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NORMAL, LOCALLY COMPACT, BOUNDEDLY 
METACOMPACT SPACES ARE PARACOMPACT: 

AN APPLICATION OF PIXLEY-ROY SPACES 

PEG DANIELS 

1. Introduction. Let PR(X) denote the Pixley-Roy topology on the 
collection of all nonempty, finite subsets of a space X. For each cardinal /c, 
let K* be the cardinal K with the co-finite topology. We use PR(K*) to 
obtain a partial solution in ZFC to F. Tail's question whether every 
normal, locally compact, metacompact space is paracompact [6]. W.S. 
Watson has answered this question affirmatively assuming V = L[l]. The 
question also has an affirmative answer if we assume either that the space 
is perfectly normal [1] or that it is locally connected [4]. 

A space Xis said to be boundedly metacompact (boundedly paracompact) 
provided that for each open cover °U of X there is a positive integer n such 
that ^ h a s a point finite (locally finite) open refinement of order n. As the 
main result of this paper, we show every normal, locally compact, 
boundedly metacompact space is paracompact. Thus, by a theorem of P. 
Fletcher, R.A. McCoy and R. Slover, such spaces are boundedly 
paracompact [3]. We also show that if there is a normal, zero-dimensional, 
locally compact, metacompact space that is not paracompact, then there is 
a cardinal /c, and a subspace of PR(K*) with the same properties. More 
generally, we show that if there is a normal, locally compact, metacompact 
space that is not paracompact, then there is a cardinal K and a subspace Y 
of PR(K*) with the following two properties: (1) any two disjoint subsets 
of { {a}: a e K} can be separated by disjoint open subsets of Y, and (2) 
{ {«}: a G K} is a discrete closed subset of Y, the points of which cannot 
be separated by disjoint open subsets of Y. Finally, we show every 
zero-dimensional, normal, locally compact, metacompact space is sub-
paracompact. 

2. Pixley-Roy spaces on K*. First let us recall the definition of the 
Pixley-Roy topology on the collection of all nonempty, finite subsets of a 
space X. Given a space X, let 0>(X) be the collection of all nonempty, finite 
subsets of X. For each A e &(X) and each open set U of X, let 

Received October 23, 1981 and in revised form November 30, 1982. 

807 

https://doi.org/10.4153/CJM-1983-046-x Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1983-046-x


808 PEG DANIELS 

[A, U] = {B e 0>(x):A Q B Q U). 

Then { [A, U]:A G. 0>(X) and U is an open set in X} forms a basis for a 
topology on &{X\ called the Pixley-Roy topology on 0>(X). Let PR(X) 
denote &(X) with this topology. It is well known that if X is a T\ -space, 
then each element of this basis is clopen, and hence PR(X) is completely 
regular and zero-dimensional. Also, if X is a T\-space, then PR(X) is 
hereditarily metacompact [2]. 

As an aid in notation, given a cardinal /c, a set A G PR(K*), and a finite 
subset F of K — A, we let °U(A, F) = [A, K — F]. Also, for each positive 
integer n, let PR^n(ic*) denote the subspace of PR(K*) consisting of all 
subsets of K* of cardinality less than or equal to n. Finally, we consider K 
to be a subspace of PR(K*), that is, we identify {a} with a for each a e K. 

Note that since K* is T\, PR(K*) is completely regular, zero-dimensional, 
and hereditarily metacompact. 

To help visualize these spaces, let us recall that PR^2(R) *s homeomor-
phic to R. Heath's tangent-F space, where R is the set of real numbers 
with the usual topology. The tangent- V space is not locally compact, but if 
we extend each edge of a tangent V infinitely far and give it the topology 
of the one-point compactification of an infinite discrete space, we get a 
locally compact space. More precisely, for p = (x, 0), let 

®(P) = {p} u { ( * ' , / ) : / = x' - x o r / = x - x'}. 

Then a basic open set containing/? is ffl(p) — F where F is a finite subset 
of ffl(p) — {/?}. This space is locally compact and metacompact, but not 
collectionwise-Hausdorff (since the tangent-F space isn't collectionwise-
Hausdorff), and hence, it is not paracompact. It turns out that this space 
also is homeomorphic to a Pixley-Roy space, namely Pi^2(R*)> where R* 
is the set of all real numbers with the co-finite topology. In fact, the only 
property of the real numbers affecting the space PR(R*) is their 
cardinality, i.e., PR(R*) is homomorphic to PR(c*), where c* is c = 2W 

with the co-finite topology. This led us to consider Pixley-Roy spaces of 
the form PR(K*) where K* is some cardinal K with the co-finite topology. 
We begin with a few more simple facts about PR(K*). 

THEOREM 1. For each positive integer n and each cardinal /c, PR^„(K*) is 
locally compact. If n = 2 and K > co, then PR^„(K*) is not collectionwise-
Hausdorff and hence, not paracompact. In fact, K is a closed discrete subset 
of PR^n(K*) that cannot be separated in PR^„(K*) by disjoint open sets. 
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Proof. Suppose K is a cardinal and n G CO. Suppose A G PR^n(ic*). We 
show that °ll(A, 0) is compact. Since °U(A, 0) is metacompact, is suffices to 
show that &(A, 0) is countably compact. Suppose that 

{Xm:m G to} ç #(,4, 0). 

Without loss of generality, we may assume that all the elements of this set 
have the same cardinality, and hence form a A-system with root B. It is 
easy to check that B is a limit point of this set in °ll{A, 0), and so PR^n(K*) 
is locally compact. 

Now let us suppose that n ^ 2 and K > to. Suppose that 

{<%(a, Fa) O PR<zn(K*):a < K} 

is a collection of pairwise disjoint open subsets of PR^n(K*). For each pair 
of points a and ft, it must be the case that either ft G Fa or a G i^ . For 
each natural number m, Fm is finite, so for each ft £ Fm, m G F p. Since K 
> co, 

/c - U Fm ¥= 0. 
m Geo 

Let 

j8 G JC - U Fm. 

But then for each m G CO, m G Fy?, a contradiction. So /c cannot be 
separated in PR^H(K*) by disjoint open sets. 

Let us say that given a space X and a pairwise disjoint collection J / Q 
&(X), stfean be separated in X provided that there exists a collection { UA :A 
G S/} of pairwise disjoint open sets in X such that for each A G J ^ A Q 
UA. Also, sf is normalized in X provided that for each âS Q s# there exist 
disjoint open sets U and F in X such that U @ Q U and U (s/ — ÛS) Q 
V. 

Now we begin to relate the study of Pixley-Roy spaces to F. Tail's 
question. The next theorem illustrates the close relationship between 
normal, locally compact, metacompact spaces and subspaces of Pixley-
Roy spaces of the form PR(K*) for various cardinals K, particularly if the 
original spaces are zero-dimensional. This theorem is proved using 
techniques that are very useful in proving the main result. 

THEOREM 2. If there is a normal, locally compact, metacompact space Y 
that is not paracompact, then there is a cardinal K and a subspace Z of 
PR(K*) with the following properties: 
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(1) K is normalized in Z, 
(2) K is a closed discrete subset of Z that cannot be separated in Z. 

Furthermore, if Y is also zero-dimensional, then there is such a subspace Z 
which is a perfect image of Y, hence also normal, locally compact, 
metacompact; Z is not paracompact. 

Before proving Theorem 2, we state and prove a lemma useful in 
proving this theorem and the main result. 

L E M M A 3. Suppose X is normal, locally compact, and (boundedly) 
metacompact, and D = {da:a < K} is a discrete closed subset of X. Then 
there exists a collection °l/ — {Ua:a < K) of open sets with compact closures 
such that 

(1) For each a < K, da e Ua, and if fi ¥= a, then da £ Up, and 
(2) Each point of X belongs to only finitely many (at most n, for some 

integer n) elements of °l/. 

Proof of Lemma 3. Suppose X is normal, locally compact, and 
metacompact, and D = {da:a < /c} is a discrete closed subset of X. For 
each x e X, let Ux be an open set with compact closure containing x such 
that Vx n D Q {x}. Since {Ux:x e X) covers X, let {Vx:x e X) be a 
precise point-finite open refinement of {Ux:x G X}. (If X is boundedly 
metacompact, we may assume each point of X is in at most n elements of 
the refinement, for some positive integer n.) If a and ft are two elements of 
K, then dp G Vd , and since Vd Q \jd , da £ Vd So {Vx:x G X} has the 
desired properties. 

Proof of Theorem 2. Suppose that every normal, locally compact, 
metacompact space is collectionwise-Hausdorff. We show that a normal, 
locally compact, metacompact space X is collectionwise-normal with 
respect to compact sets and, hence, is paracompact . Take a discrete 
collection of compact subsets of X, say {Ha\a G A} and collapse each Ha 

to a point. This new quotient space, call it Y, is normal, locally compact, 
metacompact (using a result of J. Worrell [8]) and, by supposition, 
collectionwise-Hausdorff. The points of {Ha:a G A} can thus be 
separated in Y, and therefore the elements of {Ha\a e A} can be 
separated in X. 

Suppose there is a normal, locally compact, metacompact space, say Y, 
that is not collectionwise-Hausdorff. Let D = {da:a < K} be a discrete 
closed subset of Y that cannot be separated in Y. Let °ll = {Ua:a < K} be 
as in Lemma 3. Let X be an open set in Y such that 

D Q X Q X' Q U Ua 
a<K 
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and let X' = X. Letf.X -» PR (**) be the function defined by 

f(x) = {a:x G Ua) for each x G X. 

We claim that f(X) is a subspace of PR(K*) with the required 
properties. 

First we prove that K is normalized inf(X). Suppose H Q K and K = K 
— H. Now f^l(H) a n d / ^ f X ) are disjoint closed subsets of X\ so by 
normality, let U be an open set in X such that 

r\H) ^ t/ and U n fl(K) = 0. 

We claim that f(U) n K = 0. Suppose that, on the contrary, a G 

/(£/) n AT. Since (Ua — Ua) n Xis compact, let G be a finite subset of K 
— {a} such that (Ua — Ua) Pi X is covered by {Up.fi G G}. For each 
finite subset F of /c — {a}, let uF ^ U such that 

/ ( n F ) G «(a, F U G); 

note that uF is an element of Ua and 

Let 

4̂ = {wF:F is a finite subset of K — {a} }. 

A is a compact subset of £/a. In fact, A Q Ua: suppose 

x G A n (£7a - f/a) 

and let /? G G such that x G Up. Then there is a finite subset F of K — {a} 
such that w/r G L^, a contradiction. So we must have A Q Ua. Also, for 
each x G A, there is a fix ^ a such that x G £/̂ , since otherwise/(x) = a 
and so 

x G / - 1 (X) Q X - 0, 

contradicting the fact that x G A implies that x G U. Since A is compact, 
let F b e a finite subset of {fix:x G A } such that {Up.fi G T7} covers A But 
w/r cannot be in any element of {Up'.fi G F} , a contradiction. So f(U) 
n X must be empty. 

Similarly, 

/ ( * - U) n H = 6. 
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So 

H c f(X) - /(A' - V) and À' Ç / ( X ) - / ( t7) , 

and since 

/(*) =f(x^T) u/(t7), 
these sets are disjoint open sets separating i / and i£. 

Now let us show t h a t / i s continuous on D. Suppose a < K and U is an 
open set inf(X) containing a. Let F be a finite subset of K — {a} such that 
°U{a, F) n f{X) is contained in U. Then Ua — U p^pUp is an open set 
containing da whose/image is contained in °U(OL, F) n f(X)y and therefore 
in U. S o / i s continuous on D. 

Now suppose that K can be separated mf{X). By the continuity o f /on 
Z), the points of Z) can be separated in X, and thus in X' and in Y, which is 
a contradiction. 

Now let us further assume that Y is zero-dimensional. Assume without 
loss of generality that each Ua is clopen. In this case, / is a perfect map 
from X onto f(X). We can check that / is continuous by an argument 
similar to the proof t h a t / i s continuous on D. The proof that / i s closed 
goes through like the proof that f(U) n K = 0: replace U by any closed 
set II of X and replace AT by f(X) - / ( / / ) . Finally, for each y G f(X), 

f\y) - n i/a - u t/a, 

a compact set. Thus / i s a perfect mapping from Xinto PR(K*). Sof(X) is 
normal, locally compact, metacompact, and zero-dimensional. Since 
paracompactness is invariant under perfect mappings and under their 
inverse images, X is paracompact if, and only if,f(X) is paracompact. 

We now begin with the details leading up to the proof of the main 
result. 

LEMMA 4. Let n ^ 2, K be a cardinal, and Y a subspace of PR^„(K*) 

which contains K, such that whenever a < fi < /c, {y: there is a y G Y such 
that {a, /?, y} Q y} is finite. If K is normalized in Y, then K is separated in 
Y. 

Proof Let « ^ 2, and suppose K is the least cardinal for which the 
lemma fails. To simplify notation, if a and /? are two elements of K and 8 
e {y: there is a y e Y with {a, /}, y} ç ^ }, we will say that "S occurs with 
a, i8 in Y". 
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We first prove that if Z Q K and \Z\ = X < /c, then Z can be separated 
in Y. For each pair of points y, ft of Z, let 

Fpy = {à'$ occurs with /?, y in Y}. 

By supposition, each such Fpy is finite. Let 

B = Z U U {Ffiy:P, y G Z} . 

Let Y' = {x G 7:x c 5 } . Since F ç y, we have that any two disjoint 
subsets of B can be separated in F , and that if a and /? are any two 
elements of B, {y G B: y occurs with a, ft in F } is finite. Note that F can 
be considered to be a subspace of PR^n(X*), where the elements of B are 
identified with the elements of X, since if X is any space of cardinality X 
with the co-finite topology, PR(X) is homeomorphic to PR(X*). By the 
minimality of /c, B can be separated in Y. For each a G #, let F be a finite 
subset of K — {a} such that if a and /? are two elements of B, then 

«r(a, Fa) n #08, / » n F = 0; 

now if y G #(a, i^) n #(j8, / ^ ) , then >> c Faig and therefore,^ G F . Thus 
the °U(a, Fa)

9s separate B in Y, and therefore Z can be separated in Y. 
We now prove that K can be separated in Y. 
First suppose that K is a regular cardinal. For each fi < K, let 

^ = {a < /?: there is a. y G 7 such that {a, /?} Q y}. 

Let 

r = {a: there is a /? ^ a such that ^4^ n a is infinite}. 

We claim that T is not stationary. Suppose that it is stationary. For each a 
G r , let fia = a be such that ^ n a is infinite. Let g be the function 
from r into K such that for each a G r , g (a) = pa. The set of all a < K 
such that g[a] Q a is a closed unbounded set K [5], and so £" n T is a 
stationary set on which g is one to one. So without loss of generality, we 
may assume g is one to one on T. 

Let {yp'.fi < K] be an increasing enumeration of g(T). We define 
disjoint sets A and B inductively as follows: let y0 Œ A; suppose fi < K 
and ya has been assigned to either A or B for each a < /?. If Ay O g~\yp) 
n A is infinite, let yp G B\ otherwise, let y ^ e i 

Either g~](A) or g~l(B) is stationary. Without loss of generality, 
suppose g~l(A) is stationary. We show that A and K — A cannot be 
separated. Let U be open in Y such that A Q U. For each x G A, let i£A. be 
a finite subset of K — {x} such that 
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#(*, Rx) P Y C [/. 

For each « G g - 1(yl), v4g(a) P a P A must be finite. By definition, A^a) 

P a is infinite, so Ag^ P a P (K — A) is infinite. Let {8m:m G co} be a 
denumerable subset of 

Ag(a) P a P (K - (A U Rg(a)) ), 

and for each m G CO, let i m e 7 such that {ôw, g(cz) } ç xm, since Sm G 
^g(a)- We wish to choose some xm in £/. We do this by showing there is an 
m G co such that 

(so xm G U(g(a), Rg(a)) )• If not, there is a y G /£g(a) and an infinite subset 
J of œ such that for each m G / , y G ;tm. By property (2), {<J>:0 occurs with 
y, g(c/) in Y} is finite, but {Sm:m G / } is a subset of this set. Hence 

xm G ty(g(a), Rg(a)) ^ U for some w G CO. 

So for each a G g_1(,4), we may let 

f>a G ^g (a ) H C7 Pi (/C — yl ) 

and xa G y such that 

{S*> #(«) } ^ *fl and xa G f/. 

Let h:g~l(A) —» K be defined by /i(#) = ôa for each a G g _ 1 ( ^ ) . Since h 
presses down, we may let 8 G K such that [a G g_ 1(^4):^ = 8} is 
stationary. 

ô is our candidate for a point of K — A which is a limit point of U. 
Suppose that F is a finite subset of K — {8}. Let /? G K such that if a G 
g~\A) and a ^ /?, then g (a) £ i \ By an argument similar to the one 
presented above, there is an a ^ ft such that 8a = 8 and xa P F = 0. Thus 
5 is a limit point of {xa:a G g_1(^4) and 8a = 8} and hence of U. Thus v4 
and K — A cannot be separated. So the original assumption must be false, 
i.e., T is not stationary. 

By definition then, there is a closed unbounded subset of K, call it C, 
which misses T. We will use C to partition K into sets that can be separated 
from each other in Y. Let {ca:a < K} be an increasing enumeration of 
C. 

Note 

K = [0, c0) U U [ca9 ca + i). 
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Also notice that fi e [ca, ca+\) implies that Ap D cais finite since ca £ T 
for any a < K. For each a < K and each fi e [ca, ca+i), let Dp = Ap n 
ca. 

We claim that if a < 8 < /c, fi e [ca, c«+i), and y e [Q, cg+i), then 

#(j8, D^) n ^(y, Dy) n y = 0. 

To see this, suppose we have chosen such a, /?, y, and 5, and 

y G #(& i)^) n #(y, DY) n y. 

Then since /? £ Dy, ft £ Ay. By definition of Ay, there is no y e y with 
{/?, y} Q y, a. contradiction. Hence 

«r(A 0/0 n #(y, i)y) n Y = 0. 

By property (1) we may also separate [0, c0) from [c0, /c). 
Furthermore, since | [0, CQ)\ < K and for each a < K, 

I [ca, c«+i)| < /c, 

the points of [ca, ca + i) can be separated in Y, and the points of [0, c0) can 
be separated in Y. Thus, K can be separated in Y. 

Now let us consider the case where K is singular and cf K > to. Let K = 
sup {yp'.fi < a) where cf K = a and for each /? < a, y^ is regular and y^ = 
/?, and if 8 < /?, then y§ < y p. 

By the inductive step, we may do the following: for each y < K and each 
fi < a such that y < yp, assign a finite set Fyp such that if 5 is another 
element of K less than yp, then 

*(Y, Fyp) n *(«, /fy) n y n PR(yf) = 0. 

For each y < K, let 

P7 = U {Fyp:y < Y/? and j8 < a}. 

We wish to partition K into sets that can be easily separated from each 
other. 

Let B00 = To- F ° r e a c n m G w> le t 

^Ow+i = ( {0: there are two elements /? and y of i?0w 

such that <j> occurs with /}, y in Y} 

U U (Py) U 50w). 

Let 

B0 = U 2?0w. 
mew 
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Note |2?ol = Yo * a < K- F ° r e a c n 6 < «, let BQQ = y#. For each m e CO, 
let 

Bom + \ = ( { '̂ there are two elements /? and y of Bgm 

such that <J> occurs with /J, y in 7} 

u u (py) u iW<). 

Let 

Be= v B6m- U B8. 

Note that \Be\ ^ ye - a < K. 

Since for each 0 < a, \BQ\ < K, the points of each BQ can be separated in 
7. Now we show that these sets can be separated from each other. 

Suppose 9 < a and y e Z?#. Suppose 

{ p G U 2L>: there i s a j G 7 with {p, y} ç y > 

is infinite. Let {pm:m e co} be a denumerable subset, and for each m e CO, 
let j / m

 G ^ s u c n that {pm, y} Q vm. Let ft < a such that 

y/? > sup ( {pm:m e CO} U U j m U {y} ). 
m G co 

For each m G CO, 

«r(y, Fy/?) n ^(P m , ,FPw/?) n 7 n PR(yf) = 0. 

For each m e co, 

so y £ ^Pwj8- Also, there must be a /: e co such that if m ^ /c, then pm £ 
i7^. For each rn ^ k, 

y m n FPW/? - 0, 

and so 

y m e *(pw , FPmp)i 

this implies that ym £ ^(y, ^V#), and so we must have that 

J'm H Fy/? ^ 0, 
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and neither y nor pm can be in this intersection. Now we use an argument 
employed before: there must be a 8 and an infinite subset J of œ — k such 
that for each m e / , 

8 ^ y m n Fy($\ 

for each m e / , {y, 8, pm] Q ym, contradicting property (2). From this we 
must conclude that the set 

{p e U BA,: there is a y e Y with (p, y} Q j ) 

is finite. 
For each 6 < a and y e ##, let Sy be the finite set 

{p G u 2k: there is a y e 7 with {p, y} c y}. 

These sets enable us to separate the B#'s. This completes the proof for 
cf(/c) > to. 

Finally, if cf(/c) = to, apply the fact that normal spaces are 
No-collectionwise-normal to the space obtained from Y by isolating all 
points except the singletons. The proof is then complete. 

Our idea now is to first prove that every normal, locally compact, 
boundedly metacompact space is collectionwise-Hausdorff, and then use 
this result to prove every normal, locally compact, boundedly metacom­
pact space is paracompact by a method similar to that outlined at the 
beginning of the proof of Theorem 2. 

To prove that a normal, locally compact, boundedly metacompact space 
Xis collectionwise-Hausdorff, we take a discrete closed set D = {da\a < 
K} of X and a map/ into PR(K*) that is continuous on Z), takes da to a, and 
gives us a subspace of PR(K*) that has the properties mentioned in Lemma 
4. Then, separating K in the subspace allows us to separate the points of D 
in X. 

More precisely, we start with a normal, locally compact space X, a 
discrete closed subset D = {da:a < K} of X, and a cover °U = {Ua.a < K} 
of X by open sets with compact closures, with the properties that for each 
a < /c, da G Ua, and if ft ¥= a, then da £ Up, and that each of X belongs 
to at most n elements of °U for some positive integer n. Define f:X —» 
PR(K*) by 

f(x) = {a:x e Ua) for each x G X. 

By a procedure similar to the one in the proof of Theorem 2, it can be 
shown that any two disjoint subsets of K can be separated inf(X). Recall 
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that this is one of the properties of Lemma 4. If we can also satisfy the 
second property of that lemma, then we can separate K inf(X). 

Since for each a < K, f(da) = a and if fi ¥= a, then da € Up, the 
function/is continuous on D, so separating K inf(X) allows us to separate 
D in X. However, we may not be able to satisfy the second property with 
this function/. Consider a < /? < K. It is not clear that {y: y occurs with 
a, /? inf(X) } is finite. It is obvious, however, that if we let 

Y = {x e X.x belongs to at most two elements of ^ } , 

then {y:y occurs with a, /? i n / ( 7 ) } is finite, and so K can be separated in 
/ ( F ) , and D can be separated in Y. The idea in the next theorem is along 
the following lines: use the fact that D can be separated in Y to define a 
new open cover i^of X and a new function g from X into P^(/c*) based on 
this cover so that if we let 

Z = {x G X:x belongs to at most three elements of 7^}, 

then g(Z) witnesses the properties of Lemma 4. Then we can separate K in 
g(Z) and D in Z. We continue in this way, inductively generating new 
open covers and new functions into PR(K*) that allow us to separate the 
points of D in more of the space X until finally we can separate D in X. 

We set up the necessary machinery in the following theorem, but first 
we give the definition of a concept needed in the theorem. If { Ua\a < K] is 
an open cover of a space X, then an open refinement { Va:a < K) is said to 
shrink {Ua:a < K] provided that for each a < /c, Va Q Ua. Any 
point-finite open cover of a normal space can be shrunk. 

THEOREM 5. If Y is normal, locally compact, and boundedly metacompact, 
then Y is collectionwise-Hausdorff. 

Proof. Suppose Y is normal, locally compact, and boundedly metacom­
pact. Suppose D = {da:a < K} is a discrete closed subset of Y. Let [Ua:a 
< K) be as in Lemma 3. 

Let X be an open set such that 

D Q X ç X' Q U Ua. 
(X<CK 

Let X' = X. For each a < K, let 

Ua H X = C/(w-2)«, 

and let 

%-2 = {U{n-2)a'.<* < *} . 
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For each natural number j < n — 2, let 

% = {Uja:a < K} 

be a collection of open sets of X such that ^ shrinks ^ + i - For each 
natural number j ^ n — 2 let 

Yj• = {x G X:x belongs to at most j + 2 elements of ^ } . 

Let Pp 0 ^ y ' ^ « — 2, be the statement that there is an open subset Zj of X 
that contains D and a collection {i^a:a < K] such that for each a < /c, î -a 

is a finite subset of K — {a}, and 

{£/,« - U V~:a < K} 

is a collection of open sets such that no point of Yj C\ Zj belongs to two of 
these sets. 

We will show that Pn-2 is true by induction. L e t / o : ^ —* PR^U(K*) be 
the function such that 

fo(x) = {a:x e Uoa} for each x Œ X. 

Y0 is closed in X, and so is a normal, locally compact space. For each a < 
/c, let Va = U0a n YQ. Then {Fa:a < /c} is a point-finite open cover of Y0 

by sets with compact closures. Let/: Y0 —> PR(K*) be the function defined 
by 

f(x) = {a:x G Va) f° r e a c n x G ^0-

Note that for each x e y0, / ( x ) = /oOO- As previously noted, any two 
disjoint subsets of /c can be separated in / (y 0 ) , and thus in/o(To)- Also, for 
each a < ft < K, {y:y occurs with a, /? in fo(Y0)} is finite. Thus, since 
fo(Y0) satisfies the two properties of the hypothesis of Lemma 4, K can be 
separated in/o(y0), i-e-, f° r e ach a < /c, we may assign a finite subset F0a 

of /c — {a} such that for each ft < K with /? ¥= a, 

#(a, F 0 J n #(j8, /fy) n /0(y0) = 0-

Let ZQ = X With the collection 

{I/oa - U £7oy:a < *} 

we have shown P$ is true. 
Now suppose that P ; is true for somey, 0 ê y < w — 2. For each a < /c, 

let / / ( / + i)a be a finite subset of /c — {a} containing F / a such that 
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Uy+Da-UjaQ U UJT 

and let ^(/+i) be an open set such that 

D c z ;+ 1 ç ~ ^ : ~ ç u (t/0-+i)« - u £/(}+i)y) n z;. 
« < K y e / / 0 + 1)„

 J 

Let Zj + 1 = Zy+i and Zy' = Z;, and let^+1:Zy- + 1 —> PR^„(K*) be defined 

by 

//+1OO = {«:* G Uu+])a - U ^o + i)y}-
YGW(y+l)a 

Any two disjoint subsets of K can be separated i n ^ + i ( Z 7 + i Pi Yj+\). 
We now establish that fj+\{Zj+\ n Y/+i) satisfies property (2) of 

Lemma 4. Suppose a < ft < K and {y: y occurs with a, /? i n ^ + 1(Z / + i Pi 
Yj+\) } is infinite. Let {ym:m G <o} be a denumerable subset of this set, 
and for each m G CO, let zm G Z7 + 1 Pi 1^+1 such that 

K A Ym} ^.//+iOm). 

Since each zm is in £/(y-4-i)a> let z be a limit point of {zm:m G co}. Note that 
since for each m G W, zm belongs to at most (7 + 3) elements of ^-+ } and 
since °llj shrinks ^-+i, for each m G to, zm belongs to at most (j + 3) 
elements of °Uj. So z must belong to at most7 + 2 elements of °Up that is, z 
G Yy. Recall that Zy-+1 Q Zy, so z G Zy. We show that 

z G (uJa - u Z p n (Ujp - u 1^) 
Y e F / 0 y G F ^ 

which contradicts our assumptions. 
Suppose that 

Z £ t/ya - U Ujy. 
y^Fja 

First suppose z £ L^. Then, since for each m G <O, zm G £/(7-+1)a, we 
have 

So there is some element of //(7-+ i)«, say y, such that z G L^y. Let m G y 
such that zm G Ljyy, and so zm G I7^+ I ) y . This gives us a contradiction, 
since a G / J + 1 (zm) means that 

^m e ^ (y+ l )« ~ U ^(y+1)5-
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Suppose that on the other hand, 

yeFja
 jy 

and let y G Fja such that z e Ujy. But since FJ(X Q H(j+\)a, we may derive a 
similar contradiction. A similar argument shows that 

z e UjP - U T!~T 

This gives a contradiction, and indicates that fj+\{ZJ+\ Pi Y/+i) does 
satisfy property (2) of Lemma 4. Hence by Lemma 4 we conclude that the 
points of K can be separated, and we may assign for each a < K a definite 
subset Fij+ X)a of K — {a} that contains H(j+\)a and such that for any /? < 
K with /? T̂  a, 

#(«, /(y+Da) n #08, ^y+D/j) ny ; + 1 (zy+1 n YJ+]) = 0. 

With the collection 

T e / r UM) r t 

we have shown Py+1 is true. Therefore, Pn~2 1S true. 
So we may let Z be an open subset of X that contains D and {7v« < K) 

be a collection such that for each a < K, Fa is 3. finite subset of K — {a} 
and 

{ (UaDX) - U V77VX:a < K} 
yGF ( l 

is a collection of open sets in X such that no point of Z belongs to two of 
these sets. Thus we can separate D in X. It follows that we can separate the 
points of D in Y. 

We are now able to state and prove the main result. 

THEOREM 6. Every normal, locally compact, boundedly metacompact space 
is paracompact. 

Proof. Suppose X is normal, locally compact, and boundedly metacom­
pact. To show X is paracompact, it suffices to show X is collectionwise-
normal with respect to compact sets. 

Suppose J ^ = {Ha:a < K) is a discrete collection of compact sets. Let 
q:X-^ X/Jtfbe the natural quotient map. Let Y = X/J^Then Y is locally 
compact and normal. We show that Y is boundedly metacompact, and 
hence collectionwise-Hausdorff by Theorem 5. 
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Suppose °U\§ an open cover of Y. Note that {Ha\a < K} is a discrete 
closed subset of Y, and denote it by H. Similar to the proof of Lemma 3, 
for each y e Y we choose an open set Vv with compact closure that 
contains y and is contained in some set of °U and such that Vv Pi H Q {y }. 
Then {q~\Vy):y e Y} is an open cover of X. Since X is boundedly 
metacompact, let n be a positive integer and #^an open refinement of 
{#~XiVyYy G ^ } s u c n t n a t each point of Xis at most n elements of i^. 

For each a < /c, let 

Wtt = u { ^ G # : ^ n ^ ^ 0}. 

Let R be an open set in X such that 

UHaQRQRQUWa 

a<K a<K 

(by the normality of X). 

Let TT ' = {Wa\a < K} U {W n (X - R): 

W G ^ a n d for each a < K, Ĥ  n //« = 0}. 

Since for each y G. Y, q~l(Vy) meets at most one element of J% W also 
has the property that each point of X is in at most n elements of W. 

Now {q(W):W e i^'} is an open cover of Y, since for each W <= # ^ , 
q~\q(W)) = W. Also, each point of Y is in at most n elements of 
[q(W):W G iT'}7 and this collection is a refinement of {VY\y e Y} and 
hence of °U. 

Since we have shown that for any open cover °ll of Y, there is a positive 
integer « and a refinement of ^ such that each point of Y is in at most n 
elements of this refinement, Y is boundedly metacompact. 

By Theorem 5, Y is collectionwise-Hausdorff. So we may let {Sa\a < K} 
be a collection of pairwise disjoint open sets such that Ha e Sa for each a 
< K. Then {q~\Sa):a < K} is a collection of pairwise disjoint open sets in 
X such that for each a < /c, Ha Q Sa. 

Therefore, X is collectionwise-normal with respect to compact sets. We 
conclude that X is paracompact. 

It is interesting to note it can be shown that for any positive integer n 
and cardinal /c, PR^n(K*) is subparacompact if, and only if, K ^ co\. 
(Recall that a space X is subparacompact if, and only if, every open cover 
of X has a a-discrete closed refinement.) Using the results of this paper 
and the fact that paracompact spaces are subparacompact, we may prove 
the following: 
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THEOREM 7. Every zero-dimensional, normal, locally compact, metacom-
pact space is subparacompact. 

Proof. Suppose X is zero-dimensional, normal, locally compact, and 
metacompact. Let °U = {Ua:a < /c} be a point-finite cover of Xby clopen, 
compact sets. Def ine / :^ -* PR(K*) to be the function such that for each x 
€= X, 

f(x) = {a:x G Ua). 

We have seen in the proof of Theorem 3 that / i s perfect, and hence/(X) is 
a zero-dimensional, normal, locally compact subspace of PR(K*). For each 
n e Ù), f(X) n PR^n(n*) is normal, locally compact, and boundedly 
metacompact. By Theorem 6, f(X) Pi PR^„(K*) is paracompact, and 
hence, subparacompact, for each n e co, and it easily follows that 

f(X) = u (f(X) n P«S„(K*) ) 

is subparacompact. Since the inverse image under a perfect map of a 
subparacompact space is subparacompact, X is subparacompact. 

The author wishes to thank Dr. Gary Gruenhage and the referee for 
their helpful suggestions. 
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