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A CHARACTERIZATION OF TWO WEIGHT
NORM INEQUALITIES FOR ONE-SIDED

OPERATORS OF FRACTIONAL TYPE

MARIA LORENTE

ABSTRACT. In this paper we give a characterization of the pairs of weights (°, v)
such that T maps Lp(v) into Lq(°), where T is a general one-sided operator that includes
as a particular case the Weyl fractional integral. As an application we solve the following
problem: given a weight v, when is there a nontrivial weight ° such that T maps Lp(v)
into Lq(°)?

1. Introduction. In [M], B. Muckenhoupt raised the question of characterizing
when the weighted norm inequality

(1. 1)
 Z

Rm
jTf (x)jq°(x) dx

!1Ûq

� C
 Z

Rn
jf (x)jpv(x) dx

!1Ûp

holds, where T is any classical operator. We are interested in the case m ≥ n ≥ 1 and T a
one-sided operator. By a one-sided operator we mean an operator T acting on measurable
functions f such that the values of Tf (x) depend only on the values of f either in (x,1)
or in (�1, x).

For f locally integrable on R, the one-sided Hardy-Littlewood maximal functions are

M+f (x) ≥ sup
hÙ0

1
h

Z x+h

x
jf (y)j dy and M�f (x) ≥ sup

hÙ0

1
h

Z x

x�h
jf (y)j dy.

In [S1], Eric Sawyer characterized for 1 Ú p Ú 1, p ≥ q, the weights ° satisfying (1.1)
for T ≥ M+ with ° ≥ v, as those weights ° satisfying the A+

p condition:

(A+
p )

 
1
h

Z a

a�h
°(x) dx

! 
1
h

Z a+h

a
°

�1
p�1 (x) dx

!p�1

� C, for all a 2 R and h Ù 0.

For T ≥ M� the weights are characterized by the A�p condition:

(A�p )
 

1
h

Z a+h

a
°(x) dx

! 
1
h

Z a

a�h
°

�1
p�1 (x) dx

!p�1

� C, for all a 2 R and h Ù 0.
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TWO WEIGHT NORM INEQUALITIES 1011

In the same paper he proves that for 1 Ú p Ú 1 the pairs of weights (°, v) satisfying (1.1)
for T ≥ M+ are those satisfying the S+

p condition

(S+
p )

Z
I

�
M+(üIv

�1
p�1 )

�p
° � C

Z
I
v

�1
p�1 Ú 1,

for all intervals I ≥ (a, b) such that
Ra
�1 ° Ù 0. The corresponding result is obtained for

T ≥ M� changing S+
p by the natural S�p condition.

For 0 Ú ã Ú 1 the Weyl fractional integral Wã and the Riemann-Liouville fractional
integral Rã are defined, for locally integrable functions on R, by

Wãf (x) ≥
Z 1

x

f (y)
(y� x)1�ã

dy and Rãf (x) ≥
Z x

�1

f (y)
(x� y)1�ã

dy

and for 0 � ã Ú 1, the fractional one-sided Hardy-Littlewood maximal functions M+
ã

and M�
ã are defined by

M+
ãf (x) ≥ sup

hÙ0
hã�1

Z x+h

x
jf (y)j dy and M�

ã f (x) ≥ sup
hÙ0

hã�1
Z x

x�h
jf (y)j dy.

Andersen and Sawyer [AS] showed that, under the assumptions 1 Ú p Ú 1
ã

and 1
q ≥

1
p �ã, the inequality (1.1) holds with ° ≥ v for T ≥ M+

ã or T ≥ Wã (ã Ù 0) if and only
if

(A+
p,q)

 
1
h

Z a

a�h
°(x) dx

!1Ûq 1
h

Z a+h

a
°

�1
p�1 (x) dx

!1Ûp0

� C, for all a 2 R, h Ù 0,

and for T ≥ M�
ã or T ≥ Rã (ã Ù 0) if and only if

(A�p,q)
 

1
h

Z a+h

a
°(x) dx

!1Ûq 1
h

Z a

a�h
°

�1
p�1 (x) dx

!1Ûp0

� C, for all a 2 R, h Ù 0,

where p0 is the conjugate exponent of p. To prove this, they used complex interpolation
of analytic families of operators. A “geometric” type proof was given by Martı́n-Reyes
and de la Torre in [MT]. They also solved the case of different weights for the fractional
one-sided Hardy-Littlewood maximal functions, for 1 Ú p � q. More precisely, they
showed that the inequality (1.1) holds for 1 Ú p � q and T ≥ M+

ã if, and only if,
(S+

p,q,ã) there exists C such that for every interval I with õ(I) finite

 Z
I

�
M+
ã(õüI)

�q
°

!1Ûq

� C
�
õ(I)

�1Ûp
,

where õ ≥ v1�p0 and õ(I) ≥
R

I õ.
For the Weyl fractional integral and for 1 Ú p � q Ú 1 or 1 ≥ p Ú q Ú 1 the

pairs of weights for which the weak type inequality associated with (1.1) holds have been
characterized ([LT]) as those pairs of weights (°, v) satisfying

Z
I

�
Rã(üI°)

�p0
v1�p0 � C

 Z
I
°

!p0Ûq0

, if 1 Ú p � q Ú 1,
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or

kRã(üI°)v�1kL1(v) � C
 Z

I
°

!1Ûq0

, if p ≥ 1 Ú q Ú 1.

(For p Ú q this problem is solved in [LT] for a more general operator). However, as far
as the author knows, there is not a characterization of the strong type inequality (1.1)
with T ≥ Wã. In this paper we solve this problem for 1 Ú p � q Ú 1. Actually, we
characterize the pairs of weights (°, v) for which (1.1) holds for a more general operator
T defined by

(1. 2) Tf (x) ≥
Z 1

x
K(y� x)f (y) dy

where K is a positive measurable function, lower semicontinuous, with support in (0,1),
nonincreasing in (0,1), with limx!1 K(x) ≥ 0 and satisfying K(x) � CK(2x), x 2

(0,1). (Observe that if K(x) ≥ xã�1ü(0,1)(x) then T ≥ Wã). This result is in Theorem 1.
In the proof of this theorem we follow the ideas in [S2], [SW] and [SWZ] but we also need
the characterization of the good weights (°, v) for a one-sided dyadic maximal operator
associated with K and defined by

(1. 3) M +
K,df (x) ≥ sup

I2Ax

K(jIj)
Z

I
jf (y)j dy

where Ax ≥ fI ≥ [a, b) : I is dyadic and 0 � a � x Ú b � ag. This characterization
appears in Theorem 2.

As an application of these results, we solve the following problem: given a weight v,
when is there a nontrivial weight °, such that (1.1) holds for T defined by (1.2) or for
M +

K,d? The answer to these problems are contained in Theorems 3 and 4.
We end this section with some notation. Throughout the paper the letter I will denote

an interval in R, jIj will denote the Lebesgue measure of I. If ï is a positive real number,
then ïI will denote the interval with the same center as I and with jïIj ≥ ïjIj and if g is a
positive measurable function and E is a measurable set, then g(E) ≥

R
E g. If I ≥ [a, b), IÊ

will be the interval [b, 2b�a). A weight will be a nonnegative measurable function. The
letter C will always mean a positive constant not necessarily the same at each occurrence
and if 1 Ú p Ú 1 then p0 will denote the number such that p + p0 ≥ pp0.

2. Statement of the results.

THEOREM 1. Suppose that 1 Ú p � q Ú 1, ° and v are two weights and

Tf (x) ≥
Z 1

x
K(y� x)f (y) dy,

where K is a positive measurable function, lower semicontinuous, with support in (0,1),
nonincreasing in (0,1), with limx!1 K(x) ≥ 0 and satisfying K(x) � CK(2x), x 2

(0,1). Then the weighted inequality

(2. 1)
 Z

R
jTf jq°

!1Ûq

� C
 Z

R
jf jpv

!1Ûp
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holds for some constant C if, and only if, the following two conditions hold:
(2.2) There exists C such that for every interval I ≥ [a, b) with

R
(�1,a) ° Ù 0,

 Z
R

�
T(üIõ)

�q
°

!1Ûq

� C
�
õ(I)

�1Ûp
Ú 1

and
(2.3) there exists C such that for every interval I ≥ [a, b) with

R
[b,1) õ Ù 0,

 Z
R

�
TÊ(üI°)

�p0
õ

!1Ûp0

� C
�
°(I)

�1Ûq0
Ú 1,

whereõ ≥ v1�p0 and TÊ denotes the adjoint operator of T, TÊg(x) ≥
R x
�1 K(x�y) g(y) dy.

THEOREM 2. Let K be as in Theorem 1. Then for weights °, v and 1 Ú p � q, the
following two conditions are equivalent:

(2.4) There exists C such that for every f ½ 0

 Z
(M +

K,df )q°

!1Ûq

� C
 Z

f pv
!1Ûp

.

(2.5) There exists C such that for every dyadic interval I ≥ [a, b) with
R

(�1,b) ° Ù 0,

Z
IÊ
õ Ú 1 and

 Z
I[IÊ

�
M +

K,d(õüIÊ )
�q
°

!1Ûq

� C
 Z

IÊ
õ

!1Ûp

.

This theorem is an easy variant of Theorem 2.6 in [MT]. The proof is exactly as in [MT].
Thus we omit it.

THEOREM 3. Let 1 Ú p � q Ú 1 and let K be as in Theorem 1. Suppose that
there exists q0 Ù

q
p such that K(x) � Cx�1Ûq0 , for all x 2 (0,1). Let v be a weight,

0 � v(x) � 1, such that v is not identically infinity in any interval of the form (c,1).
Then, there exists ° not identically zero such that the inequality

(2. 6)
 Z

R
jTf jq°

!1Ûq

� C
 Z

R
jf jpv

!1Ûp

holds for some constant C and for all f 2 Lp(v), if, and only if, there exists a 2 R such
that for all b Ù a, we have

(2. 7)
Z b

a
õ Ù 0 and

Z 1
b

K(y� a)p0õ(y) dy Ú 1.

THEOREM 4. Under the same assumptions of Theorem 3 we have that there exists °
not identically zero such that the inequality

(2. 8)
 Z

R
jM +

K,df jq°
!1Ûq

� C
 Z

R
jf jpv

!1Ûp
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holds for some constant C and for all f 2 Lp(v), if, and only if, there exists a dyadic
interval I0 with 0 Ú

R
IÊ0
õ and such that

(2. 9) sup
fI dyadic:I0²Ig

K(jIj)
 Z

IÊ
õ

!1Ûp0

Ú 1.

REMARKS.
(1) Observe that for f ½ 0, we have M +

K,df (x) � CTf (x). It follows that condi-
tion (2.2) implies that M +

K,d is bounded from Lp(v) to Lq(°).
(2) If K(x) � CK(xÛ2) for some C Ú 1 then M +

K,d is pointwise equivalent to the
following maximal operator

M +
K f (x) ≥ sup

cÙx
K(c� x)

Z c

x
jf (y)j dy.

Observe that this condition holds if K(x) ≥ xã�1ü(0,1)(x), i.e., the kernel for the
Weyl operator. In this case M +

K is M+
ã (for this case, see [MT]).

(3) Of course, one can change the orientation of the real line and obtain Theorems 1
and 3 for TÊ and Theorems 2 and 4 for M �

K,d.
(4) By duality we also can solve the following problem: given° not identically zero,

when there exists v not identically infinity such that (2.6) holds?
(5) We ask for v not identically infinity in any interval of the form (c,1) in The-

orems 3 and 4 because if there exists c such that v ≥ 1 a.e. in (c,1), then it
suffices to take ° ≥ ü(c,1) to have (2.6) and (2.8).

(6) Theorem 1 of [S2] can be easily obtained as a consequence of Theorem 1.
(7) Theorem 3 is also valid for p Ù 1, 0 Ú q Ú p and assuming q0 Ù 1. This follows

using Hölder’s inequality and the case p ≥ q. Putting together Theorem 3 and
this remark we observe that we have generalized Theorem 3 (b) in [AS] since we
extend the range of p and q and we consider more general operators.

3. Proof of Theorem 1. Assume that (2.1) holds. Then so does its dual inequality

(3. 1)
 Z

jTÊgjp
0

õ

!1Ûp0

� C
 Z

jgjq
0

°1�q0
!1Ûq0

.

Let I ≥ [a, b) be such that
R

(�1,a) ° Ù 0. Then there exists a bounded interval J ²

(�1, a) such that
R

J ° Ù 0. We first prove that õ(I) Ú 1. Taking g ≥ °1ÛqüJ in (3.1)
we have that  Z

jTÊ(°1ÛqüJ)jp
0

õ

!1Ûp0

� CjJj1Ûq0 Ú 1

and for all x 2 I, TÊ(°1ÛqüJ)(x) Ù TÊ(°1ÛqüJ)(b) Ù 0. Therefore, õ(I) Ú 1. To finish
the proof of (2.2) it suffices to take f ≥ üIõ in (2.1).

Now let I ≥ [a, b) such that
R
[b,1) õ Ù 0 and consider a bounded interval J ² [b,1)

such that
R

J õ Ù 0. Then (2.3) follows by taking f ≥ õ1Ûp0üI in (2.1) and g ≥ üI° in (3.1).
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To prove the converse, we suppose that f 2 Lp(v) is nonnegative, bounded with com-
pact support and such that fõ�1 is bounded. For each k 2 Z, the set Ωk ≥ fx : Tf (x) Ù
2kg is open since K is lower semicontinuous and the fact that limx!1 K(x) ≥ 0 gives that
the connected components of Ωk are of finite length. Then, as in [S2] with the correction
pointed out in [SW] and [SWZ], we have

(3. 2)

(i) Ωk ≥ [jI
k
j , Ik

j dyadic and Ik
j \ Ik

i ≥ ; for i Â≥ j,

(ii) 3Ik
j ² Ωk and 9Ik

j \Ωc
k Â≥ ; for all k, j,

(iii)
X

j
ü3Ik

j
� CüΩk

for all k,

(iv) the number of intervals Ik
s intersecting a fixed interval 3Ik

j is at most C,

(v) Ik
j ²

Â≥

Il
i implies k Ù l.

There are two types of intervals among the Ik
j ’s. In order to classify them we consider

the right endpoint c of the connected component of Ωk which contains Ik
j . If 9Ik

j \Ωc
k \

(c,1) Â≥ ;, we denote Ik
j by Jk

j , otherwise, we denote Ik
j by Lk

j .
For fixed Jk

j , let b and c be the right endpoint of 3Jk
j and the connected component of

Ωk which contains Jk
j , respectively. Then if x 2 Jk

j , we have

T(fü(3Jk
j )c)(x) ≥

Z c

b
K(y� x)f (y)ü(3Jk

j )c(y) dy +
Z 1

c
K(y � x)f (y)ü(3Jk

j )c(y) dy.

Since K is nonincreasing and c Û2 Ωk it follows that

Z 1
c

K(y� x)f (y)ü(3Jk
j )c (y) dy �

Z 1
c

K(y� c)f (y) dy ≥ Tf (c) � 2k.

On the other hand, it is not very difficult to prove that the assumption on K, K(x) �
CK(2x) for x Ù 0 and property (ii) in (3.2) give that

Z c

b
K(y� x)f (y)ü(3Jk

j )c (y) dy � CM +
K,df (x).

To prove this inequality we only have to observe that the interval (b, c) is contained in
the union of at most two dyadic intervals of length comparable to jJk

j j and belonging to
Ax. Therefore, for x 2 Jk

j , we have

(3. 3) T(fü(3Jk
j )c )(x) � CM +

K,df (x) + 2k.

This is the reason why we need to study this dyadic maximal operator.
Let us consider now an interval Lk

j . Let a be the left endpoint of the connected com-
ponent of Ωk which contains Lk

j and [b, c) ≥ 3Lk
j . For x 2 Lk

j , we have

Tf (x) ≥
Z c

x
K(y� x)f (y) dy +

Z 1
c

K(y� a)f (y)
K(y� x)
K(y� a)

dy.
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If y Ù c then y� a ≥ (y� x) + (x� a) � (y� x) + 9jLk
j j � (y� x) + 9(y� x) ≥ 10(y� x).

Then K(y � x) � C4K
�
24(y � x)

�
� C4K(y � a), by the growth condition of K and the

fact that K is nonincreasing. Therefore

Tf (x) �
Z c

x
K(y� x)f (y) dy + C4

Z 1
c

K(y� a)f (y) dy

� T(fü(3Lk
j ))(x) + C4Tf (a) � T(fü(3Lk

j ))(x) + C42k,

since a Û2 Ωk. Choose an integer m ½ 3 such that 2m�2 Ù C4. Define Gk
j ≥ Lk

j \

(Ωk+m�1 � Ωk+m). Then, for x 2 Gk
j , we have

T(fü(3Lk
j ))(x) ½ Tf (x)� C42k Ù 2k+m�1 � 2k+m�2 ½ 2k,

and so,

(3. 4) 1 �
1
2k

T(fü(3Lk
j ))(x), for x 2 Gk

j .

Let us consider again inequality (3.3). Define Ak
j ≥ fx 2 Jk

j : CM +
K,df (x) � 2kg,

where C is the constant appearing in (3.3), Bk
j ≥ Jk

j�Ak
j and let Dk

j ≥ Ak
j\(Ωk+m�1�Ωk+m)

and Fk
j ≥ Bk

j \ (Ωk+m�1 �Ωk+m). Then,

(3. 5) Tf (x) � 2k+m and 2k Ú CM +
K,df (x), for all x 2 Fk

j .

If x 2 Dk
j we have

2k+m�1 Ú Tf (x) ≥ T(fü(3Jk
j ))(x) + T(fü(3Jk

j )c )(x) � T(fü(3Jk
j ))(x)

+ CM +
K,df (x) + 2k � T(fü(3Jk

j ))(x) + 2k+1

and so
T(fü(3Jk

j ))(x) Ù 2k+m�1 � 2k+1 ½ 2k+2 � 2k+1 Ù 2k.

Thus,

(3. 6) 1 �
1
2k

T(fü(3Jk
j ))(x), for x 2 Dk

j .

We now estimate the left side of (2.1) by
Z
R

�
Tf (x)

�q
°(x) dx ≥

X
k2Z

Z
Ωk+m�1�Ωk+m

�
Tf (x)

�q
°(x) dx(3. 7)

�
X
k,j

Z
Dk

j

�
Tf (x)

�q
°(x) dx

+
X
k,j

Z
Fk

j

�
Tf (x)

�q
°(x) dx

+
X
k,j

Z
Gk

j

�
Tf (x)

�q
°(x) dx ≥ (I) + (II) + (III).

https://doi.org/10.4153/CJM-1997-051-6 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1997-051-6


TWO WEIGHT NORM INEQUALITIES 1017

We first estimate the term (II). Using (3.5), the fact that the Fk
j are disjoint on k and j and

remark (1), we have

(II) �
X
k,j

2mq
Z

Fk
j

2kq°(x) dx � C
X
k,j

Z
Fk

j

�
M +

K,df (x)
�q
°(x) dx(3. 8)

� C
Z
R
(M +

K,df (x))q°(x) dx � C
 Z

R
f pv

!qÛp

.

To estimate the terms (I) and (III), we observe that (3.4) and (3.6) allow us to treat (I)
and (III) jointly. If we denote Jk

j or Lk
j by Ik

j and Dk
j or Gk

j by Ek
j , the inequalities (3.4)

and (3.6) can be unified as

1 �
1
2k

T(fü(3Ik
j ))(x), for x 2 Ek

j .

Then

(3. 9) (I) + (III) �
X
k,j

Z
Ek

j

�
Tf (x)

�q
°(x) dx � C

X
k,j

2kq°(Ek
j ).

Now, using duality,

(3. 10)

°(Ek
j ) �

1
2k

Z
Ek

j

T(fü(3Ik
j ))(x)°(x) dx ≥

1
2k

Z
3Ik

j

f (x)TÊ(üEk
j
°)(x) dx

≥
1
2k

 Z
3Ik

j �Ωk+m

f (x)TÊ(üEk
j
°)(x) dx +

Z
3Ik

j \Ωk+m

f (x)TÊ(üEk
j
°)(x) dx

!

≥
1
2k

(õk
j + úk

j ).

Define, as in [S2], the following sets:

E ≥
n

(k, j) : °(Ek
j ) � å°(Ik

j )
o

,

F ≥
n

(k, j) : °(Ek
j ) Ù å°(Ik

j ) and õk
j Ù úk

j

o
,

G ≥
n

(k, j) : °(Ek
j ) Ù å°(Ik

j ) and õk
j � úk

j

o
,

where å satisfies 0 Ú å Ú 1 and it will be chosen at the end of the proof. Then, taking
into account (3.9) and (3.10) we can write

(I) + (III) � C
� X

(k,j)2E
+

X
(k,j)2F

+
X

(k,j)2G

�
2kq°(Ek

j )(3. 11)

≥ (IV) + (V) + (VI).

Observe that we only have to consider those (k, j) for which°(Ek
j ) Â≥ 0. If there exist (k, j)

and (k + m, i) such that Ik
j ≥ Ik+m

i , then °(Ek
j ) ≥ 0 because Ek

j ² Ik
j \ (Ωk+m�1 � Ωk+m),

thus we do not consider this (k, j). Therefore, fixed two intervals Ik
j and Ik+m

i , or they are
disjoint or Ik+m

i ²
Â≥

Ik
j .

https://doi.org/10.4153/CJM-1997-051-6 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1997-051-6


1018 MARIA LORENTE

To estimate the sum over the set E, we use the fact that the Ik
j are disjoint in j and

Fubini’s theorem. Then

(IV) � Cå
X

(k,j)2E
2kq°(Ik

j )(3. 12)

� Cå
X

k
2kq°

�n
x : Tf (x) Ù 2k

o�

≥ Cå
X

k

1X
i≥k

2kq°
�n

x : 2i Ú Tf (x) � 2i+1
o�

� Cå
X

k

1X
i≥k

2kq2�iq
Z
fx:2iÚTf (x)�2i+1g

�
Tf (x)

�q
°(x) dx

≥ Cå
X

i

iX
k≥�1

2kq2�iq
Z
fx:2iÚTf (x)�2i+1g

�
Tf (x)

�q
°(x) dx

≥ Cå
X

i

2q

2q � 1

Z
fx : 2iÚTf (x)�2i+1g

�
Tf (x)

�q
°(x) dx

≥ Cå
Z
R

�
Tf (x)

�q
°(x) dx.

We now estimate (V). Using inequality (3.10), the definition of F, Hölder’s inequality
and condition (2.3) we get

(3. 13)

(V) ≥ C
X

(k,j)2F
2kq°(Ek

j ) ≥ C
X

(k,j)2F
°(Ek

j )
 
õk

j + úk
j

°(Ek
j )

!q

� Cå�q X
(k,j)2F

°(Ek
j )

(õk
j )q

°(Ik
j )q

≥ Cå�q X
(k,j)2F

°(Ek
j )

°(Ik
j )q

 Z
3Ik

j �Ωk+m

fTÊ(üEk
j
°)
!q

� Cå�q X
(k,j)2F

°(Ek
j )

°(Ik
j )q

 Z
3Ik

j �Ωk+m

f pv
!qÛp Z

3Ik
j �Ωk+m

�
TÊ(üIk

j
°)
�p0
õ

!qÛp0

� Cå�q X
(k,j)

°(Ek
j )

°(Ik
j )

 Z
3Ik

j �Ωk+m

f pv
!qÛp

� Cå�q
 X

(k,j)

Z
3Ik

j �Ωk+m

f pv
!qÛp

� Cå�q
 X

k

Z
Ωk�Ωk+m

f pv
!qÛp

� Cå�q
 Z

R
f pv

!qÛp

,

where we have also used that Ek
j ² Ik

j , the facts that the intervals of the form 3Ik
j are

“almost” disjoint (parts (iii) and (iv) of (3.2)), that they are all contained in Ωk and that
1 � qÛp. Observe that we can use the condition (2.3) because if Ik

j ≥ [ak
j , bk

j ), thenR1
bk

j
õ Ù 0, otherwise sop f ² (�1, bk

j ] and taking x 2 3Ik
j , x Ù bk

j we have Tf (x) ≥ 0

but 3Ik
j ² Ωk ((3.2), (ii)) which is a contradiction.
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We are going now to estimate the sum over the set G in (3.11). In order to do this we
estimate

úk
j ≥

Z
3Ik

j \Ωk+m

fTÊ(üEk
j
°).

Let Hk
j ≥ fi : Ik+m

i \ 3Ik
j Â≥ ;g. Then 3Ik

j \ Ωk+m ² [i2Hk
j
Ik+m
i . Fix Ik+m

i and let a be the

left end-point of the interval 3Ik+m
i . If y Û2 3Ik+m

i and y � a, then

sup
x2Ik+m

i

(x � y) � 2 inf
x2Ik+m

i

(x � y),

which implies, by the growth condition imposed on K and the fact that K is nonincreasing,
that

sup
x2Ik+m

i

K(x� y) ≥ K
�

inf
x2Ik+m

i

(x � y)
�
� CK

�
2 inf

x2Ik+m
i

(x � y)
�

� CK
�

sup
x2Ik+m

i

(x � y)
�
≥ C inf

x2Ik+m
i

K(x � y).

Since 3Ik+m
i ² Ωk+m and Ek

j \Ωk+m ≥ ;, we have that 3Ik+m
i \Ek

j ≥ ;. It follows that for
all x 2 Ik+m

i

TÊ(üEk
j
°)(x) ≥

Z a

�1
K(x� y)üEk

j
(y)°(y) dy,

and thus

(3. 14) sup
x2Ik+m

i

TÊ(üEk
j
°)(x) � C inf

x2Ik+m
i

TÊ(üEk
j
°)(x).

Using this we can write the following:

úk
j ≥

Z
3Ik

j \Ωk+m

f (x)TÊ(üEk
j
°)(x) dx(3. 15)

�
X

i2Hk
j

Z
Ik+m
i

f (x)TÊ(üEk
j
°)(x) dx

�
X

i2Hk
j

Z
Ik+m
i

f (x) sup
x2Ik+m

i

TÊ(üEk
j
°)(x) dx

� C
X

i2Hk
j

inf
x2Ik+m

i

TÊ(üEk
j
°)(x)

Z
Ik+m
i

f (x) dx

� C
X

i2Hk
j

Z
Ik+m
i

TÊ(üEk
j
°)(x)õ(x) dx

�
õ(Ik+m

i )
��1 Z

Ik+m
i

f (x) dx.

Observe that if õ(Ik+m
i ) ≥ 0 then

R
Ik+m
i

f (x) dx ≥ 0 since f 2 Lp(v) and therefore, from

now on, in the last term we are summing over those i’s such that õ(Ik+m
i ) Ù 0.

Let Ck
j ≥

�
õ(Ik

j )
��1 R

Ik
j

f (x) dx where the quotient is understood to be zero if õ(Ik
j ) ≥ 0.

Then, for all x 2 Ik
j we have

Ck
j ≥

�
õ(Ik

j )
��1 Z

Ik
j

fõ�1õ � Mõ(fõ�1)(x),
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where, if ñ is a positive Borel measure, Mñf (x) ≥ supx2I

�
ñ(I)

��1 R
I jf jdñ (and the quo-

tient is understood to be zero if ñ(I) ≥ 0). Let Nk
j ≥ fs : Ik

s \ 3Ik
j Â≥ ;g. Notice that the

cardinality of Nk
j is at most C by (3.2), (iv).

In the inequality (3.15) it appears the integral over Ik+m
i , with i 2 Hk

j . Let s 2 Nk
j . Then

Ik
s and Ik+m

i are disjoint or Ik+m
i ²

Â≥

Ik
s by (3.2), (v) and the comment after (3.11). Then

úk
j � C

X
i2Hk

j

Ck+m
i

Z
Ik+m
i

TÊ(üEk
j
°)(x)õ(x) dx(3. 16)

� C
X

s2Nk
j

� X
i2Hk

j :Ik+m
i ²Ik

s

Ck+m
i

Z
Ik+m
i

TÊ(üEk
j
°)(x)õ(x) dx

½
.

We remind that we are estimating

(VI) ≥ C
X

(k,j)2G
2kq°(Ek

j ).

Let N and M be integers such that 0 � M Ú m. Define

GN,M ≥
n

(k, j) 2 G : °(Ek
j ) Â≥ 0, k ½ N and k � M (mod m)

o
.

We now claim that

(3. 17)
X

f(k,j)2GN,Mg

2kq°(Ek
j ) � C

 Z
f pv

!qÛp

,

with constant C that not depends on N and M.
Fix N and M and consider the “principal” intervals as in [MW] defined as follows:

Γ0 ≥ f(k, j) 2 GN,M : Ik
j is maximalg. If Γn, has been defined, let Γn+1 consist of those

(k, j) 2 GN,M for which there is (t, u) 2 Γn with Ik
j ² It

u, Ck
j Ù 2Ct

u and Cl
i � 2Ct

u for
those Il

i such that Ik
j ²

Â≥

Il
i ² It

u. Let Γ ≥ [1n≥0Γn. For each (k, j) 2 GN,M let P(Ik
j ) be the

smallest interval It
u containing Ik

j and such that (t, u) 2 Γ. Observe that the map P is well
defined because no interval Ik

j may occur as one of the Ik+m
i (since °(Ek

j ) Â≥ 0). Observe
that P(Ik

j ) ≥ It
u implies Ck

j � 2Ct
u.

Using inequality (3.16) we estimate the first term of (3.17) as follows:

(3. 18)X
(k,j)2GN,M

2kq°(Ek
j )

�
X

(k,j)2GN,M

°(Ek
j )

(2úk
j )q�

°(Ek
j )
�q

� Cå�q X
(k,j)2GN,M

°(Ek
j )�

°(Ik
j )
�q (úk

j )q
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� Cå�q X
(k,j)2GN,M

X
s2Nk

j

°(Ek
j )�

°(Ik
j )
�q

" X
fi:Ik+m

i ²Ik
s and (k+m,i)Û2Γg

 Z
Ik+m
i

TÊ(üEk
j
°)õ

!
Ck+m

i

#q

+ Cå�q X
(k,j)2GN,M

X
s2Nk

j

°(Ek
j )�

°(Ik
j )
�q

" X
fi2Hk

j :(k+m,i)2Γg

 Z
Ik+m
i

TÊ(üEk
j
°)õ

!
Ck+m

i

#q

≥ (VII) + (VIII).

It appears on (VII) the sum over the set fi : Ik+m
i ² Ik

s and (k + m, i) Û2 Γg; notice that if
Ik+m
i ² Ik

s and (k + m, i) Û2 Γ then P(Ik+m
i ) ≥ P(Ik

s ). To estimate (VII) we first observe that
for a fixed (t, u) 2 Γ we have

(3. 19)

X
(k,j)2GN,M

X
fs2Nk

j :P(Ik
s )≥It

ug

°(Ek
j )�

°(Ik
j )
�q

" X
fi:Ik+m

i ²Ik
s and (k+m,i)Û2Γg

Ck+m
i

Z
Ik+m
i

TÊ(üEk
j
°)õ

#q

� C
X

(k,j)2GN,M

X
fs2Nk

j :P(Ik
s )≥It

ug

°(Ek
j )
"

1
°(Ik

j )

Z
Ik
s

TÊ(üIk
j
°)õ

#q

(Ct
u)q.

In the last inequality we have used the following: the Ik+m
i are disjoint on i and they are

all contained in Ik
s ; P(Ik+m

i ) ≥ P(Ik
s ) ≥ It

u, thus Ck+m
i � 2Ct

u and Ek
j ² Ik

j . Let use now
that Ik

s ² It
u, duality, the fact that the cardinality of Nk

j is at most C, the fact that the Ek
j

are disjoint on k and j and that for all x 2 Ek
j ² Ik

j we have that
�
°(Ik

j )
��1 R

Ik
j

T(üIt
u
õ)° �

M°

�
T(üIt

u
õ)
�
(x), to estimate right-hand side of (3.19) with the following:

C(Ct
u)q X

(k,j)2GN,M

X
fs2Nk

j :P(Ik
s )≥It

ug

°(Ek
j )
"

1
°(Ik

j )

Z
Ik
j

T(üIt
u
õ)°

#q

(3. 20)

� C(Ct
u)q X

(k,j)2GN,M

Z
Ek

j

�
M°

�
T(üIt

u
õ)
��q

°

� C(Ct
u)q

Z
R

�
M°

�
T(üIt

u
õ)
��q

°.

Finally, we use the fact that M° is bounded from Lq(°) into Lq(°) for all q Ù 1 and we
apply condition (2.2) to get that the last term of (3.20) is bounded by

C(Ct
u)q

Z
R

�
T(üIt

u
õ)
�q
° � C(Ct

u)q
 Z

It
u

õ

!qÛp

.

Combining this with (3.19) and (3.20) and summing over (t, u) 2 Γ we obtain

(VII) � Cå�q X
(t,u)2Γ

 Z
It
u

õ

!qÛp

(Ct
u)q(3. 21)

� Cå�q
 X

(t,u)2Γ
(Ct

u)p
Z

It
u

õ

!qÛp

.
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We now consider (VIII). Let us fix (k, j) 2 GN,M. It follows from Hölder’s inequality,
Jensen’s inequality and condition (2.3) that

(3. 22)

°(Ek
j )

°(Ik
j )q

" X
fi2Hk

j :(k+m,i)2Γg
õ(Ik+m

i )�1Ûpõ(Ik+m
i )1Ûp

 Z
Ik+m
i

TÊ(üEk
j
°)õ

!
Ck+m

i

#q

�
°(Ek

j )

°(Ik
j )q

"X
i2Hk

j

õ(Ik+m
i )�p0Ûp

 Z
Ik+m
i

TÊ(üEk
j
°)õ

!p0#qÛp0

ð
� X
fi2Hk

j :(k+m,i)2Γg
õ(Ik+m

i )(Ck+m
i )p

½qÛp

≥
°(Ek

j )

°(Ik
j )q

"X
i2Hk

j

õ(Ik+m
i )

�p0

p +p0
 
õ(Ik+m

i )�1
Z

Ik+m
i

TÊ(üEk
j
°)õ

!p0#qÛp0

ð
� X
fi2Hk

j :(k+m,i)2Γg
õ(Ik+m

i )(Ck+m
i )p

½qÛp

�
°(Ek

j )

°(Ik
j )q

 X
i2Hk

j

Z
Ik+m
i

�
TÊ(üEk

j
°)
�p0
õ

!qÛp0

ð
� X
fi2Hk

j :(k+m,i)2Γg
õ(Ik+m

i )(Ck+m
i )p

½qÛp

�
°(Ek

j )

°(Ik
j )q

 Z
R

�
TÊ(üIk

j
°)
�p0
õ

!qÛp0� X
fi2Hk

j :(k+m,i)2Γg
õ(Ik+m

i )(Ck+m
i )p

½qÛp

� C
°(Ek

j )

°(Ik
j )q
°(Ik

j )qÛq0
� X
fi2Hk

j :(k+m,i)2Γg
õ(Ik+m

i )(Ck+m
i )p

½qÛp

� C
� X
fi2Hk

j :(k+m,i)2Γg
õ(Ik+m

i )(Ck+m
i )p

½qÛp
.

Taking into account that p � q we obtain

(VIII) � Cå�q
� X
f(k,j)2GN,M, i2Hk

j :(k+m,i)2Γg
õ(Ik+m

i )(Ck+m
i )p

½qÛp
.

We claim now that the last sum can be changed by a sum over (t, u) 2 Γ. In fact, for
fixed (k + m, i), the number of index j such that Ik+m

i \ 3Ik
j Â≥ ; is at most C (by (3.2),

(iii) and (iv)). In fact, since Ik+m
i ² Ωk+m ² Ωk, there exists s such that Ik+m

i ² Ik
s and the

number of index j such that 3Ik
j \ Ik

s Â≥ ; is at most C. Therefore

(3. 23) (VIII) � Cå�q
� X

(t,u)2Γ
õ(It

u)(Ct
u)p
�qÛp

.
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Combining (3.21) and (3.23) we get

(VII) + (VIII) � Cå�q
� X

(t,u)2Γ
õ(It

u)(Ct
u)p
�qÛp

(3. 24)

� Cå�q
 Z

R

� X
(t,u)2Γ

(Ct
u)püIt

u
(x)
�
õ(x) dx

!qÛp

.

Observe that for fixed x X
(t,u)2Γ

(Ct
u)püIt

u
(x) ≥ (Ct0

u0
)p + (Ct1

u1
)p + Ð Ð Ð ,

where
x 2 Ð Ð Ð It2

u2
² It1

u1
² It0

u0
, with (t0, u0), (t1, u1), (t2, u2), . . . 2 Γ

and
Ct1

u1
Ù 2Ct0

u0
, Ct2

u2
Ù 2Ct1

u1
Ù 22Ct0

u0
, . . . .

Each partial sum can be bounded as follows:

(3. 25)

(Ct0
u0

)p + (Ct1
u1

)p + Ð Ð Ð + (Cts
us

)p � (Cts
us

)p 2p

2p � 1

�
2p

2p � 1
sup

fIt
u:x2It

u,(t,u)2Γg
(Ct

u)p � C
�
Mõ(fõ)

�p
(x).

Therefore, using that Mõ is of strong type (p, p) respect to the measure õ(x) dx, we have

(VII) + (VIII) � Cå�q
 Z

R
(Mõ(fõ))põ

!qÛp

(3. 26)

� Cå�q
 Z

R
f põpõ

!qÛp

≥ Cå�q
 Z

R
f pv

!qÛp

.

Combining now inequalities (3.18) and (3.26) we get inequality (3.17) with a constant C
independent of N and M. Then, from (3.7), (3.8), (3.11), (3.12), (3.13), (3.18) and (3.26)
we get

(3. 27)
Z
R
(Tf )q° � Cå

Z
R
(Tf )q° + Cå�q

 Z
R

f pv
!qÛp

.

Choose å small enough to have Cå Ú 1Û2. Observe that the conditions imposed on f
implies that Z

R
(Tf )q° Ú 1.

Then, we can substract Cå
R
R(Tf )q° in both members of inequality (3.27) to get

Z
R
(Tf )q° � C

 Z
R

f pv
!qÛp

,

for all f ½ 0, bounded, with compact support and such that fõ�1 is bounded. This finishes
the proof of Theorem 1.
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4. Proofs of Theorem 3 and Theorem 4.
PROOF OF THEOREM 3. First suppose that there exists ° not identically zero such

that (2.6) holds. Then there is an interval I0 ≥ [a0, b0) such that °(I0) Ù 0. If we denote
by A the set fx Ù b0 : v(x) Ú 1g, then jAj Ù 0, since v is not identically infinity a.e. in
(b0,1).

For fixed N 2 N we consider õN(x) ≥ minfõ(x), Ng. Then õN 2 L1
loc(b0,1), thus,

Lebesgue differentiation theorem gives that

õN(x) ≥ lim
h!0+

1
h

Z x+h

x
õN a.e. x 2 (b0,1).

Since jAj Ù 0, there exists a 2 A such that

õN(a) ≥ lim
h!0+

1
h

Z a+h

a
õN.

Taking into account that õN(a) Ù 0 we have that limh!0+
1
h
R a+h

a õN Ù 0. This implies
that

Ra+h
a õN Ù 0 for all h Ù 0 and therefore

R b
a õ Ù 0 for all b Ù a.

We are going to prove now that

Z 1
b

K(y� a)p0õ(y) dy Ú 1, for all b Ù a.

Suppose that
R1
b K(y � a)p0õ(y) dy ≥ 1. Then v�1(y)K(y � a)ü(b,1)(y) Û2 Lp0(v) and

therefore there is g ½ 0, g 2 Lp(v), such that
R1

b g(y)K(y � a) dy ≥ 1. For each x 2 I0

we have

Tg(x) ≥
Z 1

x
K(y� x)g(y) dy ½

Z 1
b

g(y)K(y� a)
K(y� x)
K(y� a)

dy.

Let us dominate K(y�x)
K(y�a) from below for y 2 (b,1). Let c ≥ a + (a � a0). If y 2 (c,1),

then y� x � 2(y� a) and thus K(y� a) � CK
�
2(y� a)

�
� CK(y� x). This implies that

1
C
�

K(y� x)
K(y� a)

for y 2 (c,1). If c � b this inequality holds for all y Ù b and in this case we would have
obtained the estimation that we need. However if c Ù b we still have to dominate K(y�x)

K(y�a)
from below for the numbers y 2 (b, c). In this case, i.e., c Ù b and y 2 (b, c), we have
y� x � c� a0 and y� a ½ b� a, thus

K(c � a0)
K(b� a)

�
K(y� x)
K(y� a)

.

Therefore, in both cases, we have obtained that there exists a positive constant C such
that

C �
K(y� x)
K(y� a)

, for all y Ù b.
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As a consequence we obtain

Tg(x) ½ C
Z 1

b
g(y)K(y� a) dy ≥ 1

for all x 2 I0. By (2.6) and the fact that °(I0) Ù 0 this inequality implies that

1 ≥
Z

I0

jTg(x)jq°(x) dx � C
 Z

gp(x)v(x) dx
!qÛp

,

which is a contradiction since g 2 Lp(v).
Conversely, suppose that there exists a 2 R such that (2.7) holds for all b Ù a.

Then we can find an interval I0 ≥ [a, b) such that õ(I0) Ù 0 and õ(IÊ0 ) Ù 0. Fix I0 and

set ° ≥ üI0

�
T(õüI0[IÊ0

)
��qÛp0

. Observe that T(õüI0[IÊ0
)(x) is strictly positive in I0 since

õ(IÊ0 ) Ù 0. To see that ° is nontrivial we are going to prove that T(õüI0[IÊ0
)(x) Ú 1 a.e.

x 2 I0.
Let m be such that a Ú m Ú b and let c be the right endpoint of IÊ0 . Then if x 2 [m, b)

T(õüI0[IÊ0
)(x) ≥ T(õü[m,c))(x).

The assumption on K, K(x) � Cx�1Ûq0 , gives that T is dominated by the Weyl fractional
integral Wã withã ≥ 1�q�1

0 . Therefore T is of weak type (1, q0). This and condition (2.7)
gives, for all ï Ù 0, the following:þþþnx 2 [m, b) : T(õüI0[IÊ0

)(x) Ù ï
oþþþ

≥
þþþnx 2 [m, b) : T(õü[m,c))(x) Ù ï

oþþþ
� Cï�q0

 Z c

m
õ(y)K(y � a)p0K(y� a)�p0dy

!q0

� Cï�q0 K(c� a)�p0q0

 Z 1
m
õ(y)K(y � a)p0dy

!q0

� C(m)ï�q0 ,

where C(m) is a constant that depends on m. Letting ï go to infinity we have thatþþþnx 2 [m, b) : T(õüI0[IÊ0
)(x) ≥ 1

oþþþ ≥ 0.

This argument is valid for all m 2 (a, b), therefore T(õüI0[IÊ
0
)(x) Ú 1 a.e. x 2 I0.

In order to prove (2.6) for the weight°, it suffices by Theorem 1 to establish that (2.2)
and (2.3) hold.

We first prove (2.2). Let I ≥ [d, e) be such that
R

(�1,d) ° Ù 0. Then d Ù a since the
support of ° is I0. We begin by proving that õ(I) Ú 1. This follows from (2.7) and the
following inequality:

õ(I) ≥
Z e

d
õ(y)K(y � a)p0K(y� a)�p0dy � K(e � a)�p0

Z e

d
õ(y)K(y � a)p0dy.

Let f1 ≥ õüI\(I0[IÊ0 ) and f2 ≥ õüI�(I0[IÊ0 ). Then õüI ≥ f1 + f2 and

(4. 1)
 Z

R
(T(õüI))q°

!1Ûq

�

 Z
R
(Tf1)q°

!1Ûq

+
 Z

R
(Tf2)q°

!1Ûq

.
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Since T is of weak type (1, q0) we obtain
Z
R
(Tf1)q° ≥

Z
I0

�
T(õüI\(I0[IÊ0 ))

�q�
T(õüI0[IÊ0

)
��qÛp0

(4. 2)

�
Z

I0

�
T(õüI\(I0[IÊ0 ))

�qÛp

�
Z 1

0

q
p
ï

q
p�1 min

(
jI0j, C

 
õ(I)
ï

!q0)
dï.

Now we write the integral over (0,1) as the sum of the integral over
�
0, CjI0j

�1Ûq0õ(I)
�

and the integral over [CjI0j
�1Ûq0õ(I),1), where C is the constant appearing in (4.2).

In the first integral the minimum is jI0j, while in the second integral the minimum is
C
�
õ(I)

�q0
ï�q0 . Then using that q

p � q0 Ú 0, we obtain that

(4. 3)
Z
R
(Tf1)q° � C

�
õ(I)

�qÛp
,

where C depends only on p, q, q0, I0.
To handle Tf2, we observe that it suffices to consider only the intervals I ≥ [d, e) such

that e Ù c where IÊ0 ≥ [b, c). Let y Ù c. Then for all x 2 I0 we have that 1
2 (y � a) �

y� x � y� a. Using Hölder’s inequality with the measure õ we obtain for all x 2 I0

Tf2(x) �
Z 1

c
õ(y)üI(y)K(y � x) dy � C

Z 1
c
õ(y)üI(y)K(y� a) dy

� C
 Z 1

c
K(y� a)p0õ(y) dy

!1Ûp0�
õ(I)

�1Ûp
� C

�
õ(I)

�1Ûp
Ú 1,

where we have used that
R1

c K(y� a)p0õ(y) dy is a finite constant by (2.5). Consequently

(4. 4)
Z
R
(Tf2)q° � C°(I0)

�
õ(I)

�qÛp
≥ C

�
õ(I)

�qÛp
,

since °(I0) Ú 1 (observe that ° is bounded with compact support, in fact °(x) ��
K(2jI0j)õ(IÊ0 )

��qÛp0
). This finishes the proof of (2.2).

Now, we are going to prove (2.3). Let I ≥ [d, e) be such that
R

[e,1) õ Ù 0. Then�
°(I)

�1Ûq0
Ú 1 since ° is bounded with compact support. Let õ ≥ f1 + f2 where f1 ≥

õüI0[IÊ0
and f2 ≥ õüR�(I0[IÊ

0
). By duality we have

 Z
R

�
TÊ(°üI)

�p0
õ

!1Ûp0

≥ kTÊ(°üI)kLp0 (õ)(4. 5)

≥ sup
fg½0:jjgkLp (õ)≥1g

Z
R

TÊ(°üI)gõ

≥ sup
fg½0:jjgkLp (õ)≥1g

Z
R
°üIT(gõ)

� sup
fg½0:jjgkLp (õ)≥1g

Z
I\I0

°T(gf1)

+ sup
fg½0:jjgkLp (õ)≥1g

Z
I\I0

°T(gf2) ≥ (I) + (II).
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Let us estimate (I). If x 2 I \ I0, Hölder’s inequality gives that

(4. 6)

T(gf1)(x) ≥
Z

(x,1)\(I0[IÊ
0

)
õ(y)g(y)K(y � x) dy

�

 Z
(x,1)\(I0[IÊ0 )

õ(y)K(y � x) dy
!1Ûp0 Z

(x,1)\(I0[IÊ0 )
gp(y)õ(y)K(y � x) dy

!1Ûp

≥
�
T(õü(I0[IÊ0 ))(x)

�1Ûp0�
T(gpõü(I0[IÊ0 ))(x)

�1Ûp
.

Now, we use Hölder’s inequality to obtain

(4. 7)Z
I\I0

°T(gf1)

�

 Z
I\I0

°

!1Ûq0 Z
I\I0

�
T(gf1)

�q
°

!1Ûq

�
�
°(I)

�1Ûq0
"Z

I\I0

�
T(õü(I0[IÊ0 ))

�qÛp0�
T(õüI0[IÊ0

)
��qÛp0�

T(gpõü(I0[IÊ0 ))
�qÛp

#1Ûq

≥
�
°(I)

�1Ûq0
 Z

I\I0

�
T(gpõü(I0[IÊ0 ))

�qÛp
!1Ûq

.

The weak type (1, q0) of T and the same argument as in the proof of (4.3) give that

(4. 8)
 Z

I\I0

�
T(gpõü(I0[IÊ0 ))

�qÛp
!1Ûq

� C
 Z

(I0[IÊ0 )
gpõ

!1Ûp

� C.

Putting together the inequalities (4.6), (4.7) and (4.8) we obtain (I)� C
�
°(I)

�1Ûq0
.

We now estimate (II). Let x 2 I \ I0, then the growth condition imposed on K gives
that

T(gf2)(x) ≥
Z

(x,1)\
�
R�(I0[IÊ0 )

� õ(y)g(y)K(y � x) dy(4. 9)

�

 Z
(x,1)\

�
R�(I0[IÊ0 )

� õ(y)K(y � x)p0dy
!1Ûp0 Z

gpõ

!1Ûp

� C
 Z 1

c
õ(y)K(y � a)p0dy

!1Ûp0

≥ C.

As a consequence

Z
I\I0

°T(gf2) �
 Z

I\I0

°

!1Ûq0 Z
I\I0

Cq°

!1Ûq

(4. 10)

� C
�
°(I)

�1Ûq0
°(I0)1Ûq � C

�
°(I)

�1Ûq0
.

Then (II)� C
�
°(I)

�1Ûq0
and so (2.3) holds.
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PROOF OF THEOREM 4. We first assume that there exists ° not identically zero such
that (2.8) holds. Let I1 ≥ [a1, b1) be a dyadic interval such that °(I1) Ù 0. As in the case
of T, the fact that v is not identically infinity in (b1,1) yields that there is a Ù b1 such
that

Rb
a õ Ù 0 for all b Ù a.

Let I0 be dyadic with I1 ² I0 and a 2 IÊ0 . This dyadic interval satisfies that °(I0) Ù 0
and õ(IÊ0 ) Ù 0. We claim that if I is a dyadic interval with I0 ² I then õ(IÊ) Ú 1. We
are going to prove this by contradiction.

Suppose that õ(IÊ) ≥ 1. Then v�1üIÊ Û2 Lp0(v) and thus there is g ½ 0, g 2 Lp(v),
such that

R
gv�1üIÊv ≥

R
IÊ g ≥ 1. Let x 2 I, then IÊ 2 Ax and

M +
K,dg(x) ½ K(jIj)

Z
IÊ
jg(t)j dt ≥ 1.

But, since I1 ² I, this implies that

1 ≥

 Z
I
(M +

K,dg)q°

!1Ûq

�

 Z
R

(M +
K,dg)q°

!1Ûq

� C
 Z

R
jgjpv

!1Ûp

Ú 1.

This is a contradiction. Therefore õ(IÊ) Ú 1.
On the other hand, if õ(IÊ) Ù 0, we have

K(jIj)õ(IÊ )
�
°(I)

�1Ûq
�

 Z
I
(M +

K,d(õüIÊ ))q°

!1Ûq

� C
�
õ(IÊ)

�1Ûp
Ú 1,

which implies that °(I) Ú 1. Since °(I0) � °(I), we obtain

K(jIj)õ(IÊ )
�
°(I0)

�1Ûq
� C

�
õ(IÊ)

�1Ûp

and then, taking into account that 0 Ú õ(IÊ) Ú 1 and 0 Ú °(I0) Ú 1, this inequality
yields that

K(jIj)
 Z

IÊ
õ

!1Ûp0

� C
�
°(I0)

��1Ûq
≥ C.

Consequently

sup
fI dyadic, I¦I0g

K(jIj)
 Z

IÊ
õ

!1Ûp0

≥ sup
fI dyadic, I¦I0 and õ(IÊ)Ù0g

K(jIj)
 Z

IÊ
õ

!1Ûp0

Ú 1.

Conversely, assume that (2.9) holds. Let J1 be the left half part of IÊ0 . If x 2 J1 then

M +
K,d(õüIÊ0

)(x) ½ K(jJ1j)
Z

JÊ1
õ.

If
R

JÊ
1
õ Ù 0, we take ° ≥ üJ1

�
M +

K,d(õüIÊ0
)
��qÛp0

. If
R

JÊ
1
õ ≥ 0, we consider the left half

part of J1 and call it J2. Then, for x 2 J2, we have

M +
K,d(õüIÊ0

)(x) ½ K(jJ2j)
Z

JÊ
2

õ.
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If
R
JÊ2
õ Ù 0, we take ° ≥ üJ2

�
M +

K,d(õüIÊ0
)
��qÛp0

. If
R

JÊ2
õ ≥ 0, we consider J3, etc. This

process can not continue indefinitely, because
R

IÊ0
õ Ù 0 and [1i≥1JÊi ≥ IÊ0 . Then there

is a dyadic interval J strictly contained in IÊ0 , with the same left endpoint that IÊ0 and

such that
R
JÊ õ Ù 0. Fix J and set ° ≥ üJ

�
M +

K,d(õüIÊ0
)
��qÛp0

. Observe that for all x 2 J,
M +

K,d(õüIÊ0
)(x) Ù 0. Furthermore, by (2.9),

R
IÊ0
õ Ú 1. This and the fact that M +

K,d is of
weak type (1, q0) (because M +

K,djf j � CTjf j) give that M +
K,d(õüIÊ0

)(x) Ú 1 a.e. x 2 J.
Then ° is nontrivial and it is bounded with compact support.

To prove (2.8) we use Theorem 2. We are going to show that for every dyadic interval
I ≥ [a, b) with

R
(�1,b) ° Ù 0, one has that

Z
IÊ
õ Ú 1 and

 Z
I[IÊ

�
M +

K,d(õüIÊ )
�q
°

!1Ûq

� C
 Z

IÊ
õ

!1Ûp

.

Let I ≥ [a, b) dyadic with
R
(�1,b) ° Ù 0. To prove that

R
IÊ õ Ú 1 we are going to see

that there exists a dyadic interval Q such that I0 ² Q and IÊ ² QÊ. Once we have proved
this, we have that

R
IÊ õ Ú 1 by (2.9). In order to prove the existence of Q, we observe

that we have the following three cases: I0 ² I, I ² I0, and I0 \ I ≥ ;. In the first case we
choose Q ≥ I. The second case is impossible because

R
(�1,b) ° Ù 0 and the support of °

is J. In the third case we have to work harder. First we observe that I is on the right of I0.
If I0 ² (�1, 0), and I ² [0,1), then it is obvious that there exists Q with the required
property. If I0 ² (�1, 0) and I ² (�1, 0) or I0 ² [0,1) and I ² [0,1) then there
is a dyadic interval H such that I0, I ² H. Let H be the smallest one with this property
and let H1, H2 ² H be the dyadic intervals with jH1j ≥

1
2 jHj ≥ jH2j. Then necessarily

I0 ² H1 and I ² H2. Since HÊ
1 ≥ H2 we have that IÊ ² HÊ

1 or IÊ ² HÊ. If IÊ ² HÊ
1 , we

choose Q ≥ H1 and if IÊ ² HÊ, we choose Q ≥ H.
In order to prove that

 Z
I[IÊ

�
M +

K,d(õüIÊ )
�q
°

!1Ûq

� C
 Z

IÊ
õ

!1Ûp

,

it is clear that we only have to consider I with (I [ IÊ) \ J Â≥ ;. Let f1 ≥ õüIÊ\IÊ0
and

f2 ≥ õü(IÊ�IÊ0 ). It suffices to prove the above inequality with õüIÊ replaced by f1 and
f2. Using that M +

K,d is of weak type (1, q0) and arguing as we did with T in the proof of
Theorem 3, we obtain

Z
I[IÊ

(M +
K,df1)q° �

Z
(I[IÊ)\J

�
M +

K,d(õüIÊ\IÊ0
)
�qÛp

(4. 11)

� CjJj1�
q

q0p
�
õ(IÊ)

�qÛp
≥ C

�
õ(IÊ)

�qÛp
,

where C depends only on p, q, q0 and J.
Let us estimate now

R
I[IÊ(M +

K,df2)q°.
If IÊ ² IÊ0 then f2 ≥ 0 and there is nothing to prove. If IÊ Â� IÊ0 then IÊ\ (R� IÊ0 ) Â≥ ;.

Since we are considering that (I [ IÊ) \ J Â≥ ;, we have that I \ J Â≥ ; or IÊ \ J Â≥ ;. If
IÊ \ J Â≥ ; then IÊ \ IÊ0 Â≥ ;, but this implies that IÊ0 ² IÊ which is a contradiction with
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the fact that
R

(�1,b) ° Ù 0. Thus, necessarily IÊ \ J ≥ ; and I \ J Â≥ ;. We have two
possibilities, I ² J or J ²

Â≥

I. Observe that I ² J leads to IÊ ² IÊ0 which is a contradiction.

Then we have that J ²
Â≥

I. If I Â� IÊ0 then IÊ \ IÊ0 Â≥ ; and since IÊ \ (R � IÊ0 ) Â≥ ; we

obtain that IÊ0 ² IÊ which is again a contradiction. Therefore J ²
Â≥

IÊ0 ² I.

Recall that we are estimating
R

I[IÊ(M +
K,df2)q°. Let x 2 J and let Ĩ be such that ĨÊ 2 Ax

and ĨÊ \ IÊ Â≥ ;. Then we can find a dyadic interval H such that I0 ² H, IÊ \ ĨÊ ² HÊ

and such that jHj ≥ jIÊ \ ĨÊj or jHj ≥ 2jIÊ \ ĨÊj. Thus, by condition (2.7),

K(jĨj)
Z

ĨÊ
õü(IÊ�IÊ0 ) ≥ K(jĨj)

Z
ĨÊ\IÊ

õ � K(jĨj)
 Z

ĨÊ\IÊ
õ

!1Ûp0 Z
IÊ
õ

!1Ûp

� CK(jHj)
 Z

HÊ
õ

!1Ûp0 Z
IÊ
õ

!1Ûp

� C
 Z

IÊ
õ

!1Ûp

.

It follows that
 Z

I[IÊ
(M +

K,df2)q°

!1Ûq

� C
�
°(J)

�1Ûq�
õ(IÊ)

�1Ûp
≥ C

�
õ(IÊ)

�1Ûp
.

This finishes the proof of Theorem 4.

FINAL REMARKS.
(1) It is possible to change the integrals over R in conditions (2.2) and (2.3) of The-

orem 1, by integrals over I. We can do it by the following result.

THEOREM 5. Let 1 Ú p � q Ú 1 or p ≥ 1 Ú q Ú 1. Let K, T and TÊ be as in
Theorem 1.

(1) If 1 Ú p � q Ú 1 the following conditions are equivalent
(a) There exists C such that for all f 2 Lp(v) and all ï Ù 0,

°
�n

x : jTf (x)j Ù ï
o�
� C

 
1
ïp

Z
jf jpv

!qÛp

.

(b) There exists C such that for every interval I ≥ [a, b) with
R
[b,1) õ Ù 0,

 Z
R

�
TÊ(üI°)

�p0
õ

!1Ûp0

� C
�
°(I)

�1Ûq0
Ú 1.

(c) There exists C such that for every interval I ≥ [a, b) with
R
[b,1) õ Ù 0,

 Z
I

�
TÊ(üI°)

�p0
õ

!1Ûp0

� C
�
°(I)

�1Ûq0
Ú 1.

(2) If p ≥ 1 Ú q Ú 1 then (a) is equivalent to
(d) There exists C such that for every bounded interval I

kTÊ(üI°)v�1kL1(v) � C
�
°(I)

�1Ûq0
Ú 1.
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PROOF OF THEOREM 5. We first prove that (a) ) (b). Using duality and (a) we have

 Z
R

�
TÊ(üI°)

�p0
õ

!1Ûp0

≥ kTÊ(üI°)v�1kLp0 (v)

≥ sup
fg½0:kgkLp (v)≥1g

Z
R

TÊ(üI°)g

≥ sup
fg½0:kgkLp (v)≥1g

Z
I
Tg°

≥ sup
fg½0:kgkLp (v)≥1g

Z 1
0
°
�n

x 2 I : Tg(x) Ù ï
o�

dï

� C
Z 1

0
min

�
°(I), Cï�q

�
dï ≥ C°(I)1Ûq0 .

It is obvious that (b) ) (c).

To prove that (c) ) (a) observe that this is a generalization of Theorem 2 in [LT].
The proof follows the same pattern, changing the kernel 1

x1�ã by K(x), the only exception
being the point where we have to prove that At ≥ sup0ÚïÚt ï

q°
�n

x : Tf (x) Ù ï
o�

is
finite. We are going to prove this.

As in [LT] it is enough to consider the case of small t and we may assume that f is
nonnegative and bounded with compact support [a, b] ² (�1,å), where å ≥ inffx :R

[x,1) õ ≥ 0g. Therefore,
R
[b,1) õ Ù 0 and °(a, b) Ú 1 by condition (c). Then, as in [LT]

we only have to prove that

sup
0ÚïÚt

ïq°
�n

x Ú a : Tf (x) Ù ï
o�
Ú 1.

Observe that x Ú a and Tf (x) Ù ï imply that ï Ú K(a � x)
R b

a f . Let

Bï ≥
(

y : K(y) Ù
ïRb
a f

)
.

Since K is nonincreasing and lower semicontinuous, Bï is an open interval, Bï ≥ (0, s).
Since limx!1 K(x) ≥ 0, s can not be infinity. On the other hand, K(s) ≥ ï(

R b
a f )�1, since

K is lower semicontinuous. Therefore, x Ú a and Tf (x) Ù ï imply that a � x 2 Bï and
then x 2 (a� s, a).

Choose t small enough to have that if ï Ú t then s Ù b� a. Then

ïq°
�n

x Ú a : Tf (x) Ù ï
o�
� ïq

Z a

a�s
° ≥ K(s)q

 Z b

a
f
!q Z a

a�s
°.

https://doi.org/10.4153/CJM-1997-051-6 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1997-051-6


1032 MARIA LORENTE

If p Ù 1 we may use Hölder’s inequality and get

ïq°
�n

x Ú a : Tf (x) Ù ï
o�
�

 Z b

a
f pv

!qÛp Z b

a
õ

!qÛp0

K(s)q
Z a

a�s
°

≥

 Z b

a
f pv

!qÛp Z b

a
õ(y)K(s)p0dy

!qÛp0 Z a

a�s
°

� C
 Z b

a
f pv

!qÛp Z b

a
õ(y)K(y � a + s)p0dy

!qÛp0 Z a

a�s
°

� C
 Z b

a
f pv

!qÛp

Ú 1.

We have used that s Ù b� a implies y � a + s Ú 2s, the growth condition of K and the
fact that (c) implies that there exists C such that

 Z b

a
õ(y)K(y � a + s)p0dy

!qÛp0 Z a

a�s
° � C.

(Claim (1.3))(2.1) in [LT]). If p ≥ 1 we follow the same proof as in [LT].

(2) Changing the orientation of the real line we obtain the last theorem for TÊ. There-
fore, for 1 Ú p � q Ú 1 the operator T is bounded from Lp(v) to Lq(°), if, and
only if, it is of weak type (p, q) with respect to the measures (v,°) and TÊ is of
weak type (q0, p0) with respect to the measures (°1�q0 , v1�p0 ).
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