𝑉/Aut𝑇 (𝑉) as a hypersurface X �
{ 𝑓 = 0} inside the fake weighted projective stackY � [P(𝑎0, . . . , 𝑎𝑛+1)/Aut𝑇 (𝑉)] � [(A𝑛+2\{0})/𝐺].
Here, G is the subgroup of the torus (C∗)𝑛+2 ⊂ A𝑛+2 generated by the two smaller subgroups C∗ =
{(𝑡𝑎0 , 𝑡𝑎1 , . . . , 𝑡𝑎𝑛+1) : 𝑡 ∈ C∗} and Aut( 𝑓 ). We can now study the singularities of the hypersurface X
using toric geometry and the results of Section 2.2. We will use (𝑋, 𝐷) to denote the pair associated to
the stack X .

To understand the quotient morphismA𝑛+2\{0} → Y of stacks from the standpoint of toric geometry,
begin with the cone in the latticeZ𝑛+2 generated by standard basis vectors 𝑒0, . . . , 𝑒𝑛+1. The fan consisting
of this cone and all its subcones is the fan of the toric variety A𝑛+2. The subvariety A𝑛+2 \ {0} ⊂ A𝑛+2

corresponds to the subfan with the unique top-dimensional cone removed. In Section 2.3, we saw that
the finite group Aut( 𝑓 ) ⊂ (C∗)𝑛+2 of automorphisms of the potential f is generated by the columns
𝑣0, . . . , 𝑣𝑛+1 of 𝐴−1. Let N be the superlattice ofZ𝑛+2 generated by the column vectors 𝑣0, . . . , 𝑣𝑛+1. Then
the datum for the fake weighted projective stack Y = Y (𝚺) is the triple 𝚺 = (𝑁 ′,Σ, {𝑒0, . . . , 𝑒𝑛+1}),
where 𝑁 ′ = 𝑁/(𝑁 ∩ spanR{(𝑎0, . . . , 𝑎𝑛+1)}), Σ is the fan spanned by the image of the coordinate
simplex conv(𝑒0, . . . , 𝑒𝑛+1) under the quotient 𝑁R → 𝑁 ′

R
, and the 𝑒𝑖 are the images of the basis vectors

𝑒𝑖 . The fan Σ in 𝑁 ′ also defines the coarse moduli space Y of Y as an ordinary toric variety.
Since X is a quasismooth hypersurface in Y , the singularities of X will be suitable hyperplane

slices of the quotient singularities of Y . By Proposition 2.5 and Remark 2.6, we only need to check the
singularities of X on two types of toric strata to compute the mld of X : the 1-dimensional strata for
which neither neighboring coordinate point is contained in the base locus of L, and the 0-dimensional
strata (coordinate points) which are in the base locus of L. We will consider these two cases separately.
The key idea of the proof is that the images of the lattice points 𝑣𝑖 ∈ Z𝑛+2 will always ‘be responsible
for’ the smallest log discrepancy that occurs.

Case 1: Suppose that ℓ � C∗ is an open 1-stratum of Y whose closure does not intersect the base
locus of L. If the coordinates of the stratum are 𝑥𝑖 and 𝑥 𝑗 , this is the same as saying that in the graph
of the corresponding Delsarte equation, neither i nor j ‘points’ at any other index. For instance, in the
example of Figure 1, the 1-stratum where only 𝑥2 and 𝑥6 are nonzero satisfies this condition.

Up to rearranging indices, we may assume that ℓ ⊂ 𝑌 is the locus where only the coordinates 𝑥𝑛 and
𝑥𝑛+1 are nonzero. The cone in Σ corresponding to this 1-stratum is spanned by 𝑒0, . . . , 𝑒𝑛−1, and it is an
n-dimensional cone in the (𝑛 + 1)-dimensional vector space 𝑁 ′

R
. We claim that spanR{�̄�0, . . . , �̄�𝑛−1} =

spanR{𝑒0, . . . , 𝑒𝑛−1} and that cone{𝑒0, . . . , 𝑒𝑛−1} ⊂ cone{�̄�0, . . . , �̄�𝑛−1}. (As the notation suggests, we
are using �̄�𝑖 to mean the images of the columns 𝑣𝑖 of 𝐴−1 in 𝑁 ′.) To prove this, we use that the
vectors 𝑒0, . . . , 𝑒𝑛−1 are linearly independent in 𝑁 ′

R
and each of 𝑒0, . . . , 𝑒𝑛−1 is a nonnegative Z-linear

combination of �̄�0, . . . , �̄�𝑛−1, via the following matrix equation:

[𝑒0 · · · 𝑒𝑛+1] = 𝐼𝑛+2 = 𝐴−1𝐴 = [𝑣0 · · · 𝑣𝑛+1]𝐴. (3)

Expanding out the last product gives each standard basis vector as a nonnegative integer linear combi-
nation of columns 𝑣0, . . . , 𝑣𝑛+1. Moreover, the coefficient of 𝑣𝑖 in the combination for 𝑒 𝑗 is 𝑎𝑖 𝑗 . The last
two rows of A have entries only on the diagonal by the assumption that neither n nor 𝑛 + 1 points to any
other index. Therefore, 𝑣𝑛 and 𝑣𝑛+1 each have coefficient zero in the linear combination describing each
of 𝑒0, . . . , 𝑒𝑛−1. This completes the proof of the claim above.
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We may add on either �̄�𝑛 or �̄�𝑛+1 to the set {�̄�0, . . . , �̄�𝑛−1} to obtain a complete basis for the lattice
𝑁 ′ (either will suffice since �̄�0 + · · · + �̄�𝑛+1 = 0). Putting all this together, we have now described
the singularities of Y on ℓ as 𝑄 × A1, where Q is the affine quotient singularity defined by the
cone{𝑒0, . . . , 𝑒𝑛−1} in the sublattice 𝐾 ⊂ 𝑁 ′ with basis �̄�0, . . . , �̄�𝑛−1 and the extra A1 direction is given
by the inclusion 𝐾 ⊂ 𝑁 ′. By Proposition 2.5(1), the singularity of X at any intersection point with ℓ is
simply Q.

The log discrepancy function for the affine singularity Q is a linear function on 𝑁 ′
R

which must be
equal to 1 at each of the distinguished points 𝑒0, . . . , 𝑒𝑛−1 on the respective rays. This means that it lifts
to some linear functional on the original space R𝑛+2 with value 1 at each of 𝑒0, . . . , 𝑒𝑛−1. So if 𝑝 ∈ R𝑛+2

is any (real) linear combination of 𝑒0, . . . , 𝑒𝑛−1, the log discrepancy function evaluated at the image of
p in 𝑁 ′

R
equals the sum of coordinates of p in R𝑛+2 with the standard basis. By our work above, this

applies in particular to any linear combination of 𝑣0, . . . , 𝑣𝑛−1. Since the only lattice points in 𝑁 ′ inside
cone{𝑒0, . . . , 𝑒𝑛−1} are nonnegative integer combinations of �̄�0, . . . , �̄�𝑛−1, the log discrepancy of any
divisor on a log resolution of Q must be a nonnegative linear combination of the sums of coordinates
of the 𝑣𝑖 . But sums of columns of 𝐴−1 are simply the mirror charges 𝑞T

𝑖 . We conclude that the log
discrepancy of any divisor in a log resolution of the singularity Q equals some nonnegative linear
combination of the mirror charges.

Case 2: Suppose that p is a 0-dimensional stratum of Y contained in the base locus of L. This means
that in the graph of the Delsarte equation, the corresponding index points to some other one. For instance,
in the example of Figure 1, the coordinate points of 𝑥1, 𝑥3, 𝑥4, 𝑥5 and 𝑥7 all satisfy this condition.

Up to rearranging indices, we will suppose that p is the coordinate point of 𝑥𝑛 and that n points to
𝑛 + 1. This is the same thing as saying there is a monomial of the form 𝑥𝑏𝑛𝑛 𝑥𝑛+1 in f. By the classification
of Delsarte potentials, n can only point at 𝑛 + 1, so X is defined in an étale neighborhood of p by the
equation 𝑥𝑛+1 = 0. In the language of toric geometry, the affine quotient singularity Q ofY at p is the toric
variety associated to the top-dimensional cone{𝑒0, . . . , 𝑒𝑛−1, 𝑒𝑛+1} in the fan of Y . By the discussion
above (and in agreement with Proposition 2.5(2)), the singularity of X at p is the hyperplane slice
𝑥𝑛+1 = 0 of Q. This slice is another affine quotient singularity 𝑄 ′, which as a toric Deligne-Mumford
stack corresponds to the datum (𝑃, cone{ 𝑓0, . . . , 𝑓𝑛−1}, { 𝑓0, . . . , 𝑓𝑛−1}). To avoid cumbersome notation,
we have used P to represent the quotient lattice 𝑁/(𝑁 ∩ spanR{(𝑎0, . . . , 𝑎𝑛+1), 𝑒𝑛+1}). (Here, we have
taken the quotient by 𝑒𝑛+1 to represent the hyperplane slice 𝑥𝑛+1 = 0.) The point 𝑓𝑖 is the image in P of
𝑒𝑖 . Similarly, we will let 𝑤𝑖 be the image of 𝑣𝑖 in P.

Since 𝑣0 + · · · + 𝑣𝑛+1 = (𝑞0, . . . , 𝑞𝑛+1) ∈ spanR{𝑎0, . . . , 𝑎𝑛+1} and 𝑣𝑛 + 𝑏𝑛+1𝑣𝑛+1 = 𝑒𝑛+1 (using the
existence of the monomial 𝑥𝑏𝑛𝑛 𝑥𝑛+1 in f and (3)), we have after the quotient that 𝑤0 + · · · + 𝑤𝑛+1 =
𝑤𝑛 + 𝑏𝑛+1𝑤𝑛+1 = 0. Solving these equations gives that 𝑤𝑛 is a Z-linear combination of the remaining
vectors and

𝑤𝑛+1 =
1

𝑏𝑛+1 − 1
(𝑤0 + · · · + 𝑤𝑛−1).

Therefore, 𝑤0, . . . , 𝑤𝑛−1 span 𝑃R as a vector space, but we might also have to add 𝑤𝑛+1 to get a
full generating set for the lattice P (if 𝑏𝑛+1 ≥ 3). In any case, the equation above shows 𝑤𝑛+1 ∈

cone{𝑤0, . . . , 𝑤𝑛−1}. We also claim that cone{ 𝑓0, . . . , 𝑓𝑛−1} ⊂ cone{𝑤0, . . . , 𝑤𝑛−1}. Indeed, using (3)
again, each 𝑒𝑖 is a linear combination of at most two of the columns of 𝐴−1, and the only basis vectors
which require 𝑣𝑛 in the combination are 𝑒𝑛 and 𝑒𝑛+1. Thus, 𝑓0, . . . , 𝑓𝑛−1 are nonnegative Z-linear
combinations of 𝑤0, . . . , 𝑤𝑛−1, 𝑤𝑛+1, and we have already shown that 𝑤𝑛+1 is in the cone generated by
the others.

It follows that any lattice point x in 𝑃 ∩ cone{ 𝑓0, . . . , 𝑓𝑛−1} is expressible as a nonnegative Z-
linear combination of 𝑤0, . . . , 𝑤𝑛−1, 𝑤𝑛+1. To see this, let 𝑥 = 𝛾0𝑤0 + . . . + 𝛾𝑛−1𝑤𝑛−1 be the expres-
sion for x in terms of the R-basis {𝑤0, . . . , 𝑤𝑛−1}. Because of the inclusion cone{ 𝑓0, . . . , 𝑓𝑛−1} ⊂

cone{𝑤0, . . . , 𝑤𝑛−1}, all 𝛾𝑖 are nonnegative. If they are not integers, they all have identical fractional
part which is some multiple of 1

𝑏𝑛+1−1 , say 𝑠
𝑏𝑛+1−1 , because of our formula for 𝑤𝑛+1. Thus,

𝑥 = 
𝛾0�𝑤0 + · · · 
𝛾𝑛−1�𝑤𝑛−1 + 𝑠𝑤𝑛+1
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expresses x as a nonnegative Z-linear combination, as required. We will need the following fact about
the special point 𝑤𝑛+1 later:

Lemma 3.2. 𝑤𝑛+1 ∈ cone{ 𝑓0, . . . , 𝑓𝑛−1}.

Proof. In order to prove that 𝑤𝑛+1 is in cone{ 𝑓0, . . . , 𝑓𝑛−1}, we will show that the coordinate functional
associated to each coordinate 𝑓𝑖 in the basis { 𝑓0, . . . , 𝑓𝑛−1} of 𝑃R is positive at 𝑤𝑛+1. It is easier to view
these as induced by linear functionals on the original space R𝑛+2 of which 𝑃R is a quotient.

Indeed, for each 𝑖 = 0, . . . , 𝑛− 1, let 𝜋𝑖 : R𝑛+2 → R be the unique linear functional descending to the
coordinate functional for 𝑓𝑖 on 𝑃R. As above, 𝑒0, . . . , 𝑒𝑛+1 are the standard basis vectors for R𝑛+2. Then
𝜋𝑖 is determined by the conditions: 𝜋𝑖 (𝑒𝑖) = 1, 𝜋𝑖 (𝑒 𝑗 ) = 0 for 𝑗 ≠ 𝑖 and 𝑗 ≠ 𝑛, and 𝜋𝑖 (𝑎) = 0, where
𝑎 = (𝑎0, . . . , 𝑎𝑛+1) is the vector of weights. We can use these conditions to determine the value of 𝜋𝑖 on
the final basis vector 𝑒𝑛:

𝜋𝑖 (𝑒𝑛) = −𝜋𝑖

(
1
𝑎𝑛

(𝑎0𝑒0 + · · · + 𝑎𝑛−1𝑒𝑛−1 + 𝑎𝑛+1𝑒𝑛+1)

)
= −

𝑎𝑖
𝑎𝑛

.

We can conclude that for a vector 𝑟 = (𝑟0, . . . , 𝑟𝑛+1) ∈ R
𝑛+2, 𝜋𝑖 (𝑟) ≥ 0 if and only if 𝑟𝑖 − 𝑎𝑖

𝑎𝑛
𝑟𝑛 ≥ 0, or

in other words, 𝑟𝑖 ≥ 𝑎𝑖
𝑎𝑛
𝑟𝑛. To complete the proof of the lemma, we need to verify this inequality for

𝑟 = 𝑣𝑛+1 specifically since this vector maps to 𝑤𝑛+1 under the quotient R𝑛+2 → 𝑃R.
We know that n points to 𝑛 + 1 and that both are part of an atom which is either a chain or a loop

potential. The entry 𝑟𝑛 of 𝑣𝑛+1 that we are interested in corresponds to a superdiagonal element of one
of the matrix inverses in Lemma 2.7; therefore, 𝑟𝑛 is negative. It follows that if the index i is part of a
distinct atom from n and 𝑛 + 1 (so that 𝑟𝑖 = 0), the required inequality is automatically satisfied. We can
then reduce to the case of looking at only loop or chain atoms.

The required inequality in these two special cases follows directly from Lemma 2.7; we will switch
to using the notation of that lemma to discuss the various column entries. In the loop case, this
means that we will look at the last column 𝑣𝑘 = (𝑟1, . . . , 𝑟𝑘 ) of the matrix 𝐴−1

loop in Lemma 2.7
and try to prove 𝑟𝑖 ≥ 𝑎𝑖

𝑎𝑘−1
𝑟𝑘−1 for 𝑖 = 1, . . . , 𝑘 − 2. The easiest way to see this is to observe that,

modulo Z, the ith row of 𝐴−1
loop is simply the previous row times −𝑏𝑖−1 for each i. Therefore, the

same fact holds true for the entries of the vector which is the sum of the columns – namely, the
charge vector 𝑞 = (𝑎1/𝑑, . . . , 𝑎𝑘/𝑑). We can observe that the (𝑘 − 1)-entry 𝑟𝑘−1 of the kth column of
𝐴−1

loop – namely, −𝑏1 · · · 𝑏𝑘−2, is (−1)𝑘−𝑖−1𝑏𝑖 · · · 𝑏𝑘−2 times the ith entry 𝑟𝑖 of the same column for all
𝑖 = 1, . . . , 𝑘−2. Since the charge vector has a similar property modulo Z, (−1)𝑘−𝑖−1𝑏𝑖 · · · 𝑏𝑘−2𝑎𝑖 ≡ 𝑎𝑘−1
(mod 𝑑). If (−1)𝑘−𝑖−1𝑏𝑖 · · · 𝑏𝑘−2 is negative, the ith entry is positive and the required inequality will
hold automatically, while if (−1)𝑘−𝑖−1𝑏𝑖 · · · 𝑏𝑘−2 is positive, 𝑏𝑖 · · · 𝑏𝑘−2 is at least as large as 𝑎𝑘−1/𝑎𝑖 ,
since all weights are between 0 and d and 𝑎𝑖𝑏𝑖 · · · 𝑏𝑘−2 ≡ 𝑎𝑘−1 (mod 𝑑) by the discussion above. This
finishes the proof of the required inequalities.

The argument for the chain potential case is very similar because 𝐴−1
chain has nearly the same properties

as 𝐴−1
loop. Indeed, above the main diagonal, consecutive rows have the same relation as in 𝐴−1

loop, and the
same argument works. Below the main diagonal, entries of the column of interest might be zero, but the
inequality again holds automatically in this case. �

Finally, we need to compute the log discrepancy function for the singularity 𝑄 ′:

Lemma 3.3. The log discrepancy function 𝜓 for 𝑄 ′ has value 𝑞T
𝑖 on 𝑤𝑖 for 𝑖 = 0, . . . , 𝑛 − 1, 𝑛 + 1.

Proof. The singularity 𝑄 ′ is affine, so the log discrepancy function 𝜓 is simply the unique linear
functional on 𝑃R with the property that it has value 1 on each of the vectors 𝑓0, . . . , 𝑓𝑛−1. We will
proceed in much the same way as the previous lemma by doing our calculations on R𝑛+2; the linear
functional 𝜓 on the quotient vector space 𝑃R is induced by a unique linear functional �̃� on R𝑛+2 with
the property that �̃�(𝑒0) = · · · = �̃�(𝑒𝑛−1) = 1, �̃�(𝑎) = 0 and �̃�(𝑒𝑛+1) = 0, where 𝑎 = (𝑎0, . . . , 𝑎𝑛+1) is
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the vector of weights. We are looking to compare this to the ‘sum of coordinates’ linear functional 𝜙,
which has a value of 1 at each of 𝑒0, . . . , 𝑒𝑛+1. First, using �̃�(𝑎) = 0, we compute

�̃�(𝑒𝑛) = −�̃�

(
1
𝑎𝑛

(𝑎0𝑒0 + · · · + 𝑎𝑛−1𝑒𝑛−1 + 𝑎𝑛+1𝑒𝑛+1)

)
= −

𝑎0 + · · · + 𝑎𝑛−1
𝑎𝑛

.

For any point 𝑟 = (𝑟0, . . . , 𝑟𝑛+1) ∈ R
𝑛+2, the linear functionals �̃� and 𝜙 coincide on r if and only if

𝑟0 + · · · + 𝑟𝑛+1 = 𝑟0 + · · · + 𝑟𝑛−1 −
𝑎0 + · · · + 𝑎𝑛−1

𝑎𝑛
𝑟𝑛.

Simplifying this gives

𝑟𝑛+1 = −
𝑎0 + · · · + 𝑎𝑛−1 + 𝑎𝑛

𝑎𝑛
𝑟𝑛 = −

𝑑 − 𝑎𝑛+1
𝑎𝑛

𝑟𝑛 = −𝑏𝑛𝑟𝑛,

where we have used that 𝑎0 + · · · + 𝑎𝑛+1 = 𝑑 by the Calabi–Yau property of V and that 𝑥𝑏𝑛𝑛 𝑥𝑛+1 is a
monomial of weighted degree d with these weights.

We will show that 𝜙 = �̃� holds for 𝑣0, . . . , 𝑣𝑛−1, and 𝑣𝑛+1 (and hence also for any linear combinations
of these). The criterion 𝑟𝑛+1 = −𝑏𝑛𝑟𝑛 only involves the last two coordinates of r, so it is automatically
satisfied for any 𝑣𝑖 with i not in the same atomic potential as n or 𝑛 + 1 (since the relevant coordinates
in the block diagonal matrix 𝐴−1 will both be zero in that case).

Thus, it suffices to verify this condition for the relevant columns of the inverse matrix 𝐴−1 where A
is the matrix of an atomic loop or chain potential. Indeed, one can readily check from Lemma 2.7 that
the 𝑖 + 1, 𝑗 entry of 𝐴−1 is −𝑏𝑖 times the 𝑖, 𝑗 entry, unless 𝑖 = 𝑗 . This proves that 𝑟𝑛+1 = −𝑏𝑛𝑟𝑛 holds for
every column vector except 𝑣𝑛 itself. Thus, for 𝑖 = 0, . . . , 𝑛 − 1, 𝑛 + 1, the value of �̃� on 𝑣𝑖 must equal
the value of 𝜙 on 𝑣𝑖 – namely, the mirror charge 𝑞T

𝑖 . This means 𝜓(𝑤𝑖) = �̃�(𝑣𝑖) = 𝑞T
𝑖 for the required

values of i, completing the proof. �

Since any point in 𝑃 ∩ cone{ 𝑓0, . . . , 𝑓𝑛−1} is a nonnegative Z-linear combination of
𝑤0, . . . , 𝑤𝑛−1, 𝑤𝑛+1, Lemma 3.3 shows that the log discrepancy of any divisor in a log resolution of the
singularity 𝑄 ′ is a nonnegative linear combination of the mirror charges.

In summary, the analysis in Cases (1) and (2) has shown that any log discrepancy of a divisor in a
log resolution of the pair (𝑋, 𝐷) must be a nonnegative linear combination of mirror charges 𝑞T

𝑖 . Since
(𝑋, 𝐷) is the pair associated to 𝑉/Aut𝑇 (𝑉), we have shown

mld(𝑉/Aut𝑇 (𝑉)) ≥ min{𝑞T
0 , . . . , 𝑞

T
𝑛+1}.

To demonstrate equality, the last step is to show that the smallest mirror charge actually appears as a log
discrepancy of some divisor over (𝑋, 𝐷). This will follow quickly from the work we have done already.
Indeed, suppose without loss of generality that 𝑞T

𝑛+1 is the smallest mirror charge. If any index (assume
it is n) points to 𝑛 + 1, we saw in Lemma 3.2 that the image 𝑤𝑛+1 of 𝑣𝑛+1 is a lattice point in the cone of
the singularity of X at the coordinate point of 𝑥𝑛. Therefore, we get a divisor of log discrepancy 𝑞T

𝑛+1
by Lemma 3.3. Otherwise, no other index points to 𝑛 + 1. Representing A as a block diagonal matrix
separated into atomic potentials, this means that the 𝑛 + 1 column of A has only the diagonal entry b,
which is the top left corner of an upper triangular block inside A. It follows that 𝑣𝑛+1 = 1

𝑏 𝑒𝑛+1 and the
subgroup of Aut𝑇 (𝑉) acting as the identity on the divisor {𝑥𝑛+1 = 0} has order b. In the coarse moduli
pair (𝑋, 𝐷), the divisor {𝑥𝑛+1 = 0} ⊂ 𝑋 must have coefficient 1− 1

𝑏 in D. This divisor therefore has log
discrepancy of

1 −

(
1 −

1
𝑏

)
=

1
𝑏
= 𝑞T

𝑛+1,

as required. �
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4. Applications

In this section, we use Theorem 3.1 to construct Calabi–Yau varieties or pairs with particularly extreme
properties. We will first examine how the main theorem offers an alternative perspective on an example
due to Jihao Liu [20, Remark 2.6] of a klt Calabi–Yau pair with standard coefficients and small mld.
Later in the section, we will construct examples of klt Calabi–Yau varieties (rather than pairs) with
conjecturally minimal mld.

Liu’s example is closely related to another by Kollár of a klt pair with standard coefficients such
that 𝐾𝑋 + 𝐷 is ample and has very small volume (see [16], [14, Introduction]). The Calabi–Yau pair is
defined as follows:

(𝑋, 𝐷) =

(
P𝑛,

1
2
𝐻0 +

2
3
𝐻1 + · · · +

𝑠𝑛 − 1
𝑠𝑛

𝐻𝑛 +
𝑠𝑛+1 − 2
𝑠𝑛+1 − 1

𝐻𝑛+1

)
.

Here, 𝐻0, . . . , 𝐻𝑛+1 are general hyperplanes in P𝑛, and the 𝑠𝑖 denote Sylvester’s sequence. This sequence
begins 𝑠0 = 2 and is defined by 𝑠𝑚 = 𝑠0 · · · 𝑠𝑚−1 + 1 for all 𝑚 ≥ 1. The sequence grows doubly
exponentially, and its terms are pairwise relatively prime; the first few terms are 2, 3, 7, 43, 1807, . . .. It
is clear that (𝑋, 𝐷) is klt since it is its own log resolution. It also has standard coefficients, 𝐾𝑋 +𝐷 ∼Q 0,
and the smallest log discrepancy comes from the divisor 𝐻𝑛+1, so mld(𝑋, 𝐷) = 1/(𝑠𝑛+1 − 1). It is
conjectured [12, Conjecture 3.2] that this is the smallest possible mld for any Calabi–Yau klt pair with
standard coefficients and dimension n. This conjecture is proven in dimensions at most 2 (see [12,
Proposition 6.8]).

The pair (𝑋, 𝐷) above has another interpretation as a quotient of the hypersurface 𝑉 ⊂

P𝑛+1 (𝑑/𝑠0, 𝑑/𝑠1, . . . , 𝑑/𝑠𝑛, 1) of degree 𝑑 = 𝑠𝑛+1 − 1 defined by the Fermat-type potential equation

𝑓 � 𝑥2
0 + 𝑥3

1 + · · · + 𝑥𝑠𝑛𝑛 + 𝑥𝑠𝑛+1−1
𝑛+1 = 0.

The automorphism group of the potential f is isomorphic to 𝜇2 ⊕ 𝜇3 ⊕ · · · ⊕ 𝜇𝑠𝑛 ⊕ 𝜇𝑠𝑛+1−1, where the ith
summand acts on 𝑥𝑖 by multiplication by the corresponding root of unity and fixes all other variables.
The toric automorphism group Aut𝑇 (𝑉) is the quotient of this group by the action of the subgroup
C∗ ∩ Aut( 𝑓 ) � 𝜇𝑠𝑛+1−1. We have Aut𝑇 (𝑉) � 𝜇𝑠𝑛+1−1, generated by

𝜁 · (𝑥0 : 𝑥1 : · · · : 𝑥𝑛 : 𝑥𝑛+1) = (𝜁𝑑/𝑠0𝑥0 : 𝜁𝑑/𝑠1𝑥1 : · · · : 𝜁𝑑/𝑠𝑛𝑥𝑛 : 𝑥𝑛+1),

where 𝜁 ∈ 𝜇𝑠𝑛+1−1. There is an isomorphism of varieties 𝑉/Aut𝑇 (𝑉) � P𝑛 given by

(𝑥0 : 𝑥1 : · · · : 𝑥𝑛 : 𝑥𝑛+1) ↦→ (𝑥2
0 : 𝑥3

1 : · · · : 𝑥𝑠𝑛𝑛 : 𝑥𝑠𝑛+1−1
𝑛+1 ),

which identifies 𝑉/Aut𝑇 (𝑉) with the hyperplane 𝑦0 + 𝑦1 + · · · + 𝑦𝑛 + 𝑦𝑛+1 = 0 in P𝑛+1. This hyperplane
is, of course, isomorphic to P𝑛. The pair structure on the quotient is precisely Liu’s pair above.

Theorem 3.1 reproduces the same value for the mld of this pair. Indeed, the mirror weights and
degree of V equal the original weights and degree since f is Fermat (and so the corresponding matrix
A from Section 2.3 is diagonal). The smallest mirror weight is therefore 1, so the mld of 𝑉/Aut𝑇 (𝑉) is
1/(𝑠𝑛+1 − 1), as expected.

Next, we construct klt Calabi–Yau varieties (rather than pairs) with very small mld. The construction
shares some similarities with the large index Calabi–Yau example due to Totaro, Wang and the author
[12, Section 7]. The intricate identities relating the constants defining both of these examples are worked
out fully in [10]. Therefore, we only define the examples below and sketch proofs of their properties.
The key idea is to begin with a loop potential (resp. a potential of the form 𝑥2

0 + [loop]), so that the
action of the toric automorphism group (resp. an index 2 subgroup of the toric automorphism group)
acts freely in codimension 1. After taking the quotient, we then obtain a variety, rather than a pair. The
example will be defined recursively using Sylvester’s sequence. The formulas are rather complicated,
but we write down explicit examples for 𝑛 = 2, 3, 4 at the end of this section.
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For brevity, given integers 𝑏𝑖1 , . . . , 𝑏𝑖𝑘 , we introduce the symbol 𝐵𝑖1 ,...,𝑖𝑘 for the alternating sum
𝑏𝑖1𝑏𝑖2 · · · 𝑏𝑖𝑘 − 𝑏𝑖1 · · · 𝑏𝑖𝑘−1 + · · · + (−1)𝑘−1𝑏𝑖1 + (−1)𝑘 .

Definition 4.1. For 𝑛 = 2𝑟 + 1, 𝑟 ≥ 1 or 𝑛 = 2𝑟 , 𝑟 ≥ 1, we will define integers 𝑏0, . . . , 𝑏𝑛, 𝑣𝑛 as follows.
When 0 ≤ 𝑖 ≤ 𝑟 , define 𝑏𝑖 � 𝑠𝑖 . Then, define the remaining 𝑏𝑖 inductively via the formulas

𝑏𝑟+𝑖 � 1 + (𝑏𝑟+1−𝑖 − 1)2𝐵𝑟+1,𝑟 ,𝑟+2,𝑟−1,...,𝑟+𝑖−1,𝑟−𝑖+2

for 1 ≤ 𝑖 ≤ 𝑟 + 1 when 𝑛 = 2𝑟 + 1 or 1 ≤ 𝑖 ≤ 𝑟 when 𝑛 = 2𝑟 .
For 𝑛 = 2𝑟 + 1, 𝑟 ≥ 1, define an integer 𝑣2𝑟+1 by

𝑣2𝑟+1 � 𝐵𝑟+1,𝑟 ,𝑟+2,𝑟−1,...,2𝑟+1,0 − 𝐵𝑟 ,𝑟+2,𝑟−1,...,2𝑟+1,0 + · · · − 𝐵0.

For 𝑛 = 2𝑟 , 𝑟 ≥ 1, define an integer 𝑣2𝑟 by

𝑣2𝑟 � 2(𝐵𝑟+1,𝑟 ,𝑟+2,𝑟−1,...,2𝑟 ,1 − 𝐵𝑟 ,𝑟+2,𝑟−1,...,2𝑟 ,1 + · · · − 𝐵1) + 1.

Note that a B with empty subscript is considered to be 1, so 𝑏𝑟+1 = 1 + (𝑏𝑟 − 1)2. These formulas
define the exponents of the equation for our hypersurface example. The equations have the following
form. When 𝑛 = 2𝑟 + 1 for 𝑟 ≥ 1, let the hypersurface V have equation

𝑥𝑏0
0 𝑥2𝑟+2 + 𝑥𝑏1

1 𝑥2𝑟+1 + · · · + 𝑥𝑏𝑟𝑟 𝑥𝑟+2 + 𝑥𝑏𝑟+1
𝑟+1 𝑥𝑟 + 𝑥𝑏𝑟+2

𝑟+2 𝑥𝑟−1 + · · · + 𝑥𝑏2𝑟+1
2𝑟+1 𝑥0 + 𝑥𝑣2𝑟+1

2𝑟+2 𝑥𝑟+1 = 0. (4)

The potential defining this hypersurface is atomic of loop type. Similarly, when 𝑛 = 2𝑟 for 𝑟 ≥ 1, let V
have equation given by

𝑥𝑏0
0 + 𝑥𝑏1

1 𝑥2𝑟+1 + 𝑥𝑏2
2 𝑥2𝑟 + · · · + 𝑥𝑏𝑟𝑟 𝑥𝑟+2 + 𝑥𝑏𝑟+1

𝑟+1 𝑥𝑟 + 𝑥𝑏𝑟+2
𝑟+2 𝑥𝑟−1 + · · · + 𝑥𝑏2𝑟

2𝑟 𝑥1 + 𝑥𝑣2𝑟
2𝑟+1𝑥𝑟+1 = 0. (5)

The potential in this case is of the form 𝑥2
0 + [loop].

The weights 𝑎0, . . . , 𝑎𝑛+1 and degree D of the hypersurface 𝑉 ⊂ P𝑛+1 (𝑎0, . . . , 𝑎𝑛+1) are uniquely
determined by the equations above, once we require that gcd(𝑎0, . . . , 𝑎𝑛+1) = 1, which is necessary for
the weighted projective space to be well-formed. The form of the equations guarantees that (4) and (5)
define quasismooth hypersurfaces of each dimension n. If 𝑛 = 2𝑟 + 1 is odd, the toric automorphism
group 𝐺 � Aut𝑇 (𝑉) acts freely in codimension 1 on V because it is defined by a loop potential [12,
Proposition 7.2]. Therefore, the quotient 𝑉/𝐺 is a variety, rather than a pair.

When 𝑛 = 2𝑟 is even, the hypersurface V is not defined by a loop potential. Instead of taking the
quotient of V by Aut𝑇 (𝑉), we instead consider 𝑉/𝐺, where G is now the index 2 subgroup of Aut𝑇 (𝑉)
corresponding to the loop atom. Using the same reasoning as in [12, Proposition 7.2], one can check
that G acts freely in codimension 1 on V. On its own, Theorem 3.1 does not say anything about 𝑉/𝐺
since G is not the full toric automorphism group of V. However, given that 𝑉/Aut𝑇 (𝑉) � (𝑉/𝐺)/𝜇2,
one can deduce in this case that the mld of 𝑉/𝐺 is twice that of its quotient.

We define the additional constants:

Definition 4.2.

𝐷 �

{
𝐷2𝑟+1 = 𝐵𝑟+1,𝑟 ,𝑟+2,𝑟−1,...,2𝑟+1,0 if 𝑛 = 2𝑟 + 1,
𝐷2𝑟 = 2𝐵𝑟+1,𝑟 ,𝑟+2,𝑟−1,...,2𝑟 ,1 if 𝑛 = 2𝑟.

𝑚 �

{
𝑚2𝑟+1 = 𝐵0,2𝑟+1,1,2𝑟 ,...,𝑟 ,𝑟+1 if 𝑛 = 2𝑟 + 1,
𝑚2𝑟 = 𝐵1,2𝑟 ,2,2𝑟−1,...,𝑟 ,𝑟+1 if 𝑛 = 2𝑟.

The properties of the klt variety example are summarized in the following theorem.
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Theorem 4.3 [10, Theorem 5.1]. In each dimension 𝑛 ≥ 2, the hypersurface V defined above is well-
formed, Calabi-Yau and quasismooth of degree D. The hypersurface V carries an action of the cyclic
group 𝜇𝑚 such that 𝑉/𝜇𝑚 is a complex klt Calabi–Yau variety with mld 1/𝑚. This mld is smaller than
1/22𝑛 for each 𝑛 > 2.

The verifications of these properties are carried out fully in [10], but the key point is showing the
identities [10, Proposition 4.1]

𝑚2𝑟+1𝐷2𝑟+1 − 1 = 𝑏0 · · · 𝑏2𝑟+1𝑣2𝑟+1,

𝑚2𝑟𝐷2𝑟 − 1 = 𝑏1 · · · 𝑏2𝑟𝑣2𝑟 .
(6)

For instance, when 𝑛 = 2𝑟 +1, the determinant of the loop matrix associated to the potential equation
(4) is 𝑏0 · · · 𝑏2𝑟+1𝑣2𝑟+1+1. One can use (6) to prove the degree of V is D, the smallest weight is 𝑎𝑛+1 = 1,
and the smallest mirror charge is equal to 1/𝑚. The value of the mld is then a consequence of Theorem
3.1. The situation for even n is similar.

The value 1/𝑚 of the mld decays doubly exponentially with dimension and is extremely close to that
of the conjecturally optimal klt pair mentioned earlier in the section. Indeed, the mld value for varieties
is within a constant factor of less than 6 of the value for pairs when n is even, and less than 23 when n
is odd [10, Lemma 8.1]. This is compelling evidence for the conjecture that this example is optimal for
klt varieties:

Conjecture 4.4. For every 𝑛 ≥ 2, the quotient 𝑉/𝐺 defined above has the smallest mld of any klt
Calabi–Yau variety of dimension n.

This conjecture is also supported by additional evidence in small dimensions. Indeed, in dimension
2, V is the degree 22 hypersurface

{𝑥2
0 + 𝑥3

1𝑥3 + 𝑥1𝑥
5
2 + 𝑥2𝑥

19
3 = 0} ⊂ P3 (11, 7, 3, 1).

The group G of order 13 acts freely in codimension 1 on V, and the quotient variety 𝑉/𝐺 has mld 1
13 .

This is the smallest possible for any klt Calabi–Yau surface by [12, Proposition 6.1]. Note that the mld of
the quotient 𝑉/Aut𝑇 (𝑉) by the full toric automorphism group, of order 26, has mld 1

26 , as predicted by
Theorem 3.1 since the mirror hypersurface to V has degree 26 in P(13, 7, 5, 1). However, that quotient
is a pair, rather than a variety.

In dimension 3, V is the degree 191 hypersurface

{𝑥2
0𝑥4 + 𝑥3

1𝑥3 + 𝑥1𝑥
5
2 + 𝑥0𝑥

12
3 + 𝑥2𝑥

165
4 = 0} ⊂ P4 (95, 61, 26, 8, 1).

The group G of order 311 acts freely in codimension 1 on V, and Theorem 3.1 shows that the quotient
variety𝑉/𝐺 is a klt Calabi–Yau 3-fold with mld 1

311 . In dimension 4, V is the degree 925594 hypersurface

{𝑥2
0 + 𝑥3

1𝑥5 + 𝑥7
2𝑥4 + 𝑥2𝑥

37
3 + 𝑥1𝑥

893
4 + 𝑥3𝑥

904149
5 = 0} ⊂ P5(462797, 308531, 132129, 21445, 691, 1).

The group G of order 677785 acts freely in codimension 1 on V, and Theorem 3.1 shows that
the quotient variety 𝑉/𝐺 is a klt Calabi–Yau 4-fold with mld 1

677785 . For each of these computations,
applying Theorem 3.1 is a much simpler way of computing the mld than analyzing all the quotient
singularities of 𝑉/𝐺 individually.

In dimensions 3 and 4, our examples have the smallest mld of any possible examples of this type.
That is, they are optimal among all klt Calabi–Yau varieties arising as quotients by toric automorphisms
of quasismooth hypersurfaces in weighted projective space defined by Delsarte potentials. This was
verified by computer search, using the databases of Calabi–Yau 3-fold and 4-fold hypersurfaces in [7].
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