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Abstract We study various Dirichlet series of the form
∑

n�1 f(πnα)/ns, where α is an irrational
number and f(x) is a trigonometric function like cot(x), 1/ sin(x) or 1/ sin2(x). The convergence is
slow and strongly depends on the Diophantine properties of α. We provide necessary and sufficient
convergence conditions using the continued fraction of α. We also show that any one of our series is
equal to a related series, which converges much faster, defined in term of iterations of the continued
fraction operator α �→ {1/α}.
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1. Introduction

We study the convergence of certain Diophantine Dirichlet series of the form

∞∑
n=1

f(πnα)
ns

, (1.1)

where α ∈ R \ Q, s ∈ R. We will consider functions f defined on R \ Z and such that
supx∈R\Z |sinr(πx)f(x)| < ∞ for some r � 1 but supx∈R\Z |sinρ(πx)f(x)| = +∞ for
any ρ < r. Typically, f is a trigonometric function such as a power of the cotangent
or cosecant functions. It is easy to find sufficient conditions on α and s that ensure
convergence of such series for almost all real numbers α (see Proposition 3.1). These
conditions are expressed in terms of the continued fraction of α, which explains the word
‘Diophantine’ in the title.

Sometimes, the sufficient conditions given in Proposition 3.1 are also necessary, but
when they are not it is a difficult problem to find the exact convergence conditions.
It is also difficult to accurately compute an approximate value of some specific exam-
ple of (1.1), because such series usually converge slowly, with the speed of convergence
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depending strongly on the Diophantine characteristics of α. An efficient alternative
expression for (1.1) is thus desirable.

The main results of the paper address both issues for the series

Φs(α) :=
∞∑

n=1

cot(πnα)
ns

and Φ̂s(α) :=
∞∑

n=1

1
ns sin2(πnα)

. (1.2)

We note that −πΦ̂s−1(α) is formally the derivative of Φs(α) with respect to α, but Φs(α)
is in fact nowhere continuous, which is a source of difficulty in the study undertaken here.
We will prove that, for s > 2, the series Φs(α) and Φ̂s(α) converge if and only if

∞∑
j=0

(−1)j qj+1(α)
qs
j (α)

and
∞∑

j=0

q2
j+1(α)
qs
j (α)

, (1.3)

respectively, converge, where qn(α) is the denominator of the nth convergent to α. We
will also prove alternative expressions for both series in (1.2); roughly speaking, these
identities provide an exact expression for the difference between a series in (1.2) and a
modified version of (1.3). The general results are presented in §§ 1.2 and 1.3, respectively.

In certain cases where s is an integer, these alternative expressions are quite simple
and enable one to compute numerical approximations of both series much faster than
with the series in (1.2). For example, where G3(x) = π3(x4 − 5x2 + 1)/(90x) and T j(α)
is the jth iterate of T (α) := {1/α}, with {·} the fractional part function. The right-hand
side is directly related to the series

∑
j�0(−1)jqj+1(α)/q3

j (α).
In § 1.4, we obtain sufficient convergence conditions and acceleration identities for the

three Diophantine Dirichlet series

Ψs(α) :=
∞∑

n=1

(−1)n cot(πnα)
ns

,

Ψ̂s(α) :=
∞∑

n=1

1
ns sin(πnα)

,

Ψ̃s(α) :=
∞∑

n=1

(−1)n

ns sin(πnα)
.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(1.4)

These series are tied together in our study. Generalizations of (1.2) (in particular, a
multivariate generalization where the Jacobi–Perron algorithm naturally appears) are
briefly discussed in § 7.

The study of the convergence at irrational points of ‘Diophantine’ Dirichlet or
trigonometric series is a classical subject, studied in particular by Hardy and Little-
wood [13, 14, 16], Chowla [7], Davenport [8, 9] and Walfisz [29]. In [16], the series
Ψ̂s(α) and Ψ̃s(α) are studied for s = 1 and s = 0 (when they diverge) for quadratic
numbers α =

√
a2 + 1, a an odd integer; these series also played a role in the recent

paper [4]. Our approach, which is different, might also be used in the situation of [16].
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On the convergence of Diophantine Dirichlet series 515

With σs(n) =
∑

d|n ds, Wilton [30] proved that the trigonometric series

∞∑
n=1

σ0(n)
n

cos(2πnα) and
∞∑

n=1

σ0(n)
n

sin(2πnα)

converge for a given irrational number α if and only if

∞∑
j=0

log2(qj+1(α))
qj(α)

and
∞∑

j=0

(−1)j log(qj+1(α))
qj(α)

,

respectively, converge. In principle, his method could even provide an explicit formula
(like the above one for Φ3(α)). Such questions have recently gained renewed interest,
after the introduction in [11] of the P -summation in the study of ‘Davenport’s identities’
(which in short ask ‘for which irrational numbers are two not-everywhere convergent
series equal?’ [8,9]), a method subsequently used in [21] for a similar purpose. A study
of the fine analytic properties of the Brjuno series

∑
j�0

log(qj+1(α))
qj(α)

was recently made in [3], in connection with a problem raised in [2]. In [26, 27], it is
proved that Bundschuh’s series defined by

∑∞
n=1(−1)[2nα]/n converges if and only if

∑
j�0,2�qj(α)

(−1)j log(qj+1(α))
qj(α)

converges, and that its Fourier series is

4
π

∑
n�1

1
n

σodd(n) sin(2πnα),

where σodd(n) is the number of odd divisors of n and [·] is the integer part function.
A ‘Diophantine’ expression for Bundschuh’s series could probably be derived from the
study in [26]. Finally, let us mention that in [10] Davenport gave a new proof of an
identity due to Hardy and Littlewood [15] for Hecke’s series

∑∞
n=1[nα]/ns (in the spirit

of the above expression for Φ3(α)), as well as a proof of the related identity

∞∑
n=1

[nα]xn =
∞∑

j=1

(−1)j−1 xqj(α)+qj−1(α)

(1 − xqj(α))(1 − xqj−1(α))
.

This identity is useful for studying the arithmetic nature of the values of the power series
on the left-hand side [22]. It is possible that the identities proved in this paper could
also be used to determine the arithmetic nature of the values of the series Φs(α).
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1.1. Properties of continued fraction expansions

Before going further, we recall a few properties of continued fractions. A classical
reference is [17].

For any real number α such that 0 < α < 1, we define the classical ‘continued fraction
operator’ T (α) = {1/α}, which maps (0, 1) into itself. This operator generates the regular
continued fraction

[a0; a1, a2, . . . ] = a0 +
1

a1 +
1

a2 + . . .

of α, where aj := [T j(α)]. We also define pn(α) and qn(α) as the numerator and
denominator, respectively, of the nth convergent [a0; a1, a2, . . . , an] to α; in particu-
lar, p−1(α) = 1, q−1(α) = 0 and p0(α) = 0, q0(α) = 1. (For the sake of better read-
ability, we will not always mention the dependence of qn(α) and pn(α) on α.) Both
sequences satisfy the same recurrence relation: for any n � 0, pn+1 = an+1pn + pn−1

and qn+1 = an+1qn + qn−1. It is useful to have in mind that pn(T k(α)) = pn+k(α) and
qn(T k(α)) = qn+k(α) for any integers k, n � 0, because the continued fraction of T k(α)
is [ak; ak+1, ak+2, . . . ]. We also have

T k(α) =
qkα − pk

pk−1 − qk−1α
=

|qkα − pk|
|qk−1α − pk−1|

and

αT (α) · · ·T k(α) = (−1)k(qkα − pk) = |qkα − pk|.

Furthermore, 1
2 � qk+1|qkα − pk| � 1, so that, for any real numbers r, s,

|qk−1α − pk−1|s
|pk − qkα|r �

qr
k+1

qs
k

. (1.5)

For any irrational α, we have qj � 2j/2, hence for any real number s > 0, the series∑
k |qkα−pk|s is convergent. Finally, the function T (α) is differentiable at any irrational

point α and at any rational point of [0, 1] that is not the inverse of an integer, where
T ′(α) = −1/α2. It follows that (T j(α))′ = (−1)j/(αT (α) · · ·T j−1(α))2 for any integer
j � 1 (as induction easily shows), and that

(αT (α) · · ·T j(α))′ = αT (α) · · ·T j(α)
j∑

k=0

(−1)k T k(α)
(αT (α) · · ·T k(α))2

(1.6)

at any irrational α, which follows by logarithmic differentiation and by the above formula
for (T j(α))′.

1.2. The series Φs(α)

Henceforth, zs = exp(s log(z)), where log(z) is defined with its principal branch and
|arg(z)| < π.
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For any real numbers s > 1 and α �= 0, set Fs(α, z) := π cot(πz) cot(παz)/zs, which is
a meromorphic function of z in the cut plane C \ (−∞, 0]. We also define

Gs(α) :=
1

2iπ

∫ 1/2−i∞

1/2+i∞
Fs(α, z) dz. (1.7)

An explicit expression of Gs(α) is not known in general, except when s = 2n + 1 is an
odd integer greater than or equal to 3:

G2n+1(α) = (−1)n+1(2π)2n+1
n+1∑
j=0

B2jB2n+2−2j

(2j)!(2n + 2 − 2j)!
α2j−1, (1.8)

where the Bn are the Bernoulli numbers.∗ See the end of § 4 for the proof of (1.8).
For any s > 1, we have

Gs(α) =
ζ(s + 1)

πα
+ Ps(α), (1.9)

where the Ps are bounded functions of α ∈ [0, 1]. This will also be proved in § 4.

Theorem 1.1. We fix a real number s > 2 and an irrational number α ∈ (0, 1). The
series Φs(α) converges if and only if

∞∑
j=0

(−1)j qj+1(α)
qs
j (α)

(1.10)

converges. Furthermore, we have the identity
∞∑

n=1

cot(πnα)
ns

=
∞∑

j=0

(−1)j |qj−1α − pj−1|s−1Gs(T j(α)), (1.11)

where both series converge (or diverge) simultaneously.

Remarks. Equation (1.9) implies that the right-hand side of (1.11) converges if and
only if

∞∑
j=0

(−1)j |qj−1α − pj−1|s
|qjα − pj |

converges (because, as stated above,
∑∞

j=0 |qj−1α − pj−1|s converges for any s > 0). We
will show that this is equivalent to the convergence of (1.10) when s > 2. For s > 2,
it follows from (1.10) that Φs(α) converges for almost all α because, for any ε > 0,
the inequality qj+1(α) �α,ε qj(α)1+ε holds for all j � 0 for almost all α (see § 2.2 for
details). If we assume that s > 1, it follows from Proposition 3.1 that Φs(α) converges
when

∑∞
j=0 qj+1(α)/qs

j (α) converges. In fact, it is likely that Theorem 1.1 holds with the
weaker assumption that s > 1. However, we cannot prove this.

∗ The polynomials R2n+1(α) := (−1)n+1(2π)−(2n+1)αG2n+1(α) form the sequence of Ramanujan
polynomials, whose analytic properties have recently been studied in [23]. As the name suggests, these
polynomials first appeared in certain formulae in Ramanujan’s notebooks on values of the zeta function at
odd integers: see, for example, [5,12]. Ramanujan’s formulae express ζ(4n+3) in terms of π4n+3R4n+3(i)
and of the series

∑
k�1 k−(4n+3)/(e2πk − 1). The presence of the polynomials R2n+1(α) in the present

paper is not a coincidence.
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1.3. The series Φ̂s(α)

For any real numbers s > 1 and α �= 0, set

F̂s(α, z) :=
π cot(πz)

zs sin2(παz)
= − 1

π

∂

∂α
Fs+1(α, z),

which is meromorphic in the cut plane C \ (−∞, 0]. We also define a function Ĝs(α) by

Ĝs(α) := − 1
π

∂Gs+1(α)
∂α

,

so that

Ĝs(α) =
1

2iπ

∫ 1/2−i∞

1/2+i∞
F̂s(α, z) dz.

In general, no explicit evaluation of Ĝs(α) is known, except when s = 2n is an even
integer greater than or equal to 2 (by (1.8)):

Ĝ2n(α) = (−1)n22n+1π2n
n+1∑
j=0

(2j − 1)B2jB2n+2−2j

(2j)!(2n + 2 − 2j)!
α2j−2. (1.12)

For any s > 1, we have

Ĝs(α) =
ζ(s + 2)
(πα)2

+ Qs(α), (1.13)

where the Qs are bounded functions of α ∈ [0, 1].

Theorem 1.2. We fix a real number s > 2 and an irrational number α ∈ (0, 1). The
series Φ̂s(α) converges if and only if

∞∑
j=0

q2
j+1(α)
qs
j (α)

(1.14)

converges. Furthermore, we have the identities

∞∑
n=1

1
ns sin2(πnα)

= − 1
π

∞∑
j=0

(−1)j ∂

∂α
(|qj−1α − pj−1|sGs+1(T j(α))), (1.15 a)

=
∞∑

j=0

(
|qj−1α − pj−1|s−2Ĝs(T j(α))

+ (−1)j+1 s

π
|qj−1α − pj−1|sGs+1(T j(α))

j−1∑
k=0

(−1)kT k(α)
(qkα − pk)2

)
, (1.15 b)

where the three series converge (or diverge) simultaneously.
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On the convergence of Diophantine Dirichlet series 519

Remarks. From the first assertion, it follows that Φ̂s(α) converges for almost all α.
By Lemma 3.2, Φ̂2(α) diverges for all α.

For any j � 0, the function |qj−1α − pj−1|sGs+1(T j(α)) is differentiable at any irra-
tional point α ∈ (0, 1), so that the summand on the right-hand side of (1.15 a) is well
defined for any irrational number. Equation (1.15 b) is obtained by means of (1.6). By
definition, we also have

Φ̂s(α) = − 1
π

∞∑
n=1

∂

∂α

(
cot(πnα)

ns+1

)
,

which means that (1.15 a) is the result of a formal differentiation applied to (1.11) (with s

changed to s+1). However, neither Φs(α) nor the right-hand side of (1.11) are continuous
at a single point of (0, 1) and there does not seem to be any general analytic result
enabling us to quickly deduce (1.15 a) from (1.11). Instead, we use an ad hoc method.

1.4. The series Ψs(α), Ψ̂s(α) and Ψ̃s(α)

The two series Φs(α) and Φ̂s(α) do not exhaust the possible use of our method. In this
section, we discuss the three series defined by (1.4). We obtain only sufficient conditions
for the convergence of the Diophantine Dirichlet series involved and prove acceleration
identities similar to those proved in Theorems 1.1 and 1.2.

For any real numbers s > 1 and α �= 0, we set

Ps(α, z) =
π cot(παz)
zs sin(πz)

and Qs(α, z) =
π

zs sin(πz) sin(παz)
.

We also define three functions:

Us(α) :=
1

2iπ

∫ 1/2−i∞

1/2+i∞
Ps(α, z) dz,

Vs(α) := αs−1Us

(
1
α

)
,

Ws(α) :=
1

2iπ

∫ 1/2−i∞

1/2+i∞
Qs(α, z) dz.

There are no known explicit evaluations of these integrals, except when s = 2n + 1 is an
odd integer greater than or equal to 3:

U2n+1(α) = (−1)n+1π2n+1
n+1∑
j=0

(22n+1 − 22j)B2jB2n+2−2j

(2j)!(2n + 2 − 2j)!
α2j−1, (1.16)

W2n+1(α) = (−1)nπ2n+1
n+1∑
j=0

(22j − 2)(22n+1−2j − 1)
B2jB2n+2−2j

(2j)!(2n + 2 − 2j)!
α2j−1. (1.17)
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Given a function X0 ∈ {Us, Vs, Ws}, we define a sequence (Xj)j�0 by the following
five rules:

1. if Xj−1 = Us and aj is even, then Xj = Vs;

2. if Xj−1 = Us and aj is odd, then Xj = Ws;

3. if Xj−1 = Ws and aj is even, then Xj = Ws;

4. if Xj−1 = Ws and aj is odd, then Xj = Vs;

5. if Xj−1 = Vs, then Xj = Us.

(We recall that ak = [T k(α)].) This enables us to define three sequences of functions:
(Uj,s)j�0, (Vj,s)j�0, (Wj,s)j�0, with U0,s = Us, V0,s = Vs and W0,s = Ws.

Theorem 1.3. We fix a real number s > 1 and an irrational number α ∈ (0, 1). Each
of the series Ψs(α), Ψ̂s(α), Ψ̃s(α) converges if

∞∑
j=0

qj+1(α)
qs
j (α)

(1.18)

converges. Furthermore, when (1.18) converges and s > 2, we have the identities

∞∑
n=1

(−1)n cot(πnα)
ns

=
∞∑

j=0

(−1)j |qj−1α − pj−1|s−1Uj,s(T j(α)), (1.19)

∞∑
n=1

1
ns sin(πnα)

=
∞∑

j=0

(−1)j |qj−1α − pj−1|s−1Vj,s(T j(α)), (1.20)

∞∑
n=1

(−1)n

ns sin(πnα)
=

∞∑
j=0

(−1)j |qj−1α − pj−1|s−1Wj,s(T j(α)). (1.21)

Remarks. For example, if aj is even for all j � 1, Wj,s = Ws for all j � 0. If a2j+1

is even for all j � 0, U2j,s = Us and U2j+1,s = Vs for all j � 0. If a2j+2 is even for all
j � 0, V2j,s = Us and V2j+1,s = Vs for all j � 0.

2. Closed forms and the irrationality exponent

In this section, we present exact evaluations (or ‘closed forms’) of the series Φs(α) and
Φ̂s(α), as well as some remarks on the convergence of these series for some classical
constants. Of course, it would be possible to find exact evaluations for Ψs(α), Ψ̂s(α)
and Ψ̃s(α).
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2.1. Closed forms

Since |qj−1α − pj−1| = αT (α) · · ·T j−1(α), it is easy to see that (1.11) and (1.15 a)
respectively imply the identities

Φs(α) = −αs−1Φs(T (α)) + Gs(α), (2.1)

Φ̂s(α) = αs−2Φ̂s(T (α)) +
s

π
αs−1Φs+1(T (α)) + Ĝs(α), (2.2)

where in (2.1) and (2.2), respectively, we assume that
∑
j�0

(−1)jqj+1/qs
j and

∑
j�0

q2
j+1/qs

j ,

respectively, converge, so that all the involved series converge. By iteration of (2.1)
and (2.2), we can obtain closed formulae for Φs(α) and Φ̂s(α) when T k(α) = α + j

for some integers k � 0, j ∈ Z. This can happen if and only if α is a quadratic num-
ber. Since the sequence of partial quotients (aj)j of a quadratic number is periodic, the
conditions of convergence in (2.1) and (2.2) are satisfied.

For example, if a quadratic number α satisfies the equation T (α) = α, we have

Φs(α) =
Gs(α)

1 + αs−1 and Φ̂s(α) =
sαs−1Gs+1(α) + (1 + αs)πĜs(α)

π(1 + αs)(1 − αs−2)
.

For instance, we can take α =
√

2 − 1 or α = 1
2 (

√
5 − 1). Of course, these identities are

really closed forms when Gs (or Gs+1) and Ĝs are expressed as (1.8) and (1.12), which
happens when s is odd for the evaluation of Φs(α) and when s is even for the evaluation
of Φ̂s(α).

2.2. Irrationality exponent

We might want to compute an approximate value of Φs(α) ‘naively’ using the definition
of Φs(α). The identity (4.9) clearly shows that the speed of convergence of the Nth partial
sums Φs,N (α) of Φs(α) strongly depends on the speed of convergence to 0 of the sum

∞∑
j=m+1

(−1)j qj+1

qs
j

,

where qm � N < qm+1. This is in accordance with the folklore observation that the value
of Φs,N (α) changes (relatively) quickly when N is the denominator of a convergent to α,
but otherwise changes (relatively) more slowly between two such denominators.

For interesting numbers other than quadratic numbers, like e, log(2), π or real algebraic
numbers of degree greater than or equal to 3, it does not seem possible to simplify further
the right-hand side of the identities obtained for Φs(α) and Φ̂s(α) in Theorems 1.1 and 1.2.
However, these right-hand sides converge much faster than the corresponding left-hand
sides. When the functions Gs(α) or Ĝs(α) can be evaluated quickly, this provides a fast
method to compute Φs(α) or Φ̂s(α), in particular for αs whose continued fractions are
well known.
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We recall that an irrational number α is said to have a finite irrationality exponent
m(α) if there exists a constant c(α) > 0 such that

∣∣∣∣α − p

q

∣∣∣∣ � 1
c(α)qm(α)

for all integers p, q with q � 1. We denote by µ(α) the irrationality exponent of α, defined
as the infinimum of all possible m(α), regardless of the value of c(α). We always have
µ(α) � 2. If µ(α) is finite, its value provides a bound on the growth of the denominators
qj(α) of the continued fractions of α. Indeed, for any ε > 0 and any j � 0, we have

d(α, ε)

q
µ(α)+ε
j

�
∣∣∣∣α − pj

qj

∣∣∣∣ � 1
qjqj+1

for some d(α, ε) > 0. Hence, qj+1 � d(α, ε)−1q
µ(α)−1+ε
j . Furthermore, for almost all α,

µ(α) = 2 (Dirichlet) so that, for all ε > 0 and almost all α, we have qj+1 �α,ε q1+ε
j

for all j � 0. It follows that, for such an α, the series Φs(α) and Φ̂s(α) converge (at
least) when s > µ(α) − 1 and s > 2µ(α) − 2, respectively. It is known that µ(e) = 2 [1],
µ(log(2)) � 3.5775 [20], µ(π) � 7.6064 [25] and µ( 3

√
2) = 2 [24]. For example, Φs(e) and

Φ̂2s(e) converge for all s > 1, and Φ4(log(2)) or Φ̂14(π) are convergent. But it is not yet
possible to say if the series Φ3(log(2)) or Φ̂13(π) are convergent. (It is conjectured that
µ(log(2)) = µ(π) = 2.)

3. A sufficient condition of convergence of the series (1.1)

In this section, we prove the following result.

Proposition 3.1. Let f be a function defined on R\Z that takes real values and such
that there exist a real number r � 1 and a constant c > 0 such that

|f(x)| � c

|sin(x)|r (3.1)

for any x ∈ R \ Z. Then, for any integer N such that qm � N < qm+1 for some m � 1,
any integer k � 0, any real number α ∈ R \ Q and any real number s > r, we have

N∑
n=1

∣∣∣∣f(πnT k(α))
ns

∣∣∣∣ �
k+m∑

j=k+1

qr
j+1(α)
qs
j (α)

. (3.2)

In particular, the series
∞∑

n=1

f(πnα)
ns

is convergent if α ∈ R \ Q satisfies the Diophantine condition

∞∑
j=0

qr
j+1(α)
qs
j (α)

< ∞. (3.3)
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Under the condition s > r, the series
∑∞

n=1 f(πnα)/ns converges for almost all real
numbers α.

Proposition 3.1 is a consequence of the following lemma, which is a generalization
of some of Kruse’s results [18], corresponding to the case r = 1. We use the standard
notation that ‖x‖ is the distance from x to Z. See also [28, Exercise 168, p. 216] for
related questions.

Lemma 3.2. Let r, s be real numbers such that s > r � 1, and let α ∈ R \ Q. The
series

∞∑
n=1

1
ns‖nα‖r

(3.4)

converges if and only if
∑∞

j=0 qr
j+1(α)/qs

j (α) converges. More precisely, for any integer N

such that qm � N < qm−1, we have

N∑
n=1

1
ns‖nα‖r

�
m∑

j=0

qj+1(α)r

qj(α)s
, (3.5)

where the two implicit constants are explicitly computable and depend at most on s, r,
α but not on m or N .

Remark 3.3. It is also possible to consider the problem of the convergence/divergence
of the series (3.4) where the condition s > r � 1 is relaxed, but since this is not directly
connected to our study, we do not consider this question here.

Proof of Lemma 3.2. We fix the integer N and define m by the inequalities qm �
N < qm−1. It is obvious that we have the lower bound

N∑
n=1

1
ns‖nα‖r

�
m∑

j=1

1
qs
j‖qjα‖r

�
m∑

j=1

qr
j+1

qs
j

(3.6)

because ‖qjα‖ � 1/qj+1 for all j.
It is a little more difficult to obtain an upper bound of the same quality as (3.6). We

write

N∑
n=qm

1
ns‖nα‖r

=
N∑

n=qm

n �≡0,qm−1[qm]

1
ns‖nα‖r

+
N∑

n=qm

n≡0[qm]

1
ns‖nα‖r

+
N∑

n=qm

n≡qm−1[qm]

1
ns‖nα‖r

= S1(qm, N) + S2(qm, N) + S3(qm, N).

The second and third sums can be bounded easily:

S2(qm, N) =
N∑

n=qm

n≡0[qm]

=
Q∑

k=1

1
(kqm)s‖kqmα‖r

�
Q∑

k=1

qr
m+1

(kqm)s
� ζ(s)

qr
m+1

qs
m
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(where Q = [N/qm] < am+1) because ‖kqmα‖ � ‖qmα‖ � 1/qm+1 for any k = 1, . . . ,

am+1 − 1. Similarly,

S3(qm, N) =
N∑

n=qm

n≡qm−1[qm]

1
ns‖nα‖r

=
Q′∑

k=1

1
(kqm + qm−1)s‖(kqm + qm−1)α‖r

�
Q′∑

k=1

qr
m+1

(kqm)s
� ζ(s)

qr
m+1

qs
m

(where Q′ = [(N − qm−1)/qm] < am+1) because ‖(kqm + qm−1)α‖ � ‖qmα‖ � 1/qm+1

for any k = 1, . . . , am+1 − 1. To bound S1(qm, N), we write

S1(qm, N) =
N∑

n=qm

n �≡0,qm−1[qm]

1
ns‖nα‖r

=
Q∑

h=1

rh∑
j=1

j �=qm−1

1
(hqm + j)s‖(hqm + j)α‖r

� 1
qs
m

Q∑
h=1

1
hs

th∑
j=1

j �=qm−1

1
‖(hqm + j)α‖r

,

where th = qm − 1 if 1 � h < Q, th = N − Qqm is h = Q. We now use a crucial remark
of [18, (39), p. 241] to get

th∑
j=1

j �=qm−1

1
‖(hqm + j)α‖r

� 2
th∑

k=1

1
(k/qm)r

for any h = 1, . . . , Q = [N/qm]. Hence,

S1(qm, N) =
N∑

n=qm

n �≡0,qm−1[qm]

1
ns‖nα‖r

� 1
qs−r
m

Q∑
h=1

log(th)
hs

� ζ(s)
log(qm)

qs−r
m

.

(We use the hypothesis r � 1 to get the first inequality.) Therefore,

N∑
n=1

1
ns‖nα‖r

�
m∑

k=1

(S1(qk, qk+1 − 1) + S2(qk, qk+1 − 1) + S3(qk, qk+1 − 1))

�
m∑

k=1

(
qr
k+1

qs
k

+
log(qk)
qs−r
k

)
�

m∑
k=1

qr
k+1

qs
k

,
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where the last inequality holds because the series
∑∞

k=1 log(qk)/qs−r
k converges for all

irrational α by the condition s > r. This completes the proof of (3.5). �

Proof of Proposition 3.1. The domination condition (3.1) on f(x) shows that it is
sufficient to find conditions ensuring the convergence of

∞∑
n=1

1
ns|sin(πnT k(α))|r .

We have |sin(πnT k(α))| = sin(π‖nT k(α)‖) � ‖nT k(α)‖, where both implicit constants
could be explicitly computed. Hence, it is enough to find an upper bound ensuring the
convergence of

∞∑
n=1

1
ns‖nT k(α)‖r

.

By Lemma 3.2,

N∑
n=1

1
ns‖nT k(α)‖r

�
m∑

j=1

1
q̂s
j‖q̂jT k(α)‖r

�
m∑

j=1

q̂r
j+1

q̂s
j

,

where q̂j = qj(T k(α)) is the denominator of the jth convergent to T k(α). Since q̂j =
qj+k(α), we obtain

N∑
n=1

1
ns‖nT k(α)‖r

�
k+m∑

j=k+1

qr
j+1

qs
j

,

as expected. �

4. Proof of Theorem 1.1

4.1. Preliminary observations

It is necessary that
lim

k→+∞

qk+1

qs
k

= 0

for the convergence of Φs(α). Indeed, for n = qk, we have

cot(πnα)
ns

=
cos(πqkα)

qs
k sin(πqkα)

= ± cos(π‖qkα‖)
qs
k sin(π‖qkα‖)

=
±1 + O(‖qkα‖2)

qs
k(‖qkα‖ + O(‖qkα‖3))

=
±1

qs
k‖qkα‖ + O

(
‖qkα‖

qs
k

)
.

Since ‖qkα‖ � 1/qk+1, the convergence of cot(πnα)/ns to 0 implies that of qk+1/qs
k to 0.
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From (1.5), we deduce that

∞∑
j=0

qr
j+1

qs
j

and
∞∑

j=0

|qj−1α − pj−1|s
|qjα − pj |r

converge or diverge simultaneously for any real numbers r, s. But (1.5) is not sufficient
to ensure immediately that, for s > 2, the series

∞∑
j=0

(−1)j qj+1

qs
j

and
∞∑

j=0

(−1)j |qj−1α − pj−1|s
|qjα − pj |

converge or diverge simultaneously. This can be proved by means of a refinement of (1.5).
For any j � 0, we have

qjα − pj = (−1)j |qjα − pj | =
(−1)j

qj+1 + xjqj
,

where xj := [0; aj+2, aj+3, . . . ]. In particular, 0 � xj � 1/aj+2. Then, we have a chain of
‘equalities’:

(−1)j |qj−1α − pj−1|s
|qjα − pj |

= (−1)j qj+1 + xjqj

(qj + xj−1qj−1)s

= (−1)j qj+1

(qj + xj−1qj−1)s
+ O

(
1

qs−1
j

)

= (−1)j qj+1

qs
j

+ O
(

xj−1qj−1qj+1

qs
j

)
+ O

(
1

qs−1
j

)

= (−1)j qj+1

qs
j

+ O
(

qj−1qj+1

aj+1qs
j

)
+ O

(
1

qs−1
j

)

= (−1)j qj+1

qs
j

+ O
(

qj−1

qs−1
j

)
+ O

(
1

qs−1
j

)

= (−1)j qj+1

qs
j

+ O
(

1
qs−2
j

)

because qj+1 � 2aj+1qj . Since
∑

j 1/qs−2
j converges (for s > 2), the assertion follows.

We deduce that, in the first assertion of Theorem 1.1, we can consider

∞∑
j=0

(−1)j |qj−1α − pj−1|s
|qjα − pj |

instead of
∞∑

j=0

(−1)j qj+1

qs
j

.
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4.2. Proof of Theorem 1.1

Set K = N + 1
2 for any integer N � 1. We consider the integral

Is(α) :=
1

2iπ

∫
RN

Fs(α, z) dz,

where RN is the rectangle with sides [ 12 − iN, K − iN ], [K − iN, K +iN ], [K +iN, 1
2 +iN ]

and [12 + iN, 1
2 − iN ]. The function Fs(α, z) is holomorphic inside RN and continuous on

the boundary. Its poles inside RN are

• at z = k ∈ Z, 1 � k � N , of order 1 with residue cot(πkα)/ks,

• at z = k/α ∈ Z, 1 � k � Nα, of order 1 with residue αs−1 cot(πk/α)/ks (the
assumption 0 < α < 1 is used here)Abbreviations.

By the residue theorem, we thus have the identity

N∑
k=1

cot(πkα)
ks

= −αs−1
[Nα]∑
k=1

cot(πk/α)
ks

+ Is(α). (4.1)

We now proceed to bound the integral Is(α). On the sides C1 := [12 − iN, K − iN ] and
C2 := [K + iN, 1

2 + iN ], it is clear that |Fs(z)| � N−s, where the implicit constant is
absolute. Hence, ∣∣∣∣ 1

2iπ

∫
Cj

Fs(α, z) dz

∣∣∣∣ � 1
Ns−1 (4.2)

for j = 1, 2.
On the side C3 := [K − iN, K +iN ], the estimate is a little more complicated: we have

∣∣∣∣ 1
2iπ

∫
Cj

Fs(α, z) dz

∣∣∣∣ �

⎧⎪⎪⎨
⎪⎪⎩

1
Ns−2 if N � 1/α,

1
αNs−1 if N � 1/α.

The proof runs as follows. For any z = K + iy ∈ C3, we have

|Fs(α, z)| �
∣∣∣∣ sinh(πy) cosh(παy)
sinh(παy) cosh(πy)Ns

∣∣∣∣. (4.3)

If |y| � 1/α,
∣∣∣∣ sinh(πy) cosh(παy)
sinh(παy) cosh(πy)

∣∣∣∣ = O(1),

where the constant is absolute. On the other hand, if |y| � 1/α, we have∣∣∣∣ sinh(πy) cosh(παy)
sinh(παy) cosh(πy)

∣∣∣∣ � 1
α

.
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Therefore, if N � 1/α, we have
∣∣∣∣ 1
2iπ

∫
Cj

Fs(α, z) dz

∣∣∣∣ �
∫ 1/α

0
|Fs(α, K + iy)|dy +

∫ N

1/α

|Fs(α, K + iy)|dy

� 1
α2Ns

+
N − 1/α

Ns

� 2
Ns−2 .

If N � 1/α, we have
∣∣∣∣ 1
2iπ

∫
Cj

Fs(α, z) dz

∣∣∣∣ �
∫ N

0
|Fs(α, K + iy)|dy � N

αNs
=

1
αNs−1 .

This proves (4.3).
It remains to obtain an estimate of C4 := [12 + iN, 1

2 − iN ]. We write

1
2iπ

∫
C4

Fs(α, z) dz = Gs(α) +
1

2iπ

∫ 1/2+i∞

1/2+iN
Fs(α, z) dz +

1
2iπ

∫ 1/2+iN

1/2−i∞
Fs(α, z) dz.

We have
∫ 1/2+i∞

1/2+iN
Fs(α, z) dz = iπ

∫ +∞

N

tanh(πt) cot(πα( 1
2 + it))

( 1
2 + it)s

dt

�
∫ +∞

N

tanh(πt) coth(παt)
| 12 + it|s

dt

� N1−s

α

because 0 � tanh(πt) coth(παt) � 1/α for all t � 0. A similar bound holds on the interval
( 1
2 − i∞, 1

2 − iN ]. Hence,

1
2iπ

∫
C4

Fs(α, z) dz = Gs(α) + O
(

1
αNs−1

)
. (4.4)

Using (4.2)–(4.4) in (4.1), we deduce that

N∑
k=1

cot(πkα)
ks

= −αs−1
[Nα]∑
k=1

cot(πk/α)
ks

+ Gs(α) + O(EN (α)) (4.5)

where the implicit constant depends at most on s and

EN (α) =

⎧⎪⎪⎨
⎪⎪⎩

1
Ns−2 if N � 1/α,

1
αNs−1 if N � 1/α.

(4.6)

https://doi.org/10.1017/S0013091510001069 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091510001069


On the convergence of Diophantine Dirichlet series 529

Let us define 
 = 
N (α) as the smallest integer such that [· · · [[Nα]T (α)] · · ·T �(α)] = 0.
It is well defined because [· · · [[Nα]T (α)] · · ·T �(α)] � NαT (α) · · ·T �(α) = N |q�α− p�| →
0 as 
 → +∞. This inequality also implies that 
qk

(α) � k for any k � 0 because
qk|qkα − pk| < 1. We now prove that, for any j � 
N (α) − 9,

[· · · [[Nα]T (α)] · · ·T j(α)] � 1
2NαT (α) · · ·T j(α) (4.7)

and that 
qk
(α) � k − 8. To do this, we first have to show that q�N (α) � N . Indeed,

[· · · [[Nα]T (α)] · · ·T �N (α)−1(α)] is a positive integer (by definition of 
N (α)) so that

1 � [· · · [[Nα]T (α)] · · ·T �N (α)−1(α)] � N |q�N (α)−1α − p�N (α)−1| � N

q�N (α)
.

Now, for all j � 0,

[· · · [[Nα]T (α)] · · ·T j(α)] � NαT (α) · · ·T j(α) −
j+1∑
k=1

T k(α) · · ·T j(α)

= NαT (α) · · ·T j(α)
(

1 −
j∑

k=0

1
NαT (α) · · ·T k(α)

)

= N |qjα − pj |
(

1 −
j∑

k=0

1
N |qkα − pk|

)
.

Hence,

[· · · [[Nα]T (α)] · · ·T j(α)] � N |qjα − pj |
(

1 − 2
q1 + · · · + qj+1

N

)

� N |qjα − pj |
(

1 − 8qj+1

N

)
(4.8)

by the inequality q1 + · · ·+qj+1 � 4qj+1. But we have N � q�N (α) � 16q�N (α)−8 � 16qj+1

if j � 
N (α) − 9. Hence, for j � 
N (α) − 9,

[· · · [[Nα]T (α)] · · ·T j(α)] � N |qjα − pj |(1 − 1
2 ) = 1

2NαT (α) · · ·T j(α),

which proves the first assertion. For the second assertion, we use inequality (4.8) with
N = qk and get

[· · · [[qkα]T (α)] · · ·T j(α)] � qk|qjα − pj |
(

1 − 2qj+1

qk

)
.

But, for any j � k − 9,
8qj+1

qk
� 8qj+1

16qk−8
� 8qj+1

16qj+1
=

1
2

and hence [· · · [[qkα]T (α)] · · ·T j(α)] > 0. Therefore 
qk
(α) � k − 8.
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We can now return to the proof of Theorem 1.1. By 1-periodicity of cot(πz), we can
rewrite (4.5) as

N∑
k=1

cot(πkα)
ks

= −αs−1
[Nα]∑
k=1

cot(πkT (α))
ks

+ Gs(α) + O(EN (α)).

Since T (α) ∈ (0, 1), we can iterate this equation to get

N∑
k=1

cot(πkα)
ks

=
�∑

j=0

(−1)j(αT (α) · · ·T j−1(α))s−1Gs(T j(α))

+ (αT (α) · · ·T �(α))s−1
[···[[Nα]T (α)]···T �(α)]∑

k=1

cot(πkT �+1(α))
ks

+ O
( �∑

j=0

(αT (α) · · ·T j−1(α))s−1E[···[[Nα]T (α)]···T j−1(α)](T j(α))
)

.

In this expression, we adopt the conventions that, for j = 0, [· · · [[Nα]T (α)] · · ·T j−1(α)] =
N and αT (α) · · ·T j−1(α) = 1. By definition of 
, the sum

[···[[Nα]T (α)]···T �(α)]∑
k=1

cot(πkT �+1(α))
ks

is empty and vanishes, yielding the identity

N∑
k=1

cot(πkα)
ks

=
�N (α)∑
j=0

(−1)j |qj−1α − pj−1|s−1Gs(T j(α))

+ O
( �N (α)∑

j=0

(αT (α) · · ·T j−1(α))s−1E[···[[Nα]T (α)]···T j−1(α)](T j(α))
)

.

(Recall that αT (α) · · ·T j−1(α) = |qj−1α − pj−1|.)
We set

εN :=
�N (α)∑
j=0

(αT (α) · · ·T j−1(α))s−1E[···[[Nα]T (α)]···T j−1(α)](T j(α))

and we prove that εN tends to 0. In εN , we have to distinguish the cases j � 
N (α) − 8
and j � 
N (α) − 7. In the first case,

0 �
�N (α)−8∑

j=0

(αT (α) · · ·T j−1(α))s−1E[···[[Nα]T (α)]···T j−1(α)](T j(α))

�
�N (α)−8∑

j=0

(αT (α) · · ·T j−1(α))s−1

[· · · [[Nα]T (α)] · · ·T j−1(α)]s−2
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� 1
Ns−2

�N (α)−4∑
j=0

αT (α) · · ·T j−1(α)

� 1
Ns−2 ,

where we use (4.7). In the second case, since [· · · [[Nα]T (α)] · · ·T j−1(α)] � 1 (because
j − 1 � 
N (α) − 1), we use the trivial upper bound deduced from (4.6):

0 � E[···[[Nα]T (α)]···T j−1(α)](T j(α)) � 1
T j(α)

.

Hence, for 
N (α) − 7 � j � 
N (α),

|(αT (α) · · ·T j−1(α))s−1E[···[[Nα]T (α)]···T j−1(α)](T j(α))| � (αT (α) · · ·T j−1(α))s−1

T j(α)

� qj+1

qs
j

.

Therefore,

εN = O
(

1
Ns−2

)
+ O

( �N (α)∑
j=�N (α)−7

qj+1

qs
j

)

and

N∑
k=1

cot(πkα)
ks

=
�N (α)∑
j=0

(−1)j |qj−1α − pj−1|s−1Gs(T j(α))

+ O
(

1
Ns−2

)
+ O

( �N (α)∑
j=�N (α)−7

qj+1

qs
j

)
. (4.9)

We can now deduce the theorem. The assumption s > 2 ensures that O(1/Ns−2) tends
to 0. We assume for the moment that

Gs(T j(α)) =
ζ(s + 1)
πT j(α)

+ Ps(T j(α))

with Ps(α) = O(1) for all α ∈ [0, 1]; this will be proved below. Since

T j(α) =
∣∣∣∣ qjα − pj

qj−1α − pj−1

∣∣∣∣,
we have, for any integer J � 0,

J∑
j=0

(−1)j |qj−1α − pj−1|s−1Gs(T j(α))

=
ζ(s + 1)

π

J∑
j=0

(−1)j |qj−1α − pj−1|s
|qjα − pj |

+
J∑

j=0

(−1)j |qj−1α − pj−1|s−1Ps(T j(α)).
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On the right-hand side, the second sum converges for any irrational number α (because
Ps(T j(α)) = O(1)). Furthermore, since

|qj−1α − pj−1|s
|qjα − pj |

� qj+1

qs
j

,

the convergence of
∞∑

j=0

(−1)j |qj−1α − pj−1|s−1Gs(T j(α))

implies that

lim
N→+∞

�N (α)∑
j=�N (α)−7

qj+1

qs
j

= 0.

Thus, the convergence of
∞∑

k=1

cot(πkα)
ks

follows, with the expected identity.
On the other hand, with N = qm(α) for m large enough, the identity (4.9) becomes

qm∑
k=1

cot(πkα)
ks

=
m∑

j=0

(−1)j |qj−1α − pj−1|s−1Gs(T j(α))

−
m∑

j=�qm (α)+1

(−1)j |qj−1α − pj−1|s−1Gs(T j(α))

+ O
(

1
qs−2
m

)
+ O

( �qm (α)∑
j=�qm (α)−7

qj+1

qs
j

)

=
m∑

j=0

(−1)j |qj−1α − pj−1|s−1Gs(T j(α))

+ O
(

1
qs−2
m

)
+ O

( m∑
j=m−15

qj+1

qs
j

)

because m − 8 � 
qm(α) � m and

m∑
j=�qm (α)+1

(−1)j |qj−1α − pj−1|s−1Gs(T j(α)) = O
( m∑

j=m−7

qj+1

qs
j

)
= O

( m∑
j=m−15

qj+1

qs
j

)
.

We have seen as a preliminary remark that the convergence of
∑∞

k=1 cot(πkα)/ks implies
that

lim
m→+∞

qm+1

qs
m

= 0.
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Hence, the series
∞∑

j=0

(−1)j |qj−1α − pj−1|s−1Gs(T j(α))

converges. This completes the proof of the theorem.

We now prove (1.9), i.e. that Gs(α) = ζ(s + 1)/πα + Ps(α), where Ps(α) is bounded
on [0, 1]. The function

f(α, t) := cot(πα( 1
2 + it)) − 1

πα( 1
2 + it)

is continuous as a function of α ∈ [0, 1] and t ∈ R, and its modulus is bounded by 1 on
[0, 1] × R. In the definition (1.7) of Gs(α), we make the change of variable z = 1

2 + it, so
that

Gs(α) = − 1
2πα

∫ ∞

−∞

tanh(πt)
( 1
2 + it)s+1

dt − 1
2

∫ ∞

−∞

tanh(πt)f(α, t)
( 1
2 + it)s

dt.

Using the residue theorem on the rectangular contour RN defined above, it is easy to
prove that

− 1
2πα

∫ ∞

−∞

tanh(πt)
( 1
2 + it)s+1

dt =
ζ(s + 1)

πα

for any s > 0. This gives the desired result with

Ps(α) = −1
2

∫ ∞

−∞

tanh(πt)f(α, t)
( 1
2 + it)s

dt,

which is obviously bounded for α ∈ [0, 1].

Finally, the evaluation (1.8) of Gs(α) when s = 2n+1 is a consequence of the fact that
−2G2n+1(α) is equal to the residue at z = 0 of F2n+1(α, z). This is proved by integrating
F2n+1(α, z) on the rectangular contour with sides [12 − iN, 1

2 + iN ], [12 + iN, − 1
2 + iN ],

[− 1
2 + iN, − 1

2 − iN ], [− 1
2 − iN, 1

2 − iN ]: in the limit N → +∞, the residue of F2n+1(α, z)
at z = 0 is equal to

1
2iπ

∫ 1/2+i∞

1/2−i∞
F2n+1(α, z) dz +

1
2iπ

∫ −1/2−i∞

−1/2+i∞
F2n+1(α, z) dz = −2G2n+1(α),

where we use the fact that F2n+1(α,−z) = −F2n+1(α, z). The explicit computation of
this residue is then done by means of the Laurent expansion

cot(z) =
∞∑

n=0

(−1)n 22nB2n

(2n)!
z2n−1.

Note that Euler’s formula

ζ(2n) = (−1)n+1 22n−1B2n

(2n)!
π2n

applied to (1.8) enables us to get another proof of (1.9) when s = 2n + 1.
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5. Proof of Theorem 1.2

We first observe that, for any real number s � 2, Φ̂s(α) converges if and only if

∞∑
j=1

qj+1(α)2

qj(α)s

converges. This is a consequence of Lemma 3.2 because, as we mentioned in its proof, we
have sin2(πnα) � ‖nα‖2. This proves the first assertion of Theorem 1.2.

We now turn to the proof of (1.15 a). The proof starts similarly to that of Theorem 1.1
but differs significantly in the details. Without loss of generality, we assume that

∞∑
j=0

q2
j+1

qs
j

(5.1)

is convergent. We also assume that s > 2: a condition that will be justified below.
Differentiation of (4.1) with respect to α yields

N∑
k=1

1
ks sin2(πkα)

= αs−2
[Nα]∑
k=1

1
ks sin2(πkT (α))

+
s

π
αs−1

[Nα]∑
k=1

cot(πkT (α))
ks+1 − 1

2π

∂Is(α)
∂α

(5.2)
for any α ∈ R \ Q, where

− 1
π

∂Is(α)
∂α

= − 1
π

∂

∂α

1
2iπ

∫
RN

Fs+1(α, z) dz =
1

2iπ

∫
RN

F̂s(α, z) dz

and RN is the rectangular contour defined at the beginning of § 4. In particular, K =
N + 1

2 .
Using the method of § 4, we obtain

1
2iπ

∂Is(α)
∂α

= Ĝs(α) + O
(

1
Ns−1

)
+ O

(
1

αNs−1‖(2N + 1)α‖

)
. (5.3)

With the same notation used in § 4 for the sides Ck, k = 1, 2, 3, 4, we have
∣∣∣∣ 1
2iπ

∫
Cj

F̂s(α, z) dz

∣∣∣∣ � 1
Ns

for k = 1, 2. On C3, we have

|F̂s(α, z)| � 1
Ns

∣∣∣∣ sin(πy)
sinh(παy) sin(πα(K + iy))

∣∣∣∣ � 1
αNs‖Kα‖ � 2

αNs‖(2N + 1)α‖

and (5.3) follows. (The inequality ‖Kα‖ � 1
2‖(2N + 1)α‖ is easy.) On C4, we have

1
2iπ

∫
Cj

F̂s(α, z) dz = Ĝs(α) + O
(

1
Ns−1

)
.
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We have
lim
N

1
Ns−1‖(2N + 1)α‖ = 0.

Indeed, if 2N + 1 is not a denominator of a convergent to α,

1
Ns−1‖(2N + 1)α‖ � 1

Ns−2 → 0,

whereas if 2N + 1 = qk for some k,

1
Ns−1‖(2N + 1)α‖ � qk+1

qs−1
k

�
q2
k+1

qs
k

→ 0,

because of condition (5.1). Note that it is just above that we use the assumption that
s > 2.

Using all the previous estimates on the sides Cj , we deduce that

lim
N→+∞

1
2iπ

∫
RN

F̂s(α, z) dz = Ĝs(α). (5.4)

Furthermore, under (5.1), the series
∞∑

k=1

1
ks sin2(πkα)

and
∞∑

k=1

1
ks sin2(πkT (α))

are convergent (by Proposition 3.1), and this is also the case for the series
∞∑

k=1

cot(πkT (α))
ks+1 ,

which converges under an even weaker hypothesis. For future use, we observe here that,
again by Proposition 3.1, the series

∞∑
k=1

cot(πkT j(α))
ks+1 (5.5)

is bounded by a constant independent of the integer j � 0.
Hence, under (5.1), we can pass to the limit N → +∞ in (5.2): using (5.4), we obtain

∞∑
k=1

1
ks sin2(πkα)

= αs−2
∞∑

k=1

1
ks sin2(πkT (α))

+
s

π
αs−1

∞∑
k=1

cot(πkT (α))
ks+1 + Ĝs(α).

Iterating this identity, we get

Φ̂s(α) = (αT (α) · · ·T J(α))s−2Φ̂s(T J+1(α)) +
J∑

j=0

(αT (α) · · ·T j−1(α))s−2Ĝs(α)

+
s

π

J∑
j=0

(αT (α) · · ·T j−1(α))s−2(T j(α))s−1Φs+1(T j+1(α)) (5.6)

https://doi.org/10.1017/S0013091510001069 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091510001069


536 T. Rivoal

for any integer J � 0. Both series
∞∑

j=0

(αT (α) · · ·T j−1(α))s−2Ĝs(α)

and

s

π

∞∑
j=0

(αT (α) · · ·T j−1(α))s−2(T j(α))s−1Φs+1(T j+1(α))

are convergent by (1.13), (5.1) and by the comments around (5.5). Furthermore,

lim
J→+∞

(αT (α) · · ·T J(α))s−2Φ̂s(T J+1(α)) = 0

because, by Proposition 3.1, the quantity Φ̂s(T J+1(α)) is bounded independently of J .
Thus, passing to the limit J → +∞ in (5.6), we obtain

Φ̂s(α) =
∞∑

j=0

(αT (α) · · ·T j−1(α))s−2Ĝs(α)

+
s

π

∞∑
j=0

(αT (α) · · ·T j−1(α))s−2(T j(α))s−1Φs+1(T j+1(α)). (5.7)

All that remains to do is to rearrange the terms in the second series on the right-hand
side of (5.7). For this, we use the identity (1.11) with α replaced by T j+1(α) and s

replaced by s + 1:

Φs+1(T j+1(α)) =
∞∑

m=0

(−1)m(T j+1(α) · · ·Tm+j(α))sGs+1(Tm+j+1(α)),

which is an absolutely convergent series under (5.1). By Proposition 3.1, the series

∞∑
m=0

(T j+1(α) · · ·Tm+j(α))s|Gs+1(Tm+j+1(α))|,

is bounded by a constant independent of j. Hence, the series with positive terms
∞∑

j=0

(αT (α) · · ·T j−1(α))s−2
( ∞∑

m=0

(T j+1(α) · · ·Tm+j(α))s|Gs+1(Tm+j+1(α))|
)

is convergent and this justifies the exchange of summation from (5.8 a) to (5.8 b) below
(for simplicity, we write T p for T p(α)):

∞∑
j=0

(αT · · ·T j−1)s−2(T j)s−1Φs+1(T j+1)

=
∞∑

j=0

(αT · · ·T j−1)s−2(T j)s−1
∞∑

m=0

(−1)m(T j+1 . . . Tm+j)sGs+1(Tm+j+1)
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=
∞∑

j=0

(αT · · ·T j−1)s−2(T j)s−1
∞∑

k=j+1

(−1)k+j+1(T j+1 . . . T k−1)sGs+1(T k) (5.8 a)

=
∞∑

k=1

(−1)kGs+1(T k)(αT · · ·T k−1)
k−1∑
j=0

(−1)j+1T j

(αT · · ·T j)2
. (5.8 b)

The last equality follows by simple manipulations after permutation of summations.
Recalling that αT · · ·T k−1 = |qk−1α − pk−1|, we see that (5.8 b) shows that (5.7) is
indeed equal to (1.15 a). The proof of Theorem 1.2 is complete.

Finally, the behaviour at α = 0 of Gs(α) described by (1.13) can be obtained by the
method used to prove (1.9).

6. Proof of Theorem 1.3

By Proposition 3.1, if s > 1, then the convergence of the series
∑∞

j=1 qj+1/qs
j implies the

absolute convergence of the three series
∞∑

n=1

(−1)n cot(πnα)
ns

,

∞∑
n=1

1
ns sin(πnα)

and
∞∑

n=1

(−1)n

ns sin(πnα)
,

which proves the first assertion of the theorem.
We only sketch the proofs of the identities (1.19)–(1.21), because the argument is very

similar to the proof of Theorem 1.2. We define the integrals

ĨN (α) :=
1

2iπ

∫
RN

Ps(α, z) dz,

J̃N (α) :=
αs

2iπ

∫
RN

Ps(1/α, αz) dz,

L̃N (α) :=
1

2iπ

∫
RN

Qs(α, z) dz

where RN is the contour defined at the beginning of § 4. Evaluating the integrals by the
residue theorem, we get

N∑
n=1

(−1)n cot(πnα)
ns

= αs−1
[Nα]∑
n=1

(−1)n[T (α)]

ns sin(πnT (α))
+ Us(α) − 1

2 ĨN (α), (6.1)

N∑
n=1

1
ns sin(πnα)

= αs−1
[Nα]∑
n=1

(−1)n cot(πn/α)
ns

+ Vs(α) − 1
2 J̃N (α) (6.2)

N∑
n=1

(−1)n

ns sin(πnα)
= αs−1

[Nα]∑
n=1

(−1)n([T (α)]+1)

ns sin(πnT (α))
+ Ws(α) − 1

2 L̃N (α). (6.3)

We now assume that
∑

j qj+1/qs
j is convergent and that s > 2. By analytic estimates

similar to those made during the proof of Theorem 1.2, the three integrals ĨN (α), J̃N (α)
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and L̃N (α) tend to 0 as N → +∞; this is where the hypothesis s > 2 is used. We deduce
that, for any integer k � 0, (6.1)–(6.3) yield the identities

∞∑
n=1

(−1)n cot(πnT k(α))
ns

= T k(α)s−1
∞∑

n=1

(−1)nak+1

ns sin(πnT k+1(α))
+ Us(T k(α)), (6.4)

∞∑
n=1

1
ns sin(πnT k(α))

= T k(α)s−1
∞∑

n=1

(−1)n cot(πnT k+1(α))
ns

+ Vs(T k(α)), (6.5)

∞∑
n=1

(−1)n

ns sin(πnT k(α))
= T k(α)s−1

∞∑
n=1

(−1)n(ak+1+1)

ns sin(πnT k+1(α))
+ Ws(T k(α)), (6.6)

where we recall that the partial quotients ak of the continued fraction of α are given by
ak = [T k(α)].

To deduce (1.19), we start from (6.4) with k = 0.

(i) If a1 is even, we use (6.5) with k = 1 and then we use (6.4) again but with k = 2.

(ii) If a1 is odd, we use (6.6) with k = 1:

(a) if a2 is odd, we use (6.5) with k = 2 and then (6.4) again but with k = 3;

(b) if a2 is even, we use again (6.6) with k = 2.

And so on. This generates a sequence of identities which in the limit gives

Ψs(α) =
∞∑

j=0

(−1)j |qj−1α − pj−1|s−1Uj,s(T j(α)),

with U0,s = Us and Uj,s as defined in Theorem 1.3. We get the identities for Ψ̂s(α) and
Ψ̃s(α) in a similar way. We conclude this ‘proof’ with the remark that it is important
that not only are the three series on the left-hand sides of (6.4)–(6.6) convergent but
their sums are bounded independently of k (this is ensured by Proposition 3.1).

We conclude this section by explaining the origin of the identities (1.16) and (1.17).
In fact, the expressions −2U2n+1(α) and −2W2n+1(α) are just the residues at z = 0 of
P2n+1(α, z) and Q2n+1(α, z), respectively. This follows from the Laurent expansions at
the origin of cot(z) and

1
sin(z)

=
∞∑

n=0

(−1)n+1(22n − 2)
B2n

(2n)!
z2n−1.

7. Generalizations

7.1. A generalization of Φs(α) and Φ̂s(α)

The series Φs(α) and Φ̂s(α) correspond to the cases r = 0 and r = 1 of the series
∞∑

n=1

cot(r)(πnα)
ns

.
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We believe that the following statement, which would generalize Theorems 1.1 and 1.2,
holds: we fix an integer r � 2, a real number s > r+1 and an irrational number α ∈ (0, 1).
The series

∞∑
n=1

cot(r)(πnα)
ns

converges if and only if
∞∑

j=0

(−1)(r+1)j qr+1
j+1(α)
qs
j (α)

converges. Furthermore, we have the identity
∞∑

n=1

cot(r)(πnα)
ns

=
1
πr

∞∑
j=0

(−1)j ∂r

∂αr
(|qj−1α − pj−1|s+r−1Gs+r(T j(α))), (7.1)

where both series converge or diverge simultaneously. The methods of the present paper
show that (7.1) holds under the stronger assumption that the series

∞∑
j=0

qr+1
j+1(α)
qs
j (α)

converges. This follows from an adaptation of the proof of Theorem 1.2.

7.2. A multivariate generalization of Φs(α) and the Jacobi–Perron algorithm

A natural generalization of the function Φs(α) is

Φd,s(α) :=
∞∑

n=1

1
ns

d∏
j=1

cot(πnαj),

where d � 1, s ∈ R and α := (α1, α2, . . . , αd) ∈ (0, 1)d.
It is not difficult to see that Φd,s(α) converges for almost all α ∈ (0, 1)d when s > d.

Indeed, by Hölder’s inequality, we have

N∑
n=1

1
ns

d∏
j=1

|cot(πnαj)| �
( N∑

n=1

1

ns
∏d

j=1 ‖nαj‖

)
�

d∏
j=1

( N∑
n=1

1
ns‖nαj‖d

)1/d

.

Lemma 3.2 implies that the series
∞∑

n=1

1
ns‖nα‖d

converges for almost all α under the condition s > d. This proves that Φd,s(α) converges
for all α in an (explicit) subset Cd,s of (0, 1)d of measure 1. Another method to prove the
almost-everywhere convergence of series like

∞∑
n=1

1

ns
∏d

j=1 ‖nαj‖
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can be found in [19, proof of (6.3), pp. 94–95] for the case s = 2 and d = 2. It is
non-constructive. It is an interesting problem to determine the exact conditions of con-
vergence of Φd,s(α). The above argument shows that convergence occurs if we consider
the Diophantine behaviour of each αj (through its continued fraction), independently of
the others. However, the above set of convergence Cd,s is probably not the exact set of
convergence of Φd,s(α). In fact, as we now explain, this problem seems to be related to
the Jacobi–Perron algorithm applied to the vector α.

We introduce the functions

Fd,s(α, z) :=
1
zs

π cot(πz)
d∏

j=1

cot(παjz) and Gd,s(α) :=
1

2iπ

∫ 1/2−i∞

1/2+i∞
Fd,s(α, z) dz.

(7.2)
If s is an integer such that s ≡ d[2], we have Gd,s(α) := − 1

2 residue(Fd,s(α, z), z = 0),
which is a rational function in α with coefficients in Qπs−1.

For simplicity, we explain the link with the two-dimensional Jacobi–Perron algorithm
in the case d = 2 (where we write α = (α, β)) but the general case can also be expressed
in terms of the Jacobi–Perron algorithm in higher dimensions (see [6] for the theory).
Integrating F2,s(α, z) on the contour RN and letting N → +∞, we obtain the relation

Φ2,s(α, β) = αs−1Φ2,s(T (α/β), T (α)) + βs−1Φ2,s(T (β), T (β/α)) + G2,s(α, β), (7.3)

where we assume for simplicity that s > 2 and that (α, β) ∈ C2,s to ensure convergence
of the three series.

We remark that the transformation of the square (0, 1)2 to itself defined by (x, y) �→
(T (x/y), T (x)) is exactly the transformation used to run the two-dimensional Jacobi–
Perron algorithm with some initial value (x0, y0). This algorithm is used to produce good
simultaneous rational approximations of (x0, y0). In (7.3), we see that the Jacobi–Perron
algorithm is run on (α, β) and (β, α). The convergence/divergence of Φ2,s(α, β) clearly
depends on how badly or well the numbers α and β are simultaneously approximated
by rational numbers. It is therefore natural to wonder if the conditions of convergence
of Φ2,s(α, β) and of validity of (7.3) can be expressed in terms of the rational sequences
generated by the Jacobi–Perron algorithm.
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27. J. Schoißengeier and S. B. Tričković, On the divergence of a certain series, J. Math.
Analysis Applic. 324 (2006), 238–247.
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29. A. Walfisz, Über einige trigonometrische Summen, Math. Z. 33 (1931), 564–601.
30. J. R. Wilton, An approximate functional equation with applications to a problem of

Diophantine approximation, J. Reine Angew. Math. 169 (1933), 219–237.

https://doi.org/10.1017/S0013091510001069 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091510001069



