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A CHARACTERIZATION OF TWO WEIGHT
NORM INEQUALITIES FOR ONE-SIDED
OPERATORS OF FRACTIONAL TYPE

MARIA LORENTE

ABSTRACT.  In this paper we give a characterization of the pairs of weights (w, V)
such that T mapsLP(v) into L9(w), where T isageneral one-sided operator that includes
asaparticular casethe Weyl fractional integral. Asan application we solvethefollowing
problem: given aweight v, when is there a nontrivial weight w such that T maps LP(v)
into L9(w)?

1. Introduction. In [M], B. Muckenhoupt raised the question of characterizing
when the weighted norm inequality

(L.2) ( [ ITFOI %9 dx) o < c( [, IFIPVe) dx) v

holds, where T isany classical operator. We areinterestedinthecasem=n=1andT a
one-sided operator. By aone-sided operator we mean an operator T acting on measurable
functions f such that the values of Tf(x) depend only on the values of f either in (x, 00)
orin (—oo,X).

For f locally integrable on R, the one-sided Hardy-L ittlewood maximal functions are

M*f Ly and M L td
(x)-ﬁggﬁ/x f(y)ldy an (X)—?;‘O’ﬁ/x_h' ()| dy.

In[S1], Eric Sawyer characterized for 1 < p < oo, p = g, theweights w satisfying (1.1)
for T = M* with w = v, asthose weights w satisfying the A condition:

+ L wad (2 o wa) <c foral dh>0
(A) (F]/a—hw(x) X)(ﬁ/a wrI(X) x) <C, foradlaeRandh>0.

For T = M~ the weights are characterized by the A; condition:

*) (% /:mw(X)dx) (% /;hw_ll(x)dx)pl <C, fordlacRandh> 0.
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Inthe same paper he provesthat for 1 < p < oo the pairsof weights (w, v) satisfying (1.1)
for T = M* are those satisfying the S condition

() J(MGaven)Pw < € [ vt < oo,

for al intervals| = (a, b) such that 2 w > 0. The corresponding result is obtained for
T = M~ changing §; by the natural §; condition.

For 0 < a < 1the Weyl fractiona integral W,, and the Riemann-Liouville fractional
integral R, are defined, for locally integrable functionson R, by

O 4 wa RiG)- [ 1O

(y—xt J=o0 (><—yl*“O|y

W,f(X) = |

and for 0 < o < 1, the fractional one-sided Hardy-L.ittlewood maximal functions M,
and M, are defined by

+ o—1 xh - a1 %
MEF0) = suph™ [T7If )l dy and MT() = suph*™ [ [f(y)] .
h>0 Ix h>0 Jx=h

Andersen and Sawyer [AS] showed that, under the assumptions1 < p < é and % =

% — «, theinequality (1.1) holdswith w = vfor T = M}, or T = W, (o > 0) if and only
if

. 1 a l/q 1 a+h 1 l/p/
(A0 (R/aihw(x)dx) (H/a wu—l(x)dx) <C, fordlacRh>0,

andfor T=M; or T = R, (o > 0) if and only if

_ 1 qath Yary 2 v
() (H/a w(x)dx) (H(/aihwpfl(x)dx) <cC, fordlaeR,h>0,

where p’ is the conjugate exponent of p. To prove this, they used complex interpolation
of analytic families of operators. A “geometric” type proof was given by Martin-Reyes
anddelaTorrein [MT]. They also solved the case of different weightsfor the fractional
one-sided Hardy-L.ittlewood maximal functions, for 1 < p < g. More precisely, they
showed that the inequality (1.1) holdsfor 1 < p < gand T = M, if, and only if,

(Sﬁ,q,a) there exists C such that for every interval | with o(1) finite

(/.(ME(UM ))qw) v < C(o(1)) e

whereo = Vi and o(l) = ; 0.

For the Weyl fractional integral andfor 1 < p < g<ooorl = p < q < oo the
pairs of weightsfor which theweak typeinequality associated with (1.1) holdshavebeen
characterized ([LT]) asthose pairs of weights (w, v) satisfying

o/d

/I(Ra(XIW))p/Vl_p/SC(/IW) , ifl<p=<g<oo,
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or
UC
RO w)V Loy < C(/lw) , ifp=1<qg< oo.

(For p < gthis problem is solved in [LT] for a more general operator). However, as far
as the author knows, there is not a characterization of the strong type inequality (1.1)
with T = W,. In this paper we solve this problem for 1 < p < q < oo. Actudly, we
characterize the pairs of weights (w, v) for which (1.1) holdsfor a more general operator
T defined by

(1.2) TH) = [ Ky—f () dy

whereK isapositive measurablefunction, lower semicontinuous, with supportin (0, 0o),
nonincreasing in (0, 0o), with lim,_., K(X) = 0 and satisfying K(x) < CK(2x), x €
(0, 00). (Observethat if K(X) = x*1x(0,.0)(X) then T = W,,). Thisresult isin Theorem 1.
In the proof of thistheoremwefollow theideasin[S2], [SW] and [SWZ] but weal so heed
the characterization of the good weights (w, v) for a one-sided dyadic maximal operator
associated with K and defined by

(1.3) My of (9 = supK(ll) | [f()] dy
€A

where Ax = {l = [a,b) : lisdyadicand0 < a — x < b — a}. This characterization
appearsin Theorem 2.

As an application of these results, we solve the following problem: given aweight v,
when is there a nontrivial weight w, such that (1.1) holds for T defined by (1.2) or for
M 4? The answer to these problems are contained in Theorems 3 and 4.

We end this section with some notation. Throughout the paper the letter | will denote
aninterval in R, |I| will denote the L ebesgue measure of . If ) isapositive real number,
then Al will denotetheinterval with the samecenter as| and with |Al| = A|l| andif gisa
positive measurablefunction and E isameasurable set, theng(E) = Jgg.If | = [a,b), I*
will betheinterval [b, 2b— a). A weight will be a nonnegative measurable function. The
letter C will always mean apositive constant not necessarily the same at each occurrence
andif 1 < p < oo then p’ will denote the number suchthat p+p’ = pp'.

2. Statement of theresults.

THEOREM 1. Supposethat 1 < p < q < oo, w and v are two weights and

TH) = [ Ky —Xf ) dy,

whereK isa positive measurablefunction, lower semicontinuous, with supportin (0, co),
nonincreasing in (0, 0o), with limy,_,., K(X) = 0 and satisfying K(x) < CK(2x), x €
(O, 00). Then the weighted inequality

2.1) ( / |Tf|qw) " c( / |f|pv) v

https://doi.org/10.4153/CJM-1997-051-6 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1997-051-6

TWO WEIGHT NORM INEQUALITIES 1013

holds for some constant C if, and only if, the following two conditions hold:
(2.2) There exists C such that for every interval | = [a, b) with fi_,,  w > 0,

/
(/R(T(Xm))qw)l i < C(U(I))l/p <00

and
(2.3) there exists C such that for everyinterval | = [a, b) with Jip )0 > 0,

c\ /P .
([(T6aw)’e) <o) <o,

wheres = vi~P and T* denotestheadjoint operator of T, T*g(x) = /*_, K(x—Y) g(y) dy.

THEOREM 2. Let K beasin Theorem 1. Then for weightsw, vand 1 < p < q, the
following two conditions are equivalent:

(2.4) There exists C such that for every f > 0

(/ (Mgdf)qw) v < c(/ fpv)

(2.5) There exists C such that for every dyadic interval | = [a, b) with Ji_,p) w > 0,

fir<oo ma ([, Me)ts) <c(fo)"

Thistheoremis an easy variant of Theorem 2.6in [MT]. The proof isexactly asin[MT].
Thus we omit it.

1/p

THEOREM 3. Letl < p < g < oo and let K be as in Theorem 1. Suppose that
there exists go > g such that K(x) < Cx Y%, for all x € (0, 00). Let v be a weight,
0 < v(X) < oo, such that v is not identically infinity in any interval of the form (c, 0o).
Then, there exists w not identically zero such that the inequality

(2.6) (/R|Tf|qw) B < c(/R |f|pv) v

holds for some constant C and for all f € LP(v), if, and only if, there existsa € R such
that for all b > a, we have

2.7) [o>0 and [ Kty — @ aty) dy < oo.

Ja

THEOREM 4. Under the same assumptions of Theorem 3 we have that there exists w
not identically zero such that the inequality

(2.8) (/R ||\/|K+’df|qw) 1/q - C(/R |f|pV) 1/p
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holds for some constant C and for all f € LP(v), if, and only if, there exists a dyadic
interval Ig with 0 < j,g o and such that

-
(2.9) sup K(|I|)(/I* a)l " <o

{I dyadic:loCl}

REMARKS.

(1) Observe that for f > 0, we have M,Z’df x) < CTf(x). It follows that condi-
tion (2.2) implies that M, , is bounded from LP(v) to L%(w).

(2) If K(x) < CK(x/2) for some C < 1 then M, is pointwise equivalent to the
following maximal operator

MT09 = supK(e =) [ If(y)] .

Observe that this condition holds if K(X) = Xx*1x(0,)(X), i-€., the kernel for the
Wey! operator. In this case Mg isM?, (for this case, see [MT]).

(3) Of course, one can change the orientation of the real line and obtain Theorems 1
and 3 for T* and Theorems 2 and 4 for M ;.

(4) By duality we also can solvethefollowing problem: given w not identically zero,
when there exists v not identically infinity such that (2.6) holds?

(5) We ask for v not identically infinity in any interval of the form (c, 00) in The-
orems 3 and 4 because if there exists ¢ such that v = oo a.e. in (c, 00), then it
sufficesto take w = x(c,0) t0 have (2.6) and (2.8).

(6) Theorem 1 of [S2] can be easily obtained as a conseguence of Theorem 1.

(7) Theorem3isalsovalidforp > 1,0 < g < p andassuming dp > 1. Thisfollows
using Holder's inequality and the case p = . Putting together Theorem 3 and
this remark we observethat we have generalized Theorem 3 (b) in[AS] sincewe
extend the range of p and g and we consider more general operators.

3. Proof of Theorem 1. Assumethat (2.1) holds. Then so doesits dual inequality

P N\ Ya
@1 (Jirara) " < (/1)

Let| = [a,b) be such that f_., 4w > 0. Then there exists a bounded interval J C
(—o0,a) such that [;w > 0. Wefirst prove that o(l) < oo. Taking g = w/9y;in (3.1)
we have that

/

1/p
(/ |T*(w1/qXJ)|p/0') < C|J|l/q, < 00

and for all x € I, T*(w9%3)(x) > T*(w%y;)(b) > 0. Therefore, (1) < oo. To finish
the proof of (2.2) it sufficesto takef = y 0 in (2.1).

Now let | = [a, b) such that fi ) o > 0 and consider a bounded interval J C [b, o)
suchthat ;¢ > 0. Then (2.3) followsby takingf = ¢/, in(2.1) andg = y win(3.1).
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To prove the converse, we supposethat f € LP(V) is nonnegative, bounded with com-
pact support and such that fo~1 is bounded. For each k € 7, the set Qy = {x : Tf(x) >
24} isopen sinceK islower semicontinuousand thefact that lim,_.., K(x) = 0 givesthat
the connected components of Qy are of finite length. Then, asin [S2] with the correction
pointed out in [SW] and [SWZ], we have

(i) Q=¥ Ifdyadicand I N1} = 0 fori # j,
(i) 31 C Qand 9IF NQE # P for all k, j,

(3 2) (”I) JZ XSIjk S CXQk fOI‘ a” k,

(iv) the number of intervals I intersecting afixed interval 3If isat most C,
(v) If C I impliesk > 1.
#

There are two types of intervals among the | Jks In order to classify them we consider
the right endpoint c of the connected component of Qy which contains| ]k If 9l ]k NQgN
(c, 00) # ), we denote I by J¥, otherwise, we denote I by L¥.

For fixed J]-k, let b and c be the right endpoint of 3ij and the connected component of
Qy which contains J¥, respectively. Theniif x € J¥, we have

C 00
(X0 = [ KO =F 0@ dy + [ K = X 0)xape0) dy.
Since K isnonincreasing and ¢ ¢ Q it follows that
L KO =0t Oxapt dy < [7Ky—of @) dy = Th(e) < 2~

On the other hand, it is not very difficult to prove that the assumption on K, K(x) <
CK(2x) for x > 0 and property (ii) in (3.2) givethat

KO = g @) dy < OM 4 0.

To prove this inequality we only have to observe that the interval (b, ¢) is contained in
the union of at most two dyadic intervals of length comparable to |ij| and belonging to
Ax. Therefore, for x € J¥, we have

(3.3) ﬂh@wﬂ@ﬁCM£J®+?.

Thisis the reason why we need to study this dyadic maximal operator.
Let us consider now an interval L}‘. Let a be the left endpoint of the connected com-
ponent of Qi which contains LK and [b, ¢) = 3LF. For x € L, we have

Kw—wd

T = 7K =i dy+ [T Ky~ af g
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Ify > ctheny—a= (y—x)+(x—a) < (y—x)+9ILK < (y—x)+9(y—x) = 10(y —X).
ThenK(y — ) < C*K(2%(y — X)) < C*K(y — a), by the growth condition of K and the
fact that K is nonincreasing. Therefore

T < [ Ky =i ) dy+C* [~ Ky - af () dy
< T(fX(sLJk))(X) +C*Tf(a) < T(fX(3LJk))(X) +Ch2%,

sincea ¢ Q. Choose an integer m > 3 such that 22 > C*. Define GJ-k = L}‘ N
(Qusm-1 — Qiem). Then, for x € G¥, we have

T(fx(ay) () > Tf(x) — C*2 > 2t gem=2 > 9k
]
and so,
1

(3.4) 1< ?T(f X@(),  forxe G\.

Let us consider again inequality (3.3). Define A = {x € J¢ : CMf(x) < 2},
where Cisthe constant appearingin (3.3), Bf = J*—Af andlet Df = AN(Qusm-1—Qkem)
(3.5) TF() < 2¢Mand 2 < CM4f(¥), forall x € Ff.

If x € Djk we have

2L TR = T(Fxa)09 + Txnd)®) < TExa)®)
+ M 09 + 2 < Tlfx )9 + 24
! ]

and so
T(fX(&]k))(X) > 2k+m—l _ 2k+1 > 2k+2 _ 2k+1 > 2k_
]
Thus,
1 k

We now estimate the left side of (2.1) by
(3.7) /R (TFX)) ") dx = gz /Q el (TF¥)) ") o
< kzj /D Jk(Tf(x))qw(x) dx
+ sz /F jk(Tf (%)) *w(x) dx
+%:‘/ij(Tf(x))qw(x) dx = (1) + (1) + (1),
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Wefirst estimate theterm (11). Using (3.5), the fact that the F}‘ aredisjointonk and j and
remark (1), we have

(3.8) n < z 2m / 249(x) dx < cz / My of () *w(x) dx

<C /R (M 4f () w(¥) dx < c( /R fpv) q/p.

To estimate the terms (1) and (111), we observethat (3.4) and (3.6) allow usto treat (1)
and (I11) jointly. If we denote J* or L by 1¥ and D¥ or G¥ by EF, the inequalities (3.4)

and (3.6) can be unified as
< 2I(T(fx(glk))(x) for x € E.
Then
(3.9) m+n <y / (T (x))qw(x) dx < C>° 24%(E).
ki °§ K]

Now, using duality,

w(EJ!‘) < % /E jk T(f X(3|jk))(X)W(X) dx = % /3|jk f(X)T*(XEjkW)(X) dx

1

(3.10) = % ( | o, [T ()09 o+ i IR LCER dx)

1

Define, asin [S2], the following sets:

= {(k) : w(E) < B},
F = {(k) : w(E) > fu(l) and o > 7K},
= {(k) : w(EN) > Bw(l) and of <X},

where 3 satisfies0 < 3 < 1 and it will be chosen at the end of the proof. Then, taking
into account (3.9) and (3.10) we can write

(3.12) (|)+(|||)§c( DD )2kqw(Ejk)

(k))EE (kj)eF (kj)eG
= (IV) + (V) + (VI).

Observethat we only haveto consider those (k, j) for which w(E}‘) # 0. If thereexist (k, j)
and (k +m,i) suchthat I = 1}*™, then w(E¥) = 0 because E C I¥ N (Qusm-1 — Q)
thus we do not consider this (k, j). Therefore, fixed two intervals | and I1*™, or they are
digoint or [<*™m - I,
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To estimate the sum over the set E, we use the fact that the I}‘ are digoint in j and
Fubini’s theorem. Then

(3.12) (V) <C3 3 24%(1f)
(kj)eE
< CBY. 2%({x: TH(X) > 2})
k

= CHY Y 2({x: 2 < THX) < 271))

k i=k
= kqn—iq q
<093 22 /{ e erigezn (TTO9) () Ox
i
— kao—ig q
= Coy 3 2% /{ g (TF09) () dx
20 q
=CB XI: 71 i 2i<Tf(X)§2i+l}(Tf (¥) w(x) dx
=Cg /R (TF (%)) "w(x) dx.
We now estimate (V). Using inequality (3.10), the definition of F, Holder’sinequality
and condition (2.3) we get
(3.13)
k kg
ka, (K K 7
(V):CZZ%(E)—CZw(E) .
(Kj)eF (Kj)eF (E )
( 19
<Cpg-
(k%éF (',k)q

- Ca W(E}() . q
= Cﬁ q (k§': LU(IJk)q (/3|]ka+m T (XEka))

k a/p a/v
—q LU(EJ ) p. * p
<Cp (k%é,: w(|jk)q /3Ijk—Qk+mf v ./3|.'<—Qk+ (T (X'ikw)) g

w(E-k) a/p a/p
< cp™ , ( fp\,) <c ( )
b (kj) w(|]k) ./SIkaQk»,m s (kzj)/3l —Quem
a/p

<Cp~ (Z /k_ mfpv)q/p < Cﬁ*q(./prv) ,

where we have also used that Ef C I, the facts that the intervals of the form 31K are
“amost” digjoint (parts (iii) and (iv) of (3.2)), that they are all contained in Q, and that
1 < q/p. Observe that we can use the condition (2.3) because if I¥ = [ak, b), then
Ji 0 > 0, otherwise sopf C (—o0,b] and taking x € 31, x > bl we have Tf(x) = 0

]
but 3Ijk C Q ((3.2), (ii)) which is a contradiction.
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We are going now to estimate the sum over the set G in (3.11). In order to do thiswe

estimate

k *
T = fT W),
Y T (XEJ )

Let HE = {i : 1™ N 31K # O} Then 31K N Qe C u,eHuk*m Fix 1K™ and let a be the
left end point of the interval 31K*™. If y gé 3I*Mandy < a, then
sup(x—y) <2 mf (x Y),

X€|k+m
whichimplies, by the growth conditionimposed on K and thefact that K isnonincreasing,
that
sup K(x—y) = K( inf (x—y)) < CK(2 inf (x—y))
xelkm xelkem

k+m
Xe |i

< CK(sup(x—y)) = C inf K(x—y).

xel .k*m

Since 31K™M € Qi and E N Quem = 0, we havethat 31K™ N Ek (. It follows that for

dlxe Iker .

T (xew)0) = [ Kx—yxg®)em)dy,
and thus
(3.14) sup T*(XEkw)(X) < C Inf T*(XEkw)(X)

X€| k+m

Using this we can write the following:

(3.15) = - T (xgew) () o
< .EZH / o TOOT* () (09
<z Jin 70 0 T (g9 0%
< C.eszx'?f T (xer) () ‘/Ilmf(x) dx

<cy /m T (xge) (o 09 ax(a(11"™) /lkmf(x) dx.

|€H i

Observe that if o(1*™) = 0 then fjumf(X)dx = Osincef € LP(v) and therefore, from
now on, in the last term we are sumlmi ng over those i’s such that o(1<*™) > 0.

LetCk = (a(ljk))A Jie 1) dx where the quotient is understood to be zero if o) =0
Then, for all x € 1¥ we have

k= (a(19) " / fo~to < M,(fo)(),
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where, if 11 is apositive Borel measure, M, f(X) = sup,, (u(l))_lﬁ |f|d (and the quo-
tient is understood to be zero if (1) = 0). Let Njk = {s:1¥N 3I]-'< # (}. Notice that the
cardinality of N¥isat most C by (3.2), (iv).

In theinequality (3.15) it appearstheintegral over 1™, withi € HX. Lets € N¥. Then
IX and 1K™ are digjoint or |¥*™ c IX by (3.2), (v) and the comment after (3.11). Then

(3.16) *<cy cem /I o TF (X))

ieij i

<cy[ ¥ o[ T ee)et) iy

seNJk ieHJk:Ilk*"‘Cl';
We remind that we are estimating

(V) =C > 2%(E)).
(k,j))eG

Let N and M beintegerssuch that 0 < M < m. Define
Gum = {(k]) € G: w(E) # 0,k>Nandk=M (mod m)}.

We now claim that

a/p
(3.17) > 249uEN < c( / fpv) ,
{(k)eGum}
with constant C that not dependson N and M.

Fix N and M and consider the “principal” intervals as in [MW] defined as follows:
Mo = {(k,j) € Gym : Ijk ismaximal}. If [, has been defined, let 'y consist of those
(k,j) € G for which thereis (t,u) € ' with I¥ C I}, C > 2C}, and C| < 2C], for
those I} such that I c I} C I, LetT = Upoln. For each (k,j) € G let P(IF) be the

smallestinterval I}, containing Ijk and suchthat (t,u) € I'. Observethat the map P iswell
defined because no interval 1¥ may occur as one of the IF*™ (since w(EK) # 0). Observe
that P(I}) = I}, implies Cf < 2C;,

Using inequality (3.16) we estimate the first term of (3.17) asfollows:

(3.18)
> 29%(E
(kJ)EGNM
(29
E)—2
= (k,J)gaN‘M “ l)(w(E}())q
w(EX
<oy 8) ()

(i (w(19))*
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w(EX) . ]9
| i (T o) e
(k)G sk (w(|j ) {ikmet and (kemi)gry N

w(Ek) * + a
] (o T Cxggeder) ™)
(k)G seNK (w (1) {icH(ermiyery )
— (VII) + (VIII).

<cg

+Cp™

It appearson (V11) the sum over the set {i : 1™ C 1X and (k + m, i) ¢ I'}; notice that if
Ik*m 1% and (k+m,i) & I then P(1X"™) = P(1X). To estimate (V11) we first observe that
for afixed (t,u) € I' we have

(3.19)

W(EY) a
. k q[
(ki)EGum {seNKP(IE)=IL) (w(|j ) {izemcis and (kemi)gr}

1 ) a
e n % e T ] €

(k)EGnm {seNEP(I8)=14}

M [ T Cres)o

In the last inequality we have used the following: the Iik+m aredigoint on i and they are
all contained in I§; P(I*™) = P(I%) = 1}, thus C*™ < 2C|, and Ef C I¥. Let use now
that 15 C 1}, duality, the fact that the cardinality of N¥ is at most C, the fact that the EX

aredisjoint on k andj and that for all x € EX C I¥ we have that (w(ljk))_1 Sk Tharo)w <
J
M,J(T(Xpuo)) (X), to estimate right-hand side of (3.19) with the following:

(3.20) ccy)t X ) w(E.k){i [ 7¢ ‘U)wr
' " ) L by

(ki)€Gum {seNK:PI9=I}

<) ¥ L(M(Tou)) e

(k)€Gnm 5
< @) [ (M(T0uyo)) ) .

Finally, we use the fact that M,, is bounded from L%w) into L%w) for all g > 1 and we
apply condition (2.2) to get that the last term of (3.20) is bounded by

ey /[R (Tha)*w < c(cye (/. 0) Q/p.

Combining this with (3.19) and (3.20) and summing over (t,u) € I we obtain

(3.21) vinp<cg e (/II 0) Q/p(du)q

(tuer

< Cﬁ"‘( > @, o) "

(tuer
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We now consider (VIII). Let usfix (k,j) € Gym. It follows from Holder’s inequality,
Jensen’sinequality and condition (2.3) that

(3.22)

w(E]!‘) {

(1KY S (ImyY/eg(kemyL/p ( /| o T*(XEikw)") C}“m} q
! i

{ieij:(k+m,i)eF}

B oty en( [ T ] p’r/p/

S K
w(|] )q iEij

<[> eaemycemy] "
{ieHik:(k+m,i)€r}
M(Ek) +m ;IJ/+ / — . p/

- —w(h_kj)q[z (1™ p(a(hk )L Ame (XEJW)U)

ieHjk

a/v

<[> oemycmy] "

{ieHJk:(k+m,i)e|‘}

IN

w(E NI
w((:?)za (izk S (T*xe))” 0)

ekt
<[ x  atemceny]

{ieij:(k+m,i)eF}

< Sm(freare) T w o]

~ w(lf)e {ieHK(ktmi)er}
EX :
< Cw( J)w(“k)q/q [ > o(likJ’m)(C!“m)p]Q/p

= K
w(lf) f{icH(krmi)ery

<c[ > aimycemy]

{ieHik:(k+m,i)eF}

a/p

Taking into account that p < g we obtain

vipscr o s ey

{(ki)Gum, icHk (kmi)er }

We claim now that the last sum can be changed by a sum over (t,u) € I'. In fact, for
fixed (k + m, i), the number of index j such that 15" N 3I]-" # () isat most C (by (3.2),
(iii) and (iv)). In fact, since I*™ C Qyum C Qy, there exists ssuch that 1K™  IX and the
number of index j such that 3l j" N 1K # () isat most C. Therefore

6.2 i = (5 atiycy?)””

(tuer
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Combining (3.21) and (3.23) we get

> atyeyr) "’

(tuer

(3.24) (VI + (VI < cg—q(

< e ([ > crau)otcx) "

(tuer
Observe that for fixed x
> (COPxi(¥) = (CLP+(CLP+---,

(tuer

where
Xe--- ILZZ C |Ll1 C |E]°0, with (to, Up), (t1, Up), (t2, U2), ... € T

and

Ci >2CY, C@ >2C >2°CY,

Each partial sum can be bounded as follows:
(3.25)
to \P t1 \p ts \p ts \p 2
(CL?O) + (Cull) teeet (Cuss) < (CUSS) »_1

20 P
< sup (G < C(Mo(f) 9.
20 =1 (xert ey ( )

Therefore, using that M,, is of strong type (p, p) respect to the measure o(x) dx, we have
a/p
(3.26) (VI + (v < cg™ (/R(Mg(fa))po)

<o [ o) " = cara( )

Combining now inequalities (3.18) and (3.26) we get inequality (3.17) with aconstant C
independent of N and M. Then, from (3.7), (3.8), (3.11), (3.12), (3.13), (3.18) and (3.26)

a/p

we get
a/p
(3.27) /R (TF)%w < C8 /R (TF)%w + cg*‘l(./[R fpv) .
Choose 3 small enough to have C3 < 1/2. Observe that the conditions imposed on f
implies that

/R (TF)%w < oo.
Then, we can substract C3 f(Tf)%w in both members of inequality (3.27) to get

./R(Tf)qw < C(/prv) q/p,

forall f > 0, bounded, with compact support and suchthat f ¢~ is bounded. Thisfinishes
the proof of Theorem 1.
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4. Proofsof Theorem 3 and Theorem 4.

PrROOF OF THEOREM 3. First suppose that there exists w not identically zero such
that (2.6) holds. Then thereis aninterval o = [ag, bp) such that w(lp) > 0. If we denote
by Atheset {x > by : v(X) < oo}, then |A| > 0O, since v is not identically infinity a.e. in
(bo, 00).

For fixed N € N we consider on(X) = min{o(X), N}. Then on € Li (b, 00), thus,
L ebesgue differentiation theorem gives that

. 1 px+h
o—N(x):r!LrgH(/x on  ae. x € (b, o).

Since |A| > 0O, there existsa € A such that

I 1 rath
on(@) = lim o /= on.
Taking into account that on(a) > 0 we have that limp_o- % J2N oy > 0. Thisimplies
that (2" oy > Ofor al h > 0 and therefore [P0 > Oforal b > a.
We are going to prove now that

/b°° K(y—a)”o(y)dy < oo, foralb>a.

Suppose that J5° K(y — @) o(y)dy = oo. Then v (y)K(y — @)x(poo)(y) ¢ LP(v) and
thereforethereisg > 0, g € LP(v), such that [5° g(y)K(y — @) dy = oo. For each x € lg

we have
To09 = [ K- a0y > [ gk - a2 g
Jx —Jb K(y—a)

Let us dominate g4 from below for y € (b, o). Letc = a+(a— ao). If y € (¢, ),
theny —x < 2(y — &) and thus K(y — &) < CK(2(y—a)) < CK(y—X). Thisimplies that
1 _Ky—»

C  Kiy—9a)

fory € (c, 00). If ¢ < bthisinequality holdsfor all y > b and in this casewewould have
obtained the estimation that we need. However if ¢ > b we still have to dominate Eg:g
from below for the numbersy € (b, c). Inthiscase,i.e,c > bandy € (b, c), we have

y—x<c—aandy—a>b-—a,thus

Ke—a) _ Ky=x)
Kb—a) ~ Ky—a)

Therefore, in both cases, we have obtained that there exists a positive constant C such
that

c< Kby=x

, fordly>h.
=Kiy—a) Y
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As a consequencewe obtain

T90) = C [~ gy)K(y — a)dy = 00
for dl x € lp. By (2.6) and the fact that w(lp) > O thisinequality implies that

00 = /|0 ITg(X)|%w(x) dx < C(/ POV dx) Q/p’

whichisacontradiction sinceg € LP(v).
Conversely, suppose that there existsa € R such that (2.7) holds for al b > a.
Then we can find an interval lo = [a, b) such that o(lg) > 0 and o(15) > 0. Fix Ip and

setw = Xlo(T(ax|0U|3))7q/d. Observe that T(ox,u1;)(X) is strictly positivein g since
o(15) > 0. To seethat w is nontrivial we are going to prove that T(UX|ou|5)(X) < oo ae.
X € lo.

Let mbe suchthat a < m < b and let ¢ bethe right endpoint of 1. Thenif x € [m, b)

T(ox10u)(X) = T(oXme)(X).

The assumptionon K, K(x) < Cx /%, givesthat T is dominated by the Wey! fractional
integral W, with @ = 1—qg*. Therefore T isof weak type(1, go). Thisand condition (2.7)
gives, for al A > 0, the following:

[{x e [mb) : T(ox1,u:)() > A}
= |{x € [mb) : T(oxme)(X) > A}
c ; ; %o
<o ([ oty — P Kiy—a) ey
0 , %
< CA®K(c— a)—P’qO( / o(y)K(y — a)° dy) < C(mA~™,
Jm
where C(m) is a constant that depends on m. Letting A go to infinity we have that
HX € [m.Db) : T(oxiguiz)(X) = OOH =0.

Thisargument isvalid for al m € (a, b), thereforeT(oX.OU.a)(x) < ooae xelp.

In order to prove (2.6) for the weight w, it sufficesby Theorem 1 to establish that (2.2)
and (2.3) hold.

We first prove (2.2). Let | = [d, e) besuchthat [_.,qw > 0. Thend > asincethe
support of w is lg. We begin by proving that o(l) < co. Thisfollows from (2.7) and the
following inequality:

e / . _n e /
o(l) = [ oKy —a Ky —a) Py <Ke—a) ™ [ a(yK(y—aFdy.
Letf, = TXIN(loUI?) andf; = TX1—(loUI%)- Thenoy, = f; +f, and

q

(4.1) ( /R(T(am))qw) " (_/R(Tfmw) ", ( /R(sz)qw) "
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Since T is of weak type (1, qo) we obtain
4.2) [ = [ (Toxinan) (Toxig)
< /IO(T(UXm(lOu;)))q/p
0,91 . U(l) %
S/o [—)Ap mm[|lo|,C(T) }d>\.

Now we write the integral over (0, o) asthe sum of theintegral over (0, C|lo| /%0 (1))
and the integral over [Cllo|~¥/%0 (1), 00), where C is the constant appearing in (4.2).
In the first integral the minimum is |lo|, while in the second integral the minimum is
C(o(1))™A~%. Then using that & — go < 0, we obtain that

p

(4.3) [ ()% < (o))",

where C dependsonly on p, g, do, lo-

To handle Tf,, we observethat it sufficesto consider only theintervals| = [d, €) such
that e > cwherel§ = [b,c). Lety > c. Then for all x € 1o we have that %(y— a) <
y — X <y —a. Using Holder’s inequality with the measure o we obtain for all x € Ig

TR0 < [ o 0K —x)dy < C [~ oKy — 2)dy
- 1
< c( LKy —ay o) dy) p (o))" < (o))" < o0,

where we have used that [2° K(y — a)P o(y) dy is afinite constant by (2.5). Consequently

(4.4) [Tty < Callo)(a(1))® = (o) ¥P,
since w(lp) < oo (observe that w is bounded with compact support, in fact w(x) <
(K(2||0|)o(|5))“‘/ ?). This finishesthe proof of (2.2).

Now, we are going to prove (2.3). Let | = [d,e€) be such that fi¢.;yc > 0. Then

(w(l))l/ 4 < 0 since w is bounded with compact support. Let ¢ = f; + f, where f; =
TX16Ul andf, = TXR—(loUI3)- By duality we have

NV
@9 ([Te)e) =T el
= s T*(wx1)go
{>0!|g||p =1} /R

= sup | wxiT(go)
{0>0lgllp =1}

< sp [ wT(gh)

{g>0[gflpy=1} 7 'Mo

+  sup wT(gf2) = (1) + (I).
{9>0lglpy=13 /'MNo
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Let usestimate (1). If x € | N 1o, HOlder’'s inequality gives that
(4.6)
T(gh)) = | a(Y)IW)K(y — ) dy

Jixoontioun)
1/ . 1/p
< (o KO =) ([ PR~

1/p 1
= (Tloxap)®) " (T@Poxuap)) "
Now, we use Holder's inequality to obtain

4.7)
Jry TG

1/d 1/q
= (./mlo w) (-/Imlo (T(gfl))qw)
< ()" [ (Toxan) "™ (Txung) " (o)

) 1/q
= (o), (@oxaa)*”)

The wesak type (1, o) of T and the same argument as in the proof of (4.3) give that

1/q 1/p
(4.8) (./mlo(T(ngX(IoUIS)))Q/p) < C(/(IOUI*) gpa) <C

Putting together the inequalities (4.6), (4.7) and (4.8) we obtain (1)< C(w(1)) ¥
We now estimate (I1). Let x € 1 N 1o, then the growth condition imposed on K gives
that

49  TEM= |

x00)n(E—(1oUI)

< (/(X,oo)m([R(l()Ula)) oKy — X dy) 1/pf ( / gpg) 1/p

< c(_/c RONE a)p’dy) T

1/q

) a(y)a(y)K(y — x) dy

As a consequence

ww  foetes(f,0) ([

< Cw() " wlio)e < c(w)) V7.

Then (1)< C(w() " and s0 (2.3) holds.
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PROOF OF THEOREM 4. Wefirst assumethat there exists w not identically zero such
that (2.8) holds. Let |; = [ay, b;) be adyadicinterval suchthat w(l;) > 0. Asinthe case
of T, the fact that v is not identically infinity in (b, 0o) yields that thereisa > by such
that 2o > Oforal b > a.

Let Io bedyadicwith |1 C lg and a € 13. Thisdyadic interval satisfiesthat w(lp) > 0
and o(I5) > 0. We claim that if | is adyadic interval with Ig C | then o(1*) < co. We
are going to prove this by contradiction.

Suppose that o(1*) = oco. Then vy« ¢ LP(v) and thus thereisg > 0, g € LP(v),
suchthat fgvty;~V = fj. g = oo. Letx €|, then* € A, and

Mya909 > K(I]) [ 1] dt = oo.

But, sincel; C I, thisimplies that

50 = ( / (Mﬁdg)qw) M ( /R(Médg)qw) e C( A Igl”v) P

Thisis acontradiction. Therefore o(1*) < oo.
On the other hand, if o(1*) > 0, we have

* 1/q + q 1/a *y\1/P
KD () < ( [Mealon)te] < 0(ol17)" < o,
which implies that w(l) < oco. Since w(lp) < w(l), weobtain

K(IDo(*)(w(i0)) ' < C(o(1%))"

and then, taking into account that 0 < ¢(I*) < 0o and 0 < w(lp) < oo, this inequality
yields that

/0
K(|I|)(./I* 0) < C(wllo)) M =c.
Consequently

s K(( /. o) ’

{I dyadic, 1Dlo}

= sup K(|I|)(/I* o) ” < oo.

{I dyadic, 1 Dlgand o(1*)>0}

Conversely, assumethat (2.9) holds. Let J; be theleft half part of 13. If x € J; then

M a(oxi:)(¥) > K(|J1|)/J* o.

If 5 0 >0, wetakew = XJl(M,{d(oX%))_q/p/. If J3: 0 = 0, we consider the left half
part of J; and call it J,. Then, for x € J,, we have

M;Z,d(am)(X) > K(|Jz|)/J* o.
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If [y 0 >0, wetekew = XJZ(M,ZYd(aX%))_q/p,. If f5: 0 = O, we consider J;, etc. This
process can not continue indefinitely, because fi» o > 0 and U2, J* = 15. Then there
is a dyadic interval J strictly contained in 13, with the same left endpoint that 15 and

suchthat [y o > 0. Fix J and setw = x3(M{4(oi)) " . Observethat for all x € J,
My 4(oxi:)(x) > 0. Furthermore, by (2.9), Jis ¢ < oo. This and the fact that Mg 4 is of
weak type (1, qo) (because M 4If| < CTIf|) give that M 4(oxi:)(x) < oo ae. x € J.
Then w isnontrivial and it is bounded with compact support.

To prove (2.8) we use Theorem 2. We are going to show that for every dyadicinterval
| = [a,b) with f(_, ) w > 0, one hasthat

/I o <oco and (./,U,*(Mid(oxl*))qw) v < C(/I 0) l/p.

Let | = [a,b) dyadic with f_,,w > 0. To provethat Ji- ¢ < oo we are going to see
that thereexistsadyadicinterval Q suchthat Io C Qandl* C Q*. Oncewe have proved
this, we havethat fj» o < oo by (2.9). In order to prove the existence of Q, we observe
that we havethe following threecases: Ig C I, | C lg, andloN 1 = . Inthefirst casewe
chooseQ = I. The second caseis impossible because Ji_, ) w > 0 and the support of w
isJ. Inthethird case we haveto work harder. First we observethat | isontheright of |.
If I C (—00,0), and | C [0, 00), then it is obviousthat there exists Q with the required
property. If I C (—00,0) and | C (—00,0) or lg C [0,00) and | C [0, o0) then there
isadyadicinterval H such that 1o, | C H. Let H be the smallest one with this property
and let Hy, H, C H be the dyadic intervals with [Hy| = 2|H| = |H,|. Then necessarily
lo C Hyand | C Hy. SinceH} = Hy we havethat I* C Hy or I* C H*. If I* C H}, we
choose Q = Hy andif I* C H*, we choose Q = H.
In order to prove that

(o Mt e (/<) v

it is clear that we only have to consider | with (1 U1*) N J # 0. Letf; = oxi+ni; and
f, = oxar-1p)- It suffices to prove the above inequality with oy« replaced by f; and
f,. Using that l\/led is of weak type (1, go) and arguing as we did with T in the proof of
Theorem 3, we obtain

(4.11) _/Iul*(Mrzdfl)qw = ‘/(IUI*)FTJ<
< C|J|l_$(0(|*))Q/p _ C(O’(l*))q/p,

M a(oxieriz) /P

where C dependsonly onp, g, go and J.

Let us estimate now i« (M 4f2)%w.

If I* C 1§ thenf, = 0 and thereis nothing to prove. If I* & I then I* N(R—13) # (.
Since we are considering that (I U1*) N J # 0, we havethat | NJ # @ or I*NJ # (. If
I*NJ # Bthenl* N 1% # 0, but thisimpliesthat I C I* which is acontradiction with
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the fact that f(_., ) w > 0. Thus, necessarily I* NJ = @ and | N J # (). We have two
possibilities, | € JorJ C I. Observethat | C Jleadstol* C I whichisacontradiction.
#
Thenwe havethat J C I. If | 2 I§ then1* N 1§ # @ and sincel* N(R — 1) # 0 we
#
obtain that 15 C I* which is again a contradiction. Therefored C I C I.

+#

Recall that we are estimating fi - (M f2)%. Letx € Jandlet | besuchthat I* € A

and I* N 1* # . Then we can find adyadic interval H suchthat [o C H, I* N 1* C H*
and suchthat |H| = |I* N 1*| or |H| = 2|I* N I*|. Thus, by condition (2.7),

KT [, oxqip = KA [, o < K(|T|)(Am* J) 1P (/l U) 1p
. CK(|H|)(/H* 0) 1/p (/I* 0) 1/p _ C(/l U) 1/p.

It follows that

1/a
(M) < 0w) o17) = o(at7) "

This finishes the proof of Theorem 4.

FINAL REMARKS.
(1) Itispossible to changetheintegrals over R in conditions (2.2) and (2.3) of The-
orem 1, by integrals over |. We can do it by the following result.

THEOREM 5. Letl <p<g<ooorp=1<q<oo.LetK, TandT* beasin
Theorem 1.
(1) 1 < p < g< oo thefollowing conditions are equivalent
(a) Thereexists C suchthat for all f € LP(v) andall A > 0,

1 a/p
w({x:|TEE > A}) < C(ﬁ./mpv) :
(b) Thereexists C such that for everyinterval | = [a, b) with Jip )0 >0,
1/p
* / 1 J
(/R(T (X|w))p0) < C(w(l)) /9 < o0.
(c) Thereexists C suchthat for everyinterval | = [a, b) with fj, ) o > 0,

C\ VP /
(/l(T*(XW))p 0) < C(w(l)) Y < .

(2) If p=1< g< oothen(a)isequivalentto
(d) Thereexists C such that for every bounded interval |

IT* Ve < C(w) VY < oo
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PROOF OF THEOREM 5.  Wefirst provethat (a) = (b). Using duality and (a) we have

;N\ P
(/R(T*(Xm))pa) = ||T*(X|w)v_lHLp/(V)
= Sup . T*(xiw)g
{g>0]lgllpy=1}

= sup Tgw
{9>0|gllp =1} "

= sup Oow xel:Tgx) > Al)dx
{9>0|gllp =1} "° ({ })

< c‘/0°° min(w(l), CA~9) dA = Cuw(1)¥/9.

It is obviousthat (b) = (c).

To prove that (¢) = (a) observe that this is a generalization of Theorem 2 in [LT].
The proof follows the same pattern, changing the kernel x%,a by K(x), the only exception
being the point where we have to prove that A, = supy,  Aw({x : TF(X) > A}) is
finite. We are going to prove this.

Asin [LT] it is enough to consider the case of small t and we may assumethat f is
nonnegative and bounded with compact support [a,b] C (—o0, 3), where 3 = inf{x :
Jixo0) 0 = 0}. Therefore, fi,.) o > 0and w(a, b) < oo by condition (c). Then, asin [LT]
we only haveto prove that

sup Mw({x<a:Tf(x) > \}) < oco.

o<t

Observethat x < aand Tf(x) > X imply that A < K(a— X) °f. Let
B —{ -K()>i}
A=Y Y, fgf '

Since K is nonincreasing and lower semicontinuous, B, is an openinterval, B, = (0, 9).
Since limy_., K(X) = 0, scan not be infinity. On the other hand, K(s) = A(J? )1, since
K islower semicontinuous. Therefore, x < a and Tf(x) > A imply that a— x € B, and
thenx € (a— s, a).

Chooset small enough to havethat if A < tthens> b —a. Then

No({x<a:Tf(x) >A}) < AqL:w = K(s)q(Lbf)q/:Sw.
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If p> 1 wemay use Holder’s inequality and get

)\qw({x< a: Tf(x) > )\}) < (/abfpv)q/p(/aba)q/p/K(s)q/::Sw

_ (/abfpv)Q/p(/:o(y)K(S)p,dy)q/p/ /a:w

- C(/bfpV)Q/P(/ba(y)K(y_ a+s)p/dy)Q/P’ ‘/;Sw

a Ja

b a/p
sc(/ fpv) < oo

a

We have used that s > b — aimpliesy — a + s < 2s, the growth condition of K and the
fact that (c) implies that there exists C such that

(/ab o(y)K(y — a+ s)p’dy) v /:Sw <C.

(Claim (1.3)=(2.2) in [LT]). If p= 1 wefollow the same proof asin [LT].

(2) Changingthe orientation of thereal lineweobtainthelast theoremfor T*. There-
fore, for 1 < p < g < oo the operator T is bounded from LP(v) to L9(w), if, and
only if, it is of weak type (p, ) with respect to the measures (v, w) and T* is of
weak type (¢, p’) with respect to the measures (w9, v1-7).

ACKNOWLEDGEMENT. We want to thank the referee for his helpful comments and
indications on how to improve the paper.

REFERENCES

[AS] K. F. Andersen and E. T. Sawyer, Weighted norm inequalities for the Riemann-Liouville and Weyl frac-
tional integral operators. Trans. Amer. Math. Soc. (2) 308(1988), 547-558.

[LT] M. Lorente and A. de la Torre, Weighted inequalities for some one-sided operators. Proc. Amer. Math.
Soc. 124(1996), 839-848.

[MT] FE. J. Martin-Reyes and A. de |la Torre, Two weight norm inequalities for fractional one-sided maximal
operators. Proc. Amer. Math. Soc. 117(1993), 483-489.

[M] B. Muckenhoupt, Weighted norm inequalities for classical operators. Proc. Sympos. Pure Math. Amer.
Math. Soc., Providence, R.I., (1) 35(1979), 69-83.

[MW] B. Muckenhoupt and R. L. Wheeden, Some weighted weak-type inequalities for the Hardy-Littlewood
maximal function and the Hilbert transform. Indiana Univ. Math. J. 26(1977), 801-816.

[S1] E. T. Sawyer, Weighted inequalities for the one-sided Hardy-Littlewood maximal functions. Trans. Amer.
Math. Soc. 297(1986), 53-61.

[S2] , A characterization of two weight norm inequalities for fractional and Poisson integrals. Trans.
Amer. Math. Soc. 308(1988), 533-545.

[S3] , Two weight norminequalities for certain maximal and integral operators. In: Harmonic Analysis.
Lect. Notesin Math. 908 (Eds. F. Ricci and G. Weiss), Springer-Verlag, 1982, 102—-127.

https://doi.org/10.4153/CJM-1997-051-6 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1997-051-6

TWO WEIGHT NORM INEQUALITIES 1033

[SW] E. T. Sawyer and R. L. Wheeden, Weighted inequalities for fractional integrals on euclidean and homo-
geneus spaces. Amer. J. Math. 114(1992), 813-874.

[SWZ] E. T. Sawyer, R. L. Wheeden and S. Zhao, Weighted norm inequalities for operators of potential type
and fractional maximal functions. Potential Anal. 5(1996), 523-580.

Analisis Matemético
Facultad de Ciencias
Universidad de Malaga
29071 Malaga

Spain

https://doi.org/10.4153/CJM-1997-051-6 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1997-051-6

