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The evaporation of sessile droplets is analysed when the influence of the thermal
properties of the system is strong. We obtain asymptotic solutions for the evolution,
and hence explicit expressions for the lifetimes, of droplets when the substrate has a
high thermal resistance relative to the droplet and when the saturation concentration
of the vapour depends strongly on temperature. In both situations we find that the
lifetimes of the droplets are significantly extended relative to those when thermal
effects are weak.
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1. Introduction

The evaporation of sessile droplets has been the subject of increasing theoretical
and experimental research activity in recent years (see, for example, Cazabat & Guéna
2010, Erbil 2012, Larson 2014 and Lohse & Zhang 2015). In particular, there is
growing interest in how the evolution, and hence the lifetimes, of evaporating droplets
depend on the thermal properties of the system.

In their pioneering work on the evaporation of sessile droplets, Picknett & Bexon
(1977) calculated the lifetimes of droplets evaporating in the so-called extreme modes
of evaporation, namely the constant contact radius (CR) and constant contact angle
(CA) modes. In practice, however, droplets often evaporate in the so-called stick–slide
(SS) mode consisting of a CR phase followed by a CA phase (see, for example,
Nguyen & Nguyen 2012 and Dash & Garimella 2013), and so Stauber et al. (2014,
2015) calculated the lifetime of a droplet evaporating in this mode. Other modes of
evaporation can, of course, also occur, notably the so-called stick–jump (SJ) mode
in which the droplet evaporates in a series of stick (i.e. CR) phases separated by
jump phases in which the contact angle and contact radius jump instantaneously (see,
for example, Askounis et al. 2011, Orejon, Sefiane and Shanahan 2011 and Dietrich
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Substrate

FIGURE 1. The geometry of a evaporating thin sessile droplet on a thin substrate.

et al. 2015), and so Stauber (2015) performed the corresponding analysis of a droplet
evaporating in this mode. However, all of these works use the basic diffusion-limited
model for droplet evaporation (see, for example, Popov 2005) which does not account
for the variation of the saturation concentration of the vapour with temperature. As
a result, none of these works accounts for the influence of the thermal properties
of the system on the evaporation of the droplets, which can be significant (see, for
example, Dunn et al. 2008, 2009a,b, Sefiane & Bennacer 2011, Sobac & Brutin 2012,
Ait Saada, Chikh and Tadrist 2013, Lopes et al. 2013 and Diddens et al. 2017). The
aim of the present work is to gain further insight into this issue by using an extended
model to obtain asymptotic solutions for the evolution, and hence explicit expressions
for the lifetimes, of droplets when the influence of the thermal properties of the system
is strong.

2. Problem formulation
Consider the quasi-steady evaporation of a small thin axisymmetric sessile droplet

with radius R = R(t), contact angle θ = θ(t) and volume V = V(t) of a fluid with
constant surface tension σ , density ρ and thermal conductivity k on a thin substrate
with constant thickness hs and thermal conductivity ks in a quiescent atmosphere with
thermal conductivity ka. Using cylindrical polar coordinates (r, z) with their origin on
the substrate at the centre of the droplet, the free surface of the droplet is denoted by
z= h(r, t), the concentration of vapour in the atmosphere is denoted by c= c(r, z, t)
and the temperatures of the atmosphere, the droplet and the substrate are denoted by
Ta
= Ta(r, z, t), T = T(r, z, t) and T s

= T s(r, z, t), respectively. The geometry of the
problem is shown in figure 1.

The transport of vapour in the atmosphere is due solely to diffusion, and so c
satisfies Laplace’s equation in the appropriate domain. At the free surface of the
droplet the atmosphere is saturated with vapour, and so c takes its saturation value,
denoted by csat = csat(T), which we assume to be a linearly increasing function of T
given by csat(T) = csat(T∞) + c′sat(T∞)(T − T∞). (Note that Sefiane et al. (2009) and

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

49
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2018.496


The lifetimes of evaporating sessile droplets 233

Ait Saada et al. (2013) considered a nonlinear dependence of csat on T .) There is
no mass flux through the unwetted part of the substrate, and far from the droplet c
approaches its ambient value Hcsat(T∞), where H (0 6 H 6 1) denotes the relative
saturation of the ambient atmosphere. The local evaporative mass flux from the
droplet, denoted by J = J(r, t), is given by J =−D∇c · n, where D is the coefficient
of diffusion of vapour in the atmosphere and n is the unit outward normal to the free
surface of the droplet. The total evaporation rate, −ρ dV/dt, is obtained by integrating
J over the free surface of the droplet.

Transport of heat in the atmosphere, the droplet and the substrate is due solely
to thermal conduction, and so Ta, T and T s also satisfy Laplace’s equation in the
appropriate domains. At the free surface of the droplet J satisfies the local energy
balance

LJ = n · (ka
∇Ta
− k∇T), (2.1)

where L is the latent heat of vaporisation, while on both the wetted and unwetted
parts of the substrate both the temperature and the heat flux are continuous, and far
from the droplet Ta approaches its ambient value T∞. Note that if we were simply to
set Ta

≡ T∞ (which does not, in general, satisfy the conditions of continuity of heat
flux on the unwetted part of the substrate or of continuity of temperature on the free
surface of the droplet) we would recover the extended model proposed by Dunn et al.
(2009a). However, as described below, in the present work we exploit the fact that in
practice the atmosphere is typically a relatively poor thermal conductor to obtain a
more physically realistic extended model.

In order to make analytical progress we follow Dunn et al. (2008, 2009b) and
assume that both the droplet and the substrate are thin (i.e. that θ(0) � 1 and
hs/R(0) � 1), but make no assumption about their relative thicknesses (i.e. we
make no a priori assumption about the size of hs/(θ(0)R(0))). Hence at leading
order in the appropriate thin-film limit, the free surface of the droplet is given by
h= θ(R2

− r2)/(2R) and the volume of the droplet is given by V =πθR3/4.
We non-dimensionalise and scale r with R(0), z in the droplet with θ(0)R(0), z

in the substrate with hs, z in the atmosphere with R(0), h with θ(0)R(0), V with
θ(0)R(0)3, θ with θ(0), Ta, T and T s with T∞, c−Hcsat(T∞) with (1−H)csat(T∞), J
with D(1−H)csat(T∞)/R(0) and t with the characteristic time scale for the evaporation
of a thin droplet according to the basic model, namely

ρθ(0)R(0)2

D(1−H)csat(T∞)
. (2.2)

In practice, the atmosphere is typically a relatively poor thermal conductor, and
provided that

ka
�

k
θ(0)

and ka
�

R(0)ks

hs
(2.3a,b)

the problem for Ta decouples from that for T , T s and c. Note that, since both the
droplet and the substrate are thin, these conditions hold when k and ks are comparable
with ka. When (2.3) holds it is straightforward to show that T and T s are given by

T = 1− EJ(z+ S) for 0< z< h, r< R, (2.4)
T s
= 1− EJS(z+ 1) for −1< z< 0, r< R, (2.5)

T s
= 1 for −1< z< 0, r> R, (2.6)
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that c satisfies
∇

2c= 0 in z> 0 (2.7)

subject to

c= 1+1C(h+ S)
∂c
∂z

on z= 0 for r< R, (2.8)

∂c
∂z
= 0 on z= 0 for r> R, (2.9)

and
c→ 0 as (r2

+ z2)1/2→∞, (2.10)

and that Ta satisfies
∇

2Ta
= 0 in z> 0 (2.11)

subject to

Ta
= 1− EJ(h+ S) on z= 0 for r< R, (2.12)

Ta
= 1 on z= 0 for r> R, (2.13)

and
Ta
→ 1 as (r2

+ z2)1/2→∞. (2.14)

The total evaporation rate is then given by

−
dV
dt
=−

π

4
d
dt
(θR3)= 2π

∫ R

0
J(r, t)r dr, (2.15)

where

J(r, t)= −
∂c
∂z

∣∣∣∣
z=0

, (2.16)

and

1C=
θ(0)LDc′sat(T∞)

k
, S=

khs

θ(0)R(0)ks
and E=

θ(0)LD(1−H)csat(T∞)
kT∞

(2.17a−c)
are non-dimensional measures of the variation of the saturation concentration of the
vapour with temperature, the relative thermal resistance of the droplet and the substrate
and the evaporative cooling, respectively. Whereas (2.7)–(2.10) show that the solution
for c, and hence the evolution of the droplet given by (2.15) and (2.16), depends on
1C and S but not E, (2.4)–(2.6) and (2.11)–(2.14) show that the evaporative cooling
of the atmosphere, the droplet and the substrate also depends on E.

Note that although, as we have already mentioned, the present extended model
differs from that proposed by Dunn et al. (2009a), in the present limit of a thin
droplet on a thin substrate the problem for T , T s and c given by (2.4)–(2.10), but not,
of course, that for Ta given by (2.11)–(2.14), coincides exactly with that analysed by
Dunn et al. (2008, 2009b). However, these latter authors considered only the initial
evolution of a pinned droplet (i.e. evolution of a droplet evaporating in the CR mode
for t=O(1)) and did not analyse either the entire evolution of the droplet or consider
other modes of evaporation, both of which we do in the present work.
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The lifetimes of evaporating sessile droplets 235

In the special case 1C = 0 in which csat is independent of T the concentration
of vapour at the free surface of the droplet is constant and we recover the basic
model in which the solution for c, and hence the evolution of the droplet, is also
independent of S, i.e. is entirely independent of the thermal properties of the system.
Explicit expressions for the lifetimes of thin droplets in this special case (albeit using
a different non-dimensionalisation of time) were obtained by Stauber et al. (2014) for
the CR, CA and SS modes, and by Stauber (2015) for the SJ mode. For brevity, these
expressions are not reproduced here, but the key observation is that when 1C= 0 the
lifetimes of thin droplets are, as anticipated, of the order of the basic time scale (2.2).
This time scale is also applicable when thermal effects are weak, but not, as we shall
show in the present work, when they are strong.

3. When the substrate has a high thermal resistance
Consider the evolution of an evaporating droplet using the extended model described

in § 2 when the substrate has a high thermal resistance relative to the droplet
(i.e. when the substrate is highly insulating and/or thick relative to the droplet),
corresponding to the asymptotic limit S→∞ with 1C 6= 0.

Inspection of (2.7)–(2.15) suggests that in the limit S→∞ the complete evolution
of a droplet will occur over the long time scale t = O(S) � 1. In order to obtain
a uniformly valid leading-order asymptotic solution able to capture the complete
evolution of the droplet we therefore rescale c and J with 1/S and t with S by
writing c = c̃/S, J = J̃/S and t = St̃, and seek an asymptotic expansion for c̃ in the
form c̃(r, z, t̃)= c̃0(r, z, t̃)+O(1/S) with corresponding asymptotic expansions for the
other dependent variables.

At leading order in the limit S→∞ we obtain J̃0= 1/1C (i.e. at leading order the
mass flux from the free surface of the droplet is uniform and constant), T0=1−E/1C
(i.e. at leading order the droplet is uniformly cooled by a constant amount E/1C) and
T s

0=1−E(z+1)/1C and hence (2.15) yields the equation describing the leading-order
evolution of the droplet, namely

d
dt̃
(θ0R3

0)=−
4R2

0

1C
. (3.1)

An explicit expression for the leading-order concentration of vapour, c̃0, can be
obtained (see, for example, Mehta & Bose 1983), but, since this is not required in
order to determine the leading-order evolution of the droplet, it is not reproduced
here for brevity.

3.1. Evolution of a droplet evaporating in the constant radius mode
For a droplet evaporating in the CR mode with R0 ≡ 1, solving (3.1) yields

R0 ≡ 1, θ0 = 1−
4
1C

t̃, V0 =
πθ0

4
, (3.2a−c)

and hence the lifetime of the droplet, denoted by t̃CR, is given by t̃CR =1C/4.

3.2. Evolution of a droplet evaporating in the constant angle mode
For a droplet evaporating in the CA mode with θ0 ≡ 1, solving (3.1) yields

R0 = 1−
4

31C
t̃, θ0 ≡ 1, V0 =

πR3
0

4
, (3.3a−c)

and hence the lifetime of the droplet, denoted by t̃CA, is given by t̃CA= 31C/4= 3t̃CR.
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Both t̃CR and t̃CA are directly proportional to 1C (i.e. stronger variation of csat with
T leads to slower evaporation and hence to longer lifetimes), and their ratio is exactly
3. This latter result contrasts with that in the special case 1C=0 discussed by Stauber
et al. (2014) for which the corresponding ratio is exactly 3/2.

3.3. Evolution of a droplet evaporating in the stick–slide mode
The stick–slide (SS) mode of evaporation consists of a CR phase which lasts until
the contact angle reaches a critical receding contact angle θ ? (0 6 θ ? 6 1) followed
by a CA phase. For a droplet evaporating in this mode, solving (3.1) yields (3.2) for
0< t̃< t̃? and

R0 =
(1+ 2θ ?)1C− 4t̃

3θ ?1C
, θ0 ≡ θ

?, V0 =
πθ0R3

0

4
, (3.4a−c)

for t̃? < t̃< t̃SS, where

t̃? =
1C
4
(1− θ ?) and t̃SS =

1C
4
(1+ 2θ ?) (3.5a,b)

are the depinning time (i.e. the time at which the contact angle θ0 reaches the critical
receding angle θ ?) and the lifetime of the droplet, respectively. Both t̃? and t̃SS are
directly proportional to 1C, t̃? is a linearly decreasing function of θ ? satisfying t̃?= t̃CR

at θ ?= 0 and t̃?= 0 at θ ?= 1, and t̃SS is a linearly increasing function of θ ? satisfying
t̃SS = t̃CR at θ ? = 0 and t̃SS = t̃CA at θ ? = 1.

Figure 2 shows (a) R0, (b) θ0 and (c) V0 as functions of t̃ for various values of
θ ?, including θ ? = 0 (i.e. the CR mode given by (3.2)) and θ ? = 1 (i.e. the CA mode
given by (3.3)), and (d) V0 as a function of t̃ for various values of 1C. Figure 2
illustrates that R0 and θ0 are either constant or linearly decreasing functions of t̃, V0

is first (for 0 < t̃ < t̃?) a linearly and then (for t̃? < t̃ < t̃SS) a cubically decreasing
function of t̃, and as θ ? increases the droplet depins earlier but has a longer lifetime.
Somewhat more unexpectedly, figure 2(a) also illustrates that, except in the special
case θ ?= 0, R0= 2/3 at t̃= t̃CR irrespective of the value of the critical receding angle
θ ? (i.e. whatever the non-zero value of θ ?, the contact radius always reduces to 2/3
of its initial value at t̃= t̃CR).

3.4. Evolution of a droplet evaporating in the stick–jump mode
The stick–jump (SJ) mode of evaporation consists of an infinite series of stick (i.e.
CR) phases separated by an infinite series of jump phases in which the contact angle
jumps instantaneously from a minimum value θmin to a maximum value θmax (06 θmin 6
θmax 6 1) with a corresponding instantaneous jump in the contact radius. For a droplet
evaporating in this mode, if we denote by Rn (n = 1, 2, 3, . . .) the constant value
of R0 during the nth stick (i.e. CR) phase lasting from t̃ = t̃n−1 to t̃ = t̃n, then, by
conservation of mass during the nth jump phase occurring at t̃ = t̃n (n= 1, 2, 3, . . .),
we have θminR3

n = θmaxR3
n+1, and so

Rn+1 =

(
θmin

θmax

)1/3

Rn =

(
θmin

θmax

)n/3

R1. (3.6a,b)
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FIGURE 2. Evolution of a droplet on a substrate with a high thermal resistance (i.e. in the
limit S→∞ with 1C 6= 0) evaporating in the SS mode. Plots of (a) R0, (b) θ0 and (c) V0
as functions of t̃ for θ ? = 0 (i.e. the CR mode, shown dashed), 1/4, 1/2, 3/4 and 1 (i.e.
the CA mode) with 1C= 1, and (d) V0 as a function of t̃ for 1C= 1/2, 1, 3/2 and 2
with θ ?= 1/2. The dots (•) denote the instants at which depinning occurs (i.e. t̃= t̃?), and
in (a), (c) and (d) the arrows indicate the direction of increasing values of the appropriate
parameter.

During the first stick phase with R0=R1≡ 1 from t̃= t̃0= 0 to t̃= t̃1=1C(1− θmin)/4,
θ0 and V0 are given by (3.2), and thereafter during the nth stick phase (n= 2, 3, 4, . . .)
with R0 = Rn from t̃= t̃n−1 to t̃= t̃n,

R0 = Rn, θ0 = θmax −
4

1CRn
(t̃− t̃n−1), V0 =

πθ0R3
n

4
, (3.7a−c)

where

t̃n =
1C
4

[
1− θmax + (θmax − θmin)

1− (θmin/θmax)
n/3

1− (θmin/θmax)1/3

]
. (3.8)

Taking the limit n→∞ in (3.8) we obtain the lifetime of the droplet, namely

t̃SJ =
1C
4

[
1− θmax + (θmax − θmin)

θmax
1/3

θmax
1/3
− θmin

1/3

]
. (3.9)
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In particular, t̃SJ is directly proportional to 1C, and is an increasing function of both
θmax and θmin (<θmax) satisfying t̃SJ= t̃CR when θmax=0 and when θmin=0, and t̃SJ→ t̃SS
when θmax→ θmin = θ

?.
Figure 3 shows (a) R0, (b) θ0 and (c) V0 as functions of t̃ for various values of

θmin, (d) V0 as a function of t̃ for various values of 1C, (e) t̃SJ as a function of
θmin (6 θmax) for various values of θmax, and ( f ) t̃SJ as a function of θmax (> θmin) for
various values of θmin. Figure 3 illustrates that R0 is constant and θ0 is a linearly
decreasing function of t̃ during each stick phase, R0 and θ0 jump instantaneously down
and up, respectively, during each jump phase, and as the droplet evaporates the stick
phases get progressively shorter (approaching zero duration in the limit n→∞).

4. When the saturation concentration depends strongly on temperature
A similar analysis to that described in § 3 can be performed when the saturation

concentration of the vapour depends strongly on temperature, corresponding to the
asymptotic limit 1C→∞.

Inspection of (2.7)–(2.15) suggests that in the limit 1C→∞ the complete evolution
of a droplet will occur over the long time scale t = O(1C)� 1. Proceeding in the
same manner as in § 3 we therefore rescale c and J with 1/1C and t with 1C by
writing c= ĉ/1C, J= Ĵ/1C and t=1Ct̂, and seek an asymptotic expansion for ĉ in
the form ĉ(r, z, t̂)= ĉ0(r, z, t̂)+ O(1/1C) with corresponding asymptotic expansions
for the other dependent variables.

In the limit 1C→∞ we obtain

Ĵ =
2R0

[θ0(R2
0 − r2)+ 2SR0]1C

+O
(

1
1C2

)
, (4.1)

T = 1−
2ER0(z+ S)

[θ0(R2
0 − r2)+ 2SR0]1C

+O
(

1
1C2

)
, (4.2)

T s
= 1−

2ER0S(z+ 1)
[θ0(R2

0 − r2)+ 2SR0]1C
+O

(
1
1C2

)
, (4.3)

and hence (2.15) yields the equation describing the leading-order evolution of the
droplet, namely

d
dt̂
(θ0R3

0)=−
8R0

θ0
log
(

2S+ θ0R0

2S

)
. (4.4)

In contrast to the limit S → ∞, in this limit we are unable to obtain an explicit
expression for the leading-order concentration of vapour, ĉ0, but, as in the limit
S→∞, this is not required in order to determine the leading-order evolution of the
droplet.

4.1. Evolution of a droplet evaporating in the constant radius mode
A droplet evaporating in the CR mode satisfies

R0 ≡ 1, t̂= F(1, 1, S)− F(1, θ0, S), V0 =
πθ0

4
, (4.5a−c)

and hence t̂CR= F(1, 1, S), where F(R0, θ0, S) is an increasing function of each of its
three arguments defined by

F(R0, θ0, S)=
S2

2

[
Ei
(

2 log
(

2S+ θ0R0

2S

))
− Ei

(
log
(

2S+ θ0R0

2S

))
− log 2

]
,

(4.6)
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FIGURE 3. Evolution of a droplet on a substrate with a high thermal resistance (i.e. in
the limit S→∞ with 1C 6= 0) evaporating in the SJ mode. Plots of (a) R0, (b) θ0 and
(c) V0 as functions of t̃ for θmin = 0 (i.e. the CR mode, shown dashed), 1/2 and 1 (i.e.
the CA mode) with θmax = 1 and 1C = 1, (d) V0 as a function of t̃ for 1C = 1/2, 1,
3/2 and 2 with θmax = 1 and θmin = 1/2, (e) t̃SJ as a function of θmin (6 θmax) for θmax = 0
(i.e. the CR mode), 1/4, 1/2, 3/4 and 1, and ( f ) t̃SJ as a function of θmax (> θmin) for
θmin = 0 (i.e. the CR mode), 1/4, 1/2, 3/4 and 1 (i.e. the CA mode), with 1C = 1. In
(c) and (d) the dots (•) denote the instants at which the jump phases occur (i.e. t̃= t̃n for
n= 1, 2, 3, . . .), and in (c)–( f ) the arrows indicate the direction of increasing values of
the appropriate parameter.
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in which Ei(·) denotes the exponential integral

Ei(ξ)=−
∫
∞

−ξ

e−λ

λ
dλ. (4.7)

Note that F(R0, θ0, S) takes the value zero when any one of its arguments is zero.

4.2. Evolution of a droplet evaporating in the constant angle mode
A droplet evaporating in the CA mode satisfies

t̂= 3 [F(1, 1, S)− F(R0, 1, S)] , θ0 ≡ 1, V0 =
πR3

0

4
, (4.8a−c)

and hence t̂CA = 3F(1, 1, S)= 3t̂CR.
Both t̂CR and t̂CA are increasing functions of S satisfying t̂CR, t̂CA=O(1/ log S)→ 0+

as S→ 0+, and t̂CR ∼ S/4→∞ and t̂CA ∼ 3S/4→∞ as S→∞, and (as in the limit
S→∞) their ratio is exactly 3.

The solutions in the limit 1C→∞ given by (4.5) and (4.8) are similar, but not
identical, to the corresponding solutions in the limit S→∞ given by (3.2) and (3.3)
with S replaced by 1C. Unlike the corresponding solutions in the limit S→∞, θ0 and
R0 are not simply linear functions of t̂ in the CR and CA modes, respectively, and t̂CR

and t̂CA are not simply linear functions of S. However, except for small values of S, the
nonlinear function F(R0, θ0, S) defined by (4.6) is very well approximated by its linear
leading-order small R0 and/or small θ0 and/or large S behaviour, i.e. F(R0, θ0, S) ≈
θ0R0S/4. Hence, except for small values of S, the solutions in the limit 1C→∞ are
very well approximated by the corresponding solutions in the limit S→∞ with S
replaced by 1C. In particular, except for small values of S, t̂CR≈ S/4 and t̂CA≈ 3S/4.

4.3. Evolution of a droplet evaporating in the stick–slide mode

A droplet evaporating in the SS mode satisfies (4.5) for 0< t̃< t̃? and

t̂= 2F(1, θ ?, S)+ F(1, 1, S)− 3F(R0, θ
?, S), θ0 ≡ θ

?, V0 =
πθ ?R3

0

4
, (4.9a−c)

for t̂? < t̂< t̂SS, where

t̂? = F(1, 1, S)− F(1, θ ?, S) and t̂SS = 2F(1, θ ?, S)+ F(1, 1, S). (4.10a,b)

Both t̂? and t̂SS are increasing functions of S satisfying t̂?, t̂SS = O(1/ log S)→ 0+

as S → 0+, and t̂? ∼ S(1 − θ ?)/4→ ∞ and t̂SS ∼ S(1 + 2θ ?)/4→ ∞ as S → ∞.
Furthermore, t̂? is a decreasing function of θ ? satisfying t̂? = t̂CR at θ ? = 0 and t̂? = 0
at θ ?= 1, whereas t̂SS is an increasing function of θ ? satisfying t̂SS= t̂CR at θ ?= 0 and
t̂SS = t̂CA at θ ? = 1. As for a droplet evaporating in either the CR or the CA mode,
except for small values of S, the solutions in the limit 1C→∞ are again very well
approximated by the corresponding solutions in the limit S→∞ with S replaced by
1C, and so require no further discussion here.
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4.4. Evolution of a droplet evaporating in the stick–jump mode
A droplet evaporating in the SJ mode again satisfies (3.6). During the 1st stick phase
with R0 = R1 ≡ 1 from t̂ = t̂0 = 0 to t̂ = t̂1 = F(1, 1, S)− F(1, θmin, S), θ0 and V0 are
given by (4.5), and thereafter during the nth stick phase (n= 2, 3, 4, . . .) with R0=Rn
from t̂= t̂n−1 to t̂= t̂n,

R0 = Rn, t̂− t̂n−1 = F(Rn, θmax, S)− F(Rn, θ0, S), V0 =
πθ0R3

n

4
, (4.11a−c)

where

t̂n = F(1, 1, S)− F(1, θmin, S)+
n∑

m=2

F(Rm, θmax, S)− F(Rm, θmin, S). (4.12)

Taking the limit n→∞ in (4.12) we obtain the lifetime of the droplet, namely

t̂SJ = F(1, 1, S)− F(1, θmin, S)+
∞∑

m=2

F(Rm, θmax, S)− F(Rm, θmin, S). (4.13)

In particular, t̂SJ is an increasing function of S satisfying t̂SJ → 0+ as S→ 0+, and
t̂SJ = O(S)→∞ as S→∞. Furthermore, t̂SJ is an increasing function of both θmax
and θmin (< θmax) satisfying t̂SJ = t̂CR when θmax = 0 and when θmin = 0, and t̂SJ→ t̂SS
when θmax→ θmin= θ

?. As for a droplet evaporating in either the CR or the CA mode,
except for small values of S, the solutions in the limit 1C→∞ are again very well
approximated by the corresponding solutions in the limit S→∞ with S replaced by
1C, and so again require no further discussion here.

5. Conclusions
In the present work we have analysed the evaporation of a thin sessile droplet on

a thin substrate in two situations in which the influence of the thermal properties
of the system is strong. Specifically, we have obtained uniformly valid leading-order
asymptotic solutions for the evolution of the droplet when the substrate has a high
thermal resistance relative to the droplet (corresponding to the limit S → ∞ with
1C 6= 0) and when the saturation concentration of the vapour depends strongly
on temperature (corresponding to the limit 1C →∞). In both situations we have
obtained explicit expressions for the lifetimes of the droplet for all four of the modes
of evaporation studied in the present work (namely the CR, CA, SS and SJ modes).

The basic model, which is applicable when the influence of the thermal properties
of the system on the evolution of the droplet is weak, predicts that the lifetimes of
the droplet are of the order of the basic time scale (2.2). In contrast, the present
work shows that when the influence of the thermal properties of the system on the
evolution of the droplet is strong (specifically, in the limit S→∞ and to a very good
approximation in the limit 1C→∞), the lifetimes of the droplet are much longer
than the basic time scale by a factor of size S1C� 1, i.e. are actually on the much
longer time scale

ρθ(0)R(0)Lhsc′sat(T∞)
ks(1−H)csat(T∞)

. (5.1)

The different dependence of the time scales given by (2.2) and (5.1) on the physical
parameters reflects the different dominant physical mechanisms when thermal effects
are weak and when they are strong. The basic time scale (2.2), which is independent
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FIGURE 4. Evolution of the dimensional volume V (in nl) as a function of dimensional
time t (in s) for a thin droplet of methanol on a substrate made of a good thermal
conductor according to the basic model (dashed curves) and on a thin substrate made
of an aerogel according to the present leading-order solution in the limit S→∞ with
1C 6= 0 (solid curves). In both cases the four curves correspond (from left to right) to
evaporation in the CR, SS, SJ and CA modes. The dots (u) denote the instants at which
depinning (SS mode) and the jump phases (SJ mode) occur.

of L, k, ks and hs (i.e. independent of the thermal properties of the system and the
thickness of the substrate), corresponds to the familiar situation described by the
basic diffusion-limited model in which the evaporation from the droplet is limited by
diffusion of vapour in the atmosphere with constant saturation concentration at the
free surface of the droplet. In contrast, the time scale (5.1), which is independent of k
and D (i.e. independent of the thermal conductivity of the droplet and the coefficient
of diffusion of vapour in the atmosphere), corresponds to the situation in which the
evaporation from the droplet is limited by thermal conduction through the droplet
and the substrate.

To illustrate the difference between the two situations, consider a thin droplet of
methanol with initial radius R(0) = 10−3 m and initial contact angle θ(0) = 0.02 in
an atmosphere of air with H = 0, for which, using the typical parameter values
given by Dunn et al. (2009a), ρ = 790 kg m−3, L = 1.20 × 106 m2 s−2, k =
0.203 kg m s−3 K−1, csat(T∞) = 0.186 kg m−3, c′sat(T∞) = 9.47 × 10−3 kg m−3 K−1

at T∞ = 295 K and D = 1.50 × 10−5 m2 s−1. The basic model predicts that on a
substrate made of a good thermal conductor (such as, for example, a metal) the
droplet evaporates completely in between 1.11 and 1.67 s (corresponding to the CR
and CA modes, respectively). On the other hand, the present leading-order solution
in the limit S → ∞ with 1C 6= 0 predicts that on a thin substrate of thickness
hs
= 2 × 10−4 m made of a poor thermal conductor, specifically an aerogel with a

typical thermal conductivity of ks
= 0.015 kg m s−3 K−1 (see, for example, Cohen

& Glicksman 2015), corresponding to 1C = 0.017 and S = 135, the same droplet
evaporates completely in between 3.22 and 9.65 s. Figure 4 shows the evolution of
the dimensional volume V of the droplet as a function of dimensional time t for
both substrates for all four modes of evaporation. In particular, figure 4 illustrates the
main conclusion of the present work, namely that when thermal effects are strong
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the lifetimes of evaporating droplets are significantly extended relative to those when
thermal effects are weak.

We are unaware of any previous physical experiments against which the present
theoretical predictions can be validated, but hope that our work will inspire one or
more of the many experimental groups with an interest in evaporating droplets to
conduct such experiments in the future.

Although, in order to permit analytical progress, the present analysis was restricted
to the case of a thin droplet on a thin substrate, we would anticipate that qualitatively
similar behaviour will occur for more general droplets on more general substrates.
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