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This paper is devoted to the structural stability of a transonic shock passing through
a flat nozzle for two-dimensional steady compressible flows with an external force.
We first establish the existence and uniqueness of one-dimensional transonic shock
solutions to the steady Euler system with an external force by prescribing suitable
pressure at the exit of the nozzle when the upstream flow is a uniform supersonic
flow. It is shown that the external force helps to stabilize the transonic shock in flat
nozzles and the shock position is uniquely determined. Then we are concerned with
the structural stability of these transonic shock solutions when the exit pressure is
suitably perturbed. One of the new ingredients in our analysis is to use the
deformation-curl decomposition to the steady Euler system developed by Weng and
Xin [Sci. Sinica Math., 49 (2019), pp. 307–320] to deal with the transonic shock
problem.
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1. Introduction

This paper is concerned with the transonic shock problem in a two-dimensional
nozzle with an external force. In 1948, Courant and Friedrichs [9] had described
the following transonic shock phenomena in a de Laval nozzle: given the appro-
priately large receiver pressure, if the upcoming flow is still supersonic after
passing through the throat of the nozzle, to match the prescribed appropriately
large exit pressure, a shock front intervenes at some place in the diverging part
of the nozzle and the gas is compressed and slowed down to subsonic speed.
In this paper, we will investigate such a problem for the two-dimensional com-
pressible Euler flow exerted by proper external force in a two-dimensional flat
nozzle.

The studies of transonic shock solutions for inviscid compressible flows in dif-
ferent kinds of nozzles have a long history. A lot of significant results have been
achieved over the past two decades. People first used the quasi one-dimensional
model to study the transonic shock problem [1, 9, 10, 14]. In [14], Liu has proven
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2 S. Weng and W. Yang

that the flows along the expanding portion of the nozzle are stable, which suggests
that the widening nozzle played a stabilizing effect. However, our results imply
that the external force also has the effect of stabilizing the shock. Next, the struc-
tural stability of multidimensional transonic shocks in flat or diverging nozzles was
further investigated in [6, 30, 31] using the steady potential flows with different
kinds of boundary conditions. In particular, [30, 31] proved that the stability of
transonic shocks for potential flows is usually ill-posed under the perturbations of
the exit pressure. The structural stability of the transonic shock problem in two-
dimensional divergent nozzles under the perturbations for the exit pressure was first
established in [16] when the opening angle of the nozzle is suitably small. Later on,
this restriction was removed in [17, 20]. Moreover, the transonic shock in general
two-dimensional straight divergent nozzles was shown in [20] to be structurally
stable under generic perturbations for both the nozzle shape and the exit pressure.
The existence and stability of transonic shock for three-dimensional axisymmet-
ric flows without swirl in a conic straight nozzle were established in [18, 19] with
respect to small perturbations of the exit pressure. Compared with those results,
a new decomposition method to the compressible Euler system was applied in this
article.

Many researchers also considered the transonic shock problem in the flat or almost
flat nozzles with the exit pressure satisfying some special constraint, see [3–5,
15, 29] and the references therein. Recently, there has been interesting progress
on the stability and existence of transonic shock solutions to the two-dimensional
and three-dimensional axisymmetric steady compressible Euler system in an almost
flat finite nozzle with the receiver pressure prescribed at the exit of the nozzle
(see [11, 12]), where the shock position was uniquely determined. For the struc-
tural stability under the axisymmetric perturbation of the nozzle wall, a modified
Lagrangian coordinate was introduced in [26] to deal with the corner singular-
ities near the intersection points of the shock surface and nozzle boundary and
the artificial singularity near the axis simultaneously. Most recently, the authors
in [24, 25] studied radially symmetric transonic flow with/without shock in an
annulus. Thanks to the effect of angular velocity, it was found in [24] that besides
the well-known supersonic-subsonic shock in a divergent nozzle as in the case with-
out angular velocity, there exists a supersonic–supersonic shock solution, where the
downstream state may change smoothly from supersonic to subsonic. Furthermore,
there exists a supersonic–sonic shock solution where the shock circle and the sonic
circle coincide.

The rest of this paper will be organized as follows. In the next section, we for-
mulate the problem investigated in this article and state our main results. In § 3,
we reformulate the original 2-D problem by deformation-curl decomposition devel-
oped in [27, 28] so that one can rewrite system (2.1) with the velocity and the
Bernoulli function. We obtain a 2 × 2 first-order system for the velocity field, a
transport-type equation for the Bernoulli function, and the first-order ordinary
differential equation for the shock after linearization. In § 4, we design an elab-
orate iteration scheme inspired by the works [17] for the non-linear system. The
investigation of well-posedness and regularity for the linear system is given in the
remainder part of this section. In § 5, we prove the main existence and uniqueness
theorem.
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Transonic shock flows 3

2. Formulation of the problem and main results

In this section, we present the two-dimensional transonic shock problem with exter-
nal force under suitable perturbation of exit pressure and the main results. The 2-D
steady compressible isentropic Euler system with external force is of the form⎧⎪⎨

⎪⎩
∂x1(ρu1) + ∂x2(ρu2) = 0,
∂x1(ρu

2
1 + P (ρ)) + ∂x2(ρu1u2) = ρ∂x1Φ,

∂x1(ρu1u2) + ∂x2(ρu
2
2 + P (ρ)) = ρ∂x2Φ,

(2.1)

where (u1, u2) = u : R
2 → R

2 is the unknown velocity filed and ρ : R
2 → R is the

density, and Φ(x1, x2) is a given potential function of external force. For the ideal
polytropic gas, the equation of state is given by P (ρ) = Aργ , here A and γ (1 < γ <
∞) are positive constants. We take A = 1 throughout this paper for the convenience.

To this end, let’s first focus on the 1-D steady compressible flow with an external
force on an interval I = [L0, L1], which is governed by

⎧⎪⎨
⎪⎩

(ρ̄ū)′(x1) = 0,
ρ̄ūū′ + d

dx1
P (ρ̄) = ρ̄f̄(x1),

ρ̄(L0) = ρ0 > 0, ū(L0) = u0 > 0,
(2.2)

where we assume that the flow state at the entrance x1 = L0 is supersonic, meaning
that u2

0 > c2(ρ0) = γργ−1
0 .

Denote J = ρ̄ū = ρ0u0 > 0, then it follows from (2.2) that
{
ρ̄(x1) = J

ū(x1)
,

((ū)γ+1 − γJγ−1)ū′ = ūγ f̄ .
(2.3)

Also one has

ū′ =
ūf̄

ū2 − c2(ρ̄)
, ρ̄′ = − ρ̄f̄

ū2 − c2(ρ̄)
, (2.4)

d
dx1

M̄2(x1) =
(γ + 1)M̄2

M̄2 − 1
f̄

c2(ρ̄)
, (2.5)

where M̄(x1) = ū(x1)/c(ρ̄) is the Mach number.
Since M̄2(L0) > 1, it follows from (2.5) that if the external force satisfies

f̄(x1) > 0, ∀L0 < x1 < L1, (2.6)

then problem (2.2) has a global supersonic solution (ρ̄−, ū−) on [L0, L1]. If one
prescribes a large enough end pressure at x1 = L1, a shock will form at some point
x1 = Ls ∈ (L0, L1) and the gas is compressed and slowed down to subsonic speed,
the gas pressure will increase to match the given end pressure. Mathematically,
one looks for a shock x1 = Ls and smooth functions (ρ̄±, ū±, P̄±) defined on I+ =
[Ls, L1] and I− = [L0, Ls] respectively, which solves (2.3) on I± with the jump at
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the shock x1 = Ls ∈ (L0, L1) satisfying the physical entropy condition [P̄ (Ls)] =
P̄+(Ls) − P̄−(Ls) > 0 and the Rankine–Hugoniot conditions{

[ρ̄ū](Ls) = 0,
[ρ̄ū2 + P (ρ̄)](Ls) = 0.

(2.7)

and also the boundary conditions

ρ(L0) = ρ0, u(L0) = u0 > 0, (2.8)

P̄ (L1) = Pe. (2.9)

We will show that there is a unique transonic shock solution to the 1-D Euler
system when the end pressure Pe lies in a suitable interval. Such a problem will
be solved by a shooting method employing the monotonicity relation between the
shock position and the end pressure.

Lemma 2.1. Suppose that the initial state (u0, ρ0) at x1 = L0 is supersonic and the
external force f satisfying (2.6), there exist two positive constants P0, P1 > 0 such
that if the end pressure Pe ∈ (P1, P0), there exists a unique transonic shock solution
(ū−, ρ̄−) and (ū+, ρ̄+) defined on I− = [L0, Ls) and I+ = (Ls, L1) respectively,
with a shock located at x1 = Ls ∈ (L0, L1). In addition, the shock position x1 = Ls

increases as the exit pressure Pe decreases. Furthermore, the shock position Ls

approaches to L1 if Pe goes to P1 and Ls tends to L0 if Pe goes to P0.

Proof. The existence and uniqueness of smooth supersonic flow (ū−, ρ̄−) starting
from (ρ0, u0) on [L0, L1] is trivial. Suppose the shock occurs at x1 = Ls ∈ (L0, L1),
then it is well-known that there exists a unique subsonic state (ū+(Ls), ρ̄+(Ls))
satisfying the Rankine–Hugoniot conditions (2.7) and the entropy condition. With
(ū+(Ls), ρ̄+(Ls)) as the initial data, equation (2.2) has a unique smooth solu-
tion (ū+, ρ̄+) on [Ls, L1]. Denote Pe = (ρ̄+(L1))γ . In the following, we show
that the monotonicity between the shock position x1 = Ls and the exit pres-
sure Pe = (ρ̄+(L1))γ . ρ̄+(L1) is regarded as a function of Ls. Since (ρ̄+ū+)(Ls) =
(ρ̄−ū−)(Ls) = J = ρ0u0 > 0, then

ū−(Ls) +
Jγ−1

(ū−(Ls))γ
= ū+(Ls) +

Jγ−1

(ū+(Ls))γ
. (2.10)

It follows from the second equation in (2.2) that

1
2
(ū+(L1))2 +

γ

γ − 1
(ρ̄+(L1))γ−1 − Φ̄(L1) =

1
2
(ū+(Ls))2

+
γ

γ − 1
(ρ̄+(Ls))γ−1 − Φ̄(Ls).

Differentiating with respect to Ls, one deduces that(
γ(ρ̄+(L1))γ−2 − J2

(ρ̄+(L1))3

)
dρ̄+(L1)

dLs

=
(
γ(ρ̄+(Ls))γ−2 − J2

(ρ̄+(Ls))3

)
dρ̄+(Ls)

dLs
− f̄(Ls) =: I. (2.11)
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Also (2.10) yields that{
1 − γJγ−1

(ū+(Ls))γ+1

}
dū+(Ls)

dLs
=
{

1 − γJγ−1

(ū−(Ls))γ+1

}
dū−(Ls)

dLs
=

f̄(Ls)
ū−(Ls)

.

Finally, we conclude that

I = −
{
γ(ρ+(Ls))γ−1 − J2

(ρ+(Ls))2

}
1

ū+(Ls)
dū+(Ls)

dLs
− f̄(Ls)

=
f̄(Ls)(ū+(Ls) − ū−(Ls))

ū−(Ls)
< 0.

Since the coefficients

γ(ρ̄+(L1))γ−2 − J2

(ρ̄+(L1))3
> 0,

then (2.11) implies that the end density ρ̄+(L1) is a strictly decreasing function of
the shock position x1 = Ls. It follows that the end pressure Pe = (ρ̄+(L1))γ is a
strictly decreasing and continuous differentiable function on the shock position x1 =
Ls. In particular, when Ls = L0 and Ls = L1, there are two different end pressure
P1, P2 with P0 > P1. Hence, by the monotonicity, one can obtain a transonic shock
for the end pressure Pe ∈ (P1, P0). �

Remark 2.2. Lemma 2.1 shows that the external force helps to stabilize the
transonic shock in flat nozzles and the shock position is uniquely determined.

The one-dimensional transonic shock solution (ū±, ρ̄±) with a shock occurring
at x1 = Ls constructed in lemma 2.1 will be called the background solution in
this paper. The extension of the subsonic flow (ū+(x1), ρ̄+(x1)) of the background
solution to Ls − δ0 < x1 < L1 for a small positive number δ0 will be denoted by
(û+(x1), ρ̂+(x1)).

It is natural to focus on the structural stability of these transonic shock flows. For
simplicity, we only investigate the structural stability under suitable small pertur-
bations of the end pressure. Therefore, the supersonic incoming flow is unchanged
and remains to be (ū−(x1), 0, ρ̄−(x1)).

Assume that the possible shock curve Σ and the flow behind the shock are denoted
by x1 = ξ(x2) and (u+

1 , u
+
2 , P

+)(x) respectively (see figure 1). Let Ω+ = {(x1, x2) :
ξ(x2) < x1 < L1, −1 < x2 < 1} denotes the subsonic region of the flow. Then the
Rankine–Hugoniot conditions on Σ gives⎧⎪⎪⎪⎨

⎪⎪⎪⎩
[ρu1] − ξ′(x2)[ρu2] = 0,

[ρu2
1 + P ] − ξ′(x2)[ρu1u2] = 0,

[ρu1u2] − ξ′(x2)[ρu2
2 + P ] = 0.

(2.12)

In addition, the pressure P satisfies the physical entropy conditions

P+(x) > P−(x) on Σ. (2.13)
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Figure 1. Nozzle.

Since the flow is tangent to the nozzle walls x2 = ±1, then

u+
2 (x1,±1) = 0. (2.14)

The end pressure is perturbed by

P+(L1, x2) = Pe + εPex(x2), (2.15)

due to some technical reasons, we may readily suppose that Pex(x2) =
P

1/γ
e P̂ex(x2) ∈ C2,α([−1, 1])(α ∈ (0, 1)) satisfies the compatibility conditions

P̂ ′
ex(±1) = 0. (2.16)

The following theorem gives the main results of this paper.

Theorem 2.3. Suppose that (2.6), (2.8) and (2.9) hold. Then there exist positive
constant ε0 > 0 such that, for all ε ∈ (0, ε0], system (2.1) with boundary conditions
(2.12)–(2.15) has a unique transonic shock solution (u+

1 (x), u+
2 (x), P+(x); ξ(x2))

which admits the following properties:
(i). The shock x1 = ξ(x2) ∈ C3,α([−1, 1]), and satisfies

‖ξ(x2) − Ls‖C3,α([−1,1]) � Cε, (2.17)

where the positive constant C only depends on the background solution, the exit
pressure and α.
(ii). The velocity and pressure in subsonic region (u+

1 , u
+
2 , P

+)(x) ∈ (C2,α(Ω̄+))3,
and there holds

‖(u+
1 , u

+
2 , P

+)(x) − (û, 0, P̂ )‖C2,α(Ω̄+) � Cε, (2.18)

where Ω+ = {(x1, x2) : ξ(x2) < x1 < L1, −1 < x2 < 1} is the subsonic region and
(û, 0, P̂ ) = (û(x1), 0, P (ρ̂(x1))) is the extended background solution.
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Our proof is influenced by the approach developed in [16, 17, 20], yet the refor-
mulation of the problem is different from there. It is well-known that steady Euler
equations are hyperbolic-elliptic coupled in the subsonic region. The entropy and
Bernoulli’s function are conserved along the particle path, while the pressure and
the flow angle satisfy a first-order elliptic system in the subsonic region. These facts
are widely used in the structural stability analysis for the transonic shock problems
in flat or divergent nozzles, one may refer to [3, 7, 8, 16, 17, 20, 22, 32, 33] and the
references therein. Here we resort to a different decomposition based on the defor-
mation and curl of the velocity developed in [27, 28] for three-dimensional steady
Euler and Euler–Poisson systems. The idea in that decomposition is to rewrite the
density equation as a Frobenius inner product of a symmetric matrix and the defor-
mation matrix by using Bernoulli’s law. The vorticity is resolved by an algebraic
equation of Bernoulli’s function and the entropy. We should mention that there are
several different decompositions to the three-dimensional steady Euler system [2, 4,
5, 21, 23, 32] developed by many researchers for different purposes. An interesting
issue that deserves further discussion is when using the deformation-curl decomposi-
tion to deal with the transonic shock problem, the end pressure boundary condition
becomes non-local since it involves the information from the shock front. However,
this non-local boundary condition reduces to be local after introducing the potential
function.

3. Reformulation of the problem

Different from previous works on transonic shock problems [3, 7, 8, 16, 17, 20],
we will use the deformation-curl decomposition developed in [27, 28] for steady
Euler system to decompose the original system (2.1) into an equivalent system
(3.3), where the hyperbolic quantity B and elliptic quantities u1, u2 are effectively
decoupled in subsonic regions. To this end, define the Bernoulli’s function

B =
1
2
|u|2 + h(ρ) − Φ, (3.1)

where h(s) = γ
γ−1s

γ−1 is the enthalpy function. Hence, the density can be expressed
by the Bernoulli function and velocity field as

ρ = H(B,Φ, |u|2) =
[
γ − 1
γ

(
B + Φ − 1

2
|u|2

)]1/γ−1

. (3.2)

Consequently, the 2-D Euler system (2.1) with unknown function (u1, u2, P ) is
equivalent to the following system⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

2∑
i,j=1

(c2(H)δij − uiuj)∂iuj + u1∂1Φ + u2∂2Φ = 0,

∂1u2 − ∂2u1 = −∂2B
u1
,

u1∂1B + u2∂2B = 0,

(3.3)

with unknown function (u1, u2, B).

https://doi.org/10.1017/prm.2024.39 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2024.39


8 S. Weng and W. Yang

The shock curve is determined by

ξ′(x2) =
[ρu1u2]

[ρu2
2 + P ]

(ξ(x2), x2), x2 ∈ (−1, 1). (3.4)

Furthermore, it follows from the R-H conditions (2.12) that

⎧⎨
⎩

[ρu1] = [ρu2][ρu1u2]
[ρu2

2+P ]
,

[ρu2
1 + P (ρ)] = ([ρu1u2])

2

[ρu2
2+P ]

.
(3.5)

A direct computation by using (3.5) shows that on x1 = ξ(x2)

(ρ+(ξ(x2), x2) − ρ̄+(Ls), u+
1 (ξ(x2), x2) − ū+(Ls))

= (h1, h2)(ρ−(ξ(x2)) − ρ̄−(Ls), u−(ξ(x2)) − ū−(Ls), (u+
2 (ξ(x2), x2))2) (3.6)

here hi(0, 0, 0) = 0 for i = 1, 2. In addition, we have

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂h1

∂(ρ−−ρ̄−)
|(0,0,0) = 2ū−(Ls)

ū+−ū−
(ū+(Ls))2 − c2(ρ̄+(Ls))

+ 1,

∂h1

∂(u−−ū−)
|(0,0,0) = 2ρ̄−(Ls)

ū+−ū−
(ū+(Ls))2 − c2(ρ̄+(Ls))

,

∂h1

∂(u+
2 )2

|(0,0,0) =
(ρ̄+(Ls)ū+(Ls))2

P̄+(Ls) − P̄−(Ls)
1

(ū+(Ls))2 − c2(ρ̄+(Ls))
,

(3.7)

and

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂h2

∂(ρ−−ρ̄−)
|(0,0,0) = −(γ − 1)

P̄+(Ls) − P̄−(Ls)
(ρ̄+(Ls))2ū+(Ls)

ū+ū−

(ū+(Ls))2 − c2(ρ̄+(Ls))
,

∂h2

∂(u−−ū−)
|(0,0,0) =

2ρ̄−(Ls)ū+(Ls)
ρ̄+(Ls)

ū−ū+

(ū+(Ls))2 − c2(ρ̄+(Ls))
+
ρ̄−(Ls)
ρ̄+(Ls)

,

∂h2

∂(u+
2 )2

|(0,0,0) =
ρ̄+(Ls)ū+(Ls)

P̄+(Ls) − P̄−(Ls)
c2(ρ̄+(Ls))

(ū+(Ls))2 − c2(ρ̄+(Ls))
.

(3.8)
By substituting (3.6) into (3.1), we conclude that there is a function h3 such that

B+(ξ(x2), x2) − B̄+(Ls) = h3(ρ−(ξ(x2))

− ρ̄−(Ls), u−(ξ(x2)) − ū−(Ls), (u+
2 (ξ(x2), x2))2). (3.9)

Thus, theorem 2.3 is established as long as we solve problem (3.3)–(3.4) with bound-
ary conditions (3.5), (2.14)–(2.15). In order to deal with the free boundary value
problem (3.3)–(3.4), we introduce the following transformation to reduce it into a
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fixed boundary value problem. Setting

y1 =
x1 − ξ(x2)
L1 − ξ(x2)

(L1 − Ls) + Ls, y2 = x2, (3.10)

then, the domain Ω+ = {(x1, x2) : ξ(x2) < x1 < L1, −1 < x2 < 1} is changed into

Q = {(y1, y2) : Ls < y1 < L1,−1 < y2 < 1}. (3.11)

The inverse change variable gives

x1 = ξ(y2) +
L1 − ξ(y2)
L1 − Ls

(y1 − Ls) = y1 +
L1 − y1
L1 − Ls

(ξ(y2) − Ls), x2 = y2.

We now set for y ∈ Q

(ũj , ρ̃, B̃, Φ̃)(y1, y2) = (uj , ρ, B,Φ)
(
L1 − ξ(y2)
L1 − Ls

(y1 − Ls) + ξ(y2), y2

)
, j = 1, 2.

Shock equation (3.4) becomes

ξ′(y2) =
(ρu1u2)(ξ(y2), y2)

P+(ρ)(ξ(y2), y2) − P−(ξ(y2)) + ρ(u2)2(ξ(y2), y2)
,

=
(ρ̃ũ1ũ2)(Ls, y2)

P+(ρ̃)(Ls, y2) − P−(ξ(y2)) + ρ̃(ũ2)2(Ls, y2)
, y2 ∈ (−1, 1),

(3.12)

and system (3.3) is changed into

(c2(ρ̃) − ũ2
1)

L1 − Ls

L1 − ξ(y2)
∂y1 ũ1 + c2(ρ̃)∂y2 ũ2 + ũ1

L1 − Ls

L1 − ξ(y2)
∂y1Φ̃ = F1(ũ, B̃),

(3.13)

L1 − Ls

L1 − ξ(y2)
∂y1 ũ2 − ∂y2 ũ1 − y1 − L1

L1 − ξ(y2)
ξ′(y2)∂y1 ũ1 +

∂y2B̃

ũ1
= F2(ũ, B̃),

ũ1
L1 − Ls

L1 − ξ(y2)
∂y1B̃ + ũ2∂y2B̃ +

y1 − L1

L1 − ξ(y2)
ξ′(y2)ũ2∂y1B̃ = 0, (3.14)

where

F1(ũ, B̃) = ũ2
2∂y2 ũ2 − (c2(ρ̃) − ũ2

2)
y1 − L1

L1 − ξ(y2)
ξ′(y2)∂y1 ũ2 + ũ1ũ2

L1 − Ls

L1 − ξ(y2)
∂y1 ũ2

+ ũ2ũ1(∂y2 ũ1 +
y1 − L1

L1 − ξ(y2)
ξ′(y2)∂y1 ũ1) − ũ2(∂y2Φ̃ +

y1 − L1

L1 − ξ(y2)
ξ′(y2)∂y1Φ̃),

F2(ũ, B̃) = − y1 − L1

L1 − ξ(y2)
ξ′(y2)
ũ1

∂y1B̃.

Consider the perturbed functions vi(y1, y2), i = 1, 2, 3, 4, as

v1(y1, y2) = ũ1(y1, y2) − ū+(y1), v2(y1, y2) = ũ2(y1, y2),

v3(y1, y2) = B̃(y1, y2) − B̄+, v4(y2) = ξ(y2) − Ls,
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and define the vector functions

V (y1, y2) = (v1(y1, y2), v2(y1, y2), v3(y1, y2), v4(y2)). (3.15)

It follows from (3.12) that the shock satisfies

v′4(y2) =
ρ̃(ū+ v1)v2(Ls, y2)

P+(ρ̃)(Ls, y2) − P−(ξ(y2)) + ρ̃(ũ2)2(Ls, y2)
. (3.16)

Through a direct computation, one can derive from (3.9) and (3.14) that the
Bernoulli function satisfies a transport-type equation{

[(ū++v1)(L1 − Ls) + v2(y1 − L1)v′4(y2)]∂y1v3 + v2(L1 − v4 − Ls)∂y2v3 = 0,
v3(Ls, y2) = b3v4(y2) +R3(y2),

(3.17)
where

b3 =
ρ̄−(Ls) − ρ̄+(Ls)

ρ̄+(Ls)
f̄(Ls), (3.18)

and R3(y2) = R3(V (Ls, y2)) = O(|V (Ls, y2)|)2 is an error term of second order.
We may readily drop superscribe + on the background solutions if there is no risk
of confusion. And the first-order system for v1, v2 is given by,⎧⎪⎪⎪⎨

⎪⎪⎪⎩
(c2(ρ̄+) − (ū+)2)∂y1v1 + c2(ρ̄+)∂y2v2 +B1(y1)v1

+B3(y1)v3 +B4(y1)v4(y2) = F3(V,∇V ),

∂y1v2 − ∂y2v1 + L1−y1
L1−Ls

ū′v′4 + ∂y2v3

ū = F4(V,∇V ),

(3.19)

where F3, F4 represent the remainder term of the second order with respect to V
and ∇V , and

B1(y1) = f̄(y1) − (γ + 1)ūū′ =
γū2 + c2(ρ̄+)
c2(ρ̄+) − ū2

f̄ > 0,

B3(y1) = (γ − 1)ū′,

B4(y1) =
1

L1 − Ls
[(γ − 1)f̄(y1)(L1 − y1)ū′ − ūf̄ + ūf̄ ′(y1)(L1 − y1)].

It’s obvious that the second formula in (3.6) gives the boundary condition of v1 on
the entrance x1 = Ls. Meanwhile, formula (3.2) after changing the variable becomes

c2(ρ̃)(y) = γρ̃γ−1 = (γ − 1)
(
B̃ − 1

2
|ũ|2 + Φ̄

)

= (γ − 1)
(
B̄++v3 − 1

2
(ū++v1)2 − 1

2
v2
2 + Φ̄

)

= c2(ρ̄+) + (γ − 1)
(
v3 − ū+v1 − 1

2
v2
1 − 1

2
v2
2

)
,

(3.20)
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which together with (2.15) gives the boundary condition of v1 on the exit x1 = L1.
Hence, the boundary conditions to system (3.19) read as follow⎧⎪⎪⎪⎨

⎪⎪⎪⎩
v1(Ls, y2) = b2v4(y2) +R2(y2),

v1(L1, y2) = 1
ū(L1)

(v3(L1, y2) − εP̂ex(y2)) +R4(y2),

v2(y1,±1) = 0,

(3.21)

here

b2 =
ρ̄−(Ls)ū+(Ls)

ρ̄+(Ls)[(ū+(Ls))2 − c2(ρ̄+(Ls))]
f̄(Ls) < 0, (3.22)

and R2(y2) = R2(V (Ls, y2)) = O(|V (Ls, y2)|)2,R4(y2) = R4(V (L1, y2)) = O(|V
(L1, y2)|)2 are error terms of second order. Based on our reformulation, theorem
2.3 follows from the following results.

Theorem 3.1. Under the same assumptions as in theorem 2.3, there exists a posi-
tive constant ε0 > 0 such that for each ε ∈ (0, ε0], system (3.16)–(3.21) has a unique
solution V ∈ (C2,α(Q̄))3 × C3,α([−1, 1]) satisfying the following estimate

3∑
i=1

‖vi‖C2,α(Q̄) + ‖v4‖C3,α([−1,1]) � Cε, (3.23)

where the constant C depends only on the background solution, the exit pressure
and α ∈ (0, 1).

4. Iteration scheme and the linear system

In the first part of this section, we construct an iteration scheme for the non-linear
system, and the problem is reduced to the solvability of corresponding linear sys-
tems. Indeed, it turns out that the linear system is a non-local elliptic equation of
second order with a free parameter denoting the relative location of the shock posi-
tion on the wall x2 = −1. Then we study the existence, uniqueness and regularity
for this linear system in the remainder part of this section.

4.1. Iteration scheme

Inspired by [17], we will develop an iteration scheme to prove theroem 3.1.
Consider the Banach space

Vδ :=

{
V :

3∑
i=1

‖vi‖C2,α(Q̄) + |v4|C3,α[−1,1] � δ; ∂y2vj(y1,±1) = 0,

j = 1, 3; v2(y1,±1) = ∂2
y2
v2(y1,±1) = 0; v′4(±1) = v

(3)
4 (±1) = 0

}
, (4.1)

here δ > 0 is a small constant to be determined later. For a fix V̂ ∈ Vδ, equivalently,
we have the following quantity

(v̂1, v̂2, B̂, ρ̂, P̂ , ξ̂)(y).
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We now define the linearized scheme to problem (3.16)–(3.21) as follows.
Firstly, thanks to (3.16), v4 is determined by

v′4(y2) = b0v2(Ls, y2) + F5(V̂ )(Ls, y2), (4.2)

where

b0 =
(ρ̄ū)(Ls)

P+(ρ̄)(Ls) − P−(Ls)
> 0,

F5(y2) =

{
ρ̂û1

P+(ρ̂)(Ls, y2) − P−(ξ̂(y2)) + ρ̂(û2)2(Ls, y2)
− b0

}
v2(Ls, y2),

hence, one can express the shock as

v4(y2) = v4(−1) +
∫ y2

−1

b0v2(Ls, τ) dτ +R5(y2), (4.3)

where R5(y2) =
∫ y2

−1
F5(τ) dτ is a error term of second order. Due to V̂ ∈ Vδ, we

have

F5(±1) = F
′′
5 (±1) = 0, ‖F5‖Ck,α[−1,1] � Cδ‖v̂2‖Ck,α(Q̄), k = 0, 1, 2. (4.4)

Secondly, using (3.17), we get the linearized transport equation for v3:

[(ū+ v̂1)(L1 − Ls) + v̂2(y1 − L1)v̂′4(y2)]∂y1v3 + v̂2(L1 − v̂4 − Ls)∂y2v3 = 0 inQ,

with initial data

v3(Ls, y2) = b3v4(y2) +R3(y2).

Thus, it can be solved by characteristic methods. Let y2(s;β) be the characteristics
going through (y1, y2) with y2(Ls) = β, i.e.⎧⎨
⎩

dy2
ds

(s;β) =
v̂2(L1 − v̂4 − Ls)

(ū+ v̂1)(L1 − Ls) + v̂2(y1 − L1)v̂′4(y2)
, Ls < s < L1,

y2(Ls) = β.
(4.5)

It is noted that β can be also regarded as a function of y = (y1, y2), this is denoted
by β = β(y), which leads to

v3(y1, y2) = v3(Ls, β(y)) = b3v4(y2) + F6(y), (4.6)

where

F6(y) = b3

∫ β(y)

y2

v′4(τ) dτ +R3(V̂ (Ls, β(y)))

is an error term of second order. Furthermore, we have

∂y2F6(y1,±1) = 0,

‖F6‖Ck,α(Q̄) � Cδ

(
3∑

i=1

‖v̂i‖Ck,α(Q̄) + ‖v̂4‖Ck+1,α(Q̄)

)
, k = 0, 1, 2. (4.7)

It remains to determine the velocity v1, v2 and the shock position difference v4(−1)
on the wall x2 = −1. Substituting (4.3) and (4.6) into (3.19) and (3.21), we get the
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following linearized system for v1, v2 with an unknown parameter v4(−1):⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∂y1v1 +
1

1 − M̄2
∂y2v2 +

B1(y1)
c2(ρ̄+) − (ū+)2

v1

+
B3(y1)b3 +B4(y1)
c2(ρ̄+) − (ū+)2

(v4(−1) +
∫ y2

−1
b0v2(Ls, τ) dτ) = G1(y),

∂y1v2 − ∂y2 [v1 − λ(y1)(v4(−1) +
∫ y2

−1
b0v2(Ls, τ) dτ)] = G2(y),

(4.8)

and the boundary conditions

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

v1(Ls, y2) = b2(v4(−1) +
∫ y2

−1
b0v2(Ls, τ) dτ) +R6(y2),

v1(L1, y2) =
b3

ū(L1)
(v4(−1) +

∫ y2

−1
b0v2(Ls, τ) dτ) − εP̂ex(y2)

ū(L1)
+R7(y2),

v2(y1,±1) = 0,

(4.9)

where

λ(y1) =
L1 − y1
L1 − Ls

ū′ +
b3
ū
,

R6(y2) = b2R5(y2) +R2(y2),

R7(y2) =
b3R5(y2) + F6(L1, y2)

ū(L1)
+R4(y2),

G1(y) =
F3(V̂ ,∇V̂ ) −B3(y1)R5(y2) −B3(y1)F6(y) −B4(y1)R5(y2)

(c2(ρ̄+) − (ū+)2)
,

G2(y) = F4(V̂ ,∇V̂ ) − ∂y2F6(y)
ū

+ λ(y1)∂y2R5(y2).

It follows from (4.4), (4.7) and a simple calculation that

∂y2G1(y1,±1) = 0, G2(y1,±1) = 0,

‖Gi‖Ck−1,α(Q̄) � Cδ‖V̂ ‖Ck,α(Q̄), i, k = 1, 2,

and

R′
6(±1) = 0, R′

7(±1) = 0,

‖(R6, R7)‖Ck,α[−1,1] � Cδ‖V̂ ‖Ck,α(Q̄), k = 0, 1, 2. (4.10)

The second equation in (4.8) implies that there is a potential function φ(y) that
satisfies{

∂y2φ = v2, φ(Ls,−1) = 0,
∂y1φ = v1 − λ(y1)(v4(−1) +

∫ y2

−1
b0v2(Ls, τ) dτ) +

∫ y2

−1
G2(y1, τ) dτ,

(4.11)
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it follows that v1, v2 can be represented by{
v2 = ∂y2φ,

v1 = ∂y1φ+ λ(y1)[v4(−1) + b0φ(Ls, y2)] −
∫ y2

−1
G2(y1, τ) dτ.

(4.12)

Substituting (4.12) into the first equation in (4.8), we conclude that φ satisfies the
following non-local elliptic equation of the second with an unknown constant v4(−1)

∂2
y1
φ+

1
1 − M̄2

∂2
y2
φ+ λ1(y1)∂y1φ+ λ0(y1)b0

(
v4(−1)
b0

+ φ(Ls, y2)
)

= G1(y) + λ1(y1)
∫ y2

−1

G2(y1, τ) dτ + ∂y1

∫ y2

−1

G2(y1, τ) dτ, (4.13)

where

λ1(y1) =
B1(y1)

c2(ρ̄) − ū2
> 0,

λ0(y1) =
1

c2(ρ̄) − ū2
[(c2(ρ̄) − ū2)λ′ +B1λ+B3b3 +B4].

Similarly, substituting (4.12) into boundary conditions (4.9), combined with the
boundary condition of φ in (4.11), we have

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∂y1φ(Ls, y2) = b0(b2 − λ(Ls))
(
v4(−1)
b0

+φ(Ls, y2)
)

+R6(y2) +
∫ y2

−1
G2(Ls, τ) dτ,

∂y1φ(L1, y2) = −εP̂ex(y2)
ū(L1)

+R7(y2) +
∫ y2

−1
G2(L1, τ) dτ,

∂y2φ(y1,±1) = φ(Ls,−1) = 0.
(4.14)

So far, we have reduced problem (4.8)–(4.9) into a non-local elliptic equation of φ
with an unknown constant v4(−1). Hence, it is sufficient to establish the solvability
and regularity of problem (4.13)–(4.14) to study the original problem. We are going
to do it in the next subsection.

4.2. A non-local elliptic equation with a free constant

In this section, we prove the existence, uniqueness and regularity of problem
(4.13). To this end, we consider the following more concise form of second-order
elliptic system with an unknown constant κ⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∂2
y1
φ+ a2(y1)∂2

y2
φ+ a1(y1)∂y1φ− a0(y1)(κ+ φ(Ls, y2)) = ∂y1f, inQ,

∂y1φ(Ls, y2) − a3(κ+ φ(Ls, y2)) = g1(y2),

∂y1φ(L1, y2) = g2(y2),

∂y2φ(y1,±1) = φ(Ls,−1) = 0,

(4.15)
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where the smooth coefficients ai(y1), i=0, 1, 2 and the constant a3 satisfy

a1(y1) < C1, 0 < C0 < ai(y) < C1, i = 0, 2, 3, (4.16)

and the parameter κ is a constant to be determined with the solution itself.
The first lemma implies that the inhomogeneous problem corresponding to system

(4.15) without the unknown constant has a unique weak solution.

Lemma 4.1. Suppose that f ∈ L2(Q) and gi ∈ L2(−1, 1), i = 1, 2, then there exists
a suitable large positive constant K, such that the following inhomogeneous second-
order elliptic equation

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

−∂2
y1
φ− a2(y1)∂2

y2
φ− a1(y1)∂y1φ+Kφ+ a0(y1)φ(Ls, y2) = ∂y1f, inQ,

∂y1φ(Ls, y2) − a3φ(Ls, y2) = g1(y2),

∂y1φ(L1, y2) = g2(y2),

∂y2φ(y1,±1) = 0,
(4.17)

admits a unique weak solution φ ∈ H1(Q) satisfying

‖φ‖H1(Q) � C(‖(g1, g2)‖L2(−1,1) + ‖f‖L2(Q)), (4.18)

for some positive constant C > 0.

Proof. For φ, ψ ∈ H1(Q), define the bilinear form

B[φ, ψ] =
∫

Q

∂y1φ∂y2ψdy +
∫

Q

a2(y1)∂y2φ∂y2ψdy −
∫

Q

a1(y1)ψ∂y1φdy

+K

∫
Q

φψdy +
∫

Q

a0(y1)φ(Ls, y2)ψdy + a3

∫ 1

−1

φ(Ls, y2)ψ(Ls, y2)dy2,

and the linear functional on H1(Q)

l(ψ) =
∫ 1

−1

g2(y2)ψ(L1, y2)dy2 −
∫ 1

−1

g1(y2)ψ(Ls, y2)dy2 −
∫

Q

∂y1fψdy.

It’s obviously that the linear functional l(ψ) on H1(Q) is continuous, i.e.

|l(ψ)| � C(‖(g1, g2)‖L2(−1,1) + ‖f‖L2(Q))‖ψ‖H1(Q), (4.19)

where we have used the trace theorem. So, what we need to do is just verify that
the conditions of the Lax–Milgram Theorem are satisfied for the bilinear form B.
The boundedness of BK is trivial, we will show that BK is also coercive. Denote
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Λ = min{1, C0} > 0, then

Λ
∫

Q

|∇φ|2dy +K

∫
Q

|φ|2dy � B[φ, φ] +
∫

Q

a1(y1)φ∂y1φdy

−
∫

Q

a0(y1)φ(Ls, y2)φ(y1, y2)dy − a3

∫ 1

−1

|φ(Ls, y2)|2dy2,

Cauchy’s inequality gives∫
Q

a1(y1)φ∂y1φdy � C1ε

∫
Q

|∇φ|2dy +
C1

4ε

∫
Q

|φ|2dy,

and∫
Q

a0(y1)φ(Ls, y2)φ(y1, y2)dy � Ctr(L1 − Ls)C1ε

∫
Q

|∇φ|2dy +
C1

4ε

∫
Q

|φ|2dy.

Then, fix ε0 such that C1ε0(1 + (L1 − Ls)Ctr) < Λ/2, and choosing K =
max{Λ, C1/ε0}, thanks to the positivity of a3, we obtain

B[φ, φ] � Λ
2
‖φ‖H1(Q),

the unique existence follows from the Lax–Milgram Theorem and (4.19) gives the
estimates (4.18). Thus, the proof is complete. �

The unique existence of regular solution to non-local system (4.15) is established
in the following proposition.

Proposition 4.2. For any f ∈ C1,α(Q̄), gi ∈ Cα(Q̄), there is a unique weak
solution (φ, κ), such that φ ∈ H1(Q) and the following estimate holds

‖φ‖H1(Q) + |κ| � C(‖f‖Cα(Q̄) + |(g1, g2)|C1,α[−1,1]). (4.20)

Moreover, if the compatibility conditions

∂y2f(y1,−1) = ∂y2f(y1, 1) = 0, g′i(−1) = g′i(1) = 0, i = 1, 2, (4.21)

are fulfilled, then φ ∈ C2,α(Q̄)

‖φ‖C1,α(Q̄) � C(‖f‖Cα(Q̄) + |(g1, g2)|Cα[−1,1] + ‖φ‖H1(Q) + |κ|), (4.22)

and

‖φ‖C2,α(Q̄) � C(‖f‖C1,α(Q̄) + |(g1, g2)|C1,α[−1,1] + ‖φ‖H1(Q) + |κ|). (4.23)

for some positive constant C > 0.

Proof. The proof is divided into two steps.
Step 1: Regularity of weak solutions. We will use the symmetric extension meth-

ods to exclude the possible singularities that may appear at the corner, which
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implies that the weak solution φ ∈ H1(Q) to system (4.15) is essentially more
regular. To this end, introduce the notation

Q∗ := {(y1, y2) : Ls < y1 < L1,−2 < y2 < 2}.
and define the extended function φ∗(y) on Q∗ as

φ∗(y) =

⎧⎪⎨
⎪⎩
φ(y1, 2 − y2), 1 < y2 < 2,
φ(y1, y2),−1 < y2 < 1,
φ(y1,−2 − y2),−2 < y2 < −1.

(4.24)

Then the extended function φ∗ satisfies⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∂2
y1
φ∗ + a2(y1)∂2

y2
φ∗ + a1(y1)∂y1φ

∗ − a0(y1)(κ+ φ∗(Ls, y2)) = ∂y1f
∗, inQ∗,

∂y1φ
∗(Ls, y2) − a3(κ+ φ∗(Ls, y2)) = g∗1(y2),

∂y1φ
∗(L1, y2) = g∗2(y2),

∂y2φ
∗(y1,±1) = φ∗(Ls,−1) = 0,

(4.25)
Using the standard interior and the boundary estimates for the second-order linear
elliptic equations in [13], we obtain that φ∗(y) ∈ C1,α(Q∗) and

‖φ∗‖C1,α(Q∗) � C(‖f∗‖C1,α(Q∗) + ‖(g1, g2)‖C1,α[−2,2] + ‖φ∗(Ls, y2)‖L2[−2,2] + |κ|),
(4.26)

which implies that φ∗(Ls, y2) ∈ C1,α[−2, 2]. Use estimate (4.26) again to conclude
that φ∗(y) ∈ C2,α(Q∗) and

‖φ∗‖C1,α(Q∗) � C(‖f∗‖C1,α(Q∗) + ‖(g1, g2)‖C1,α[−2,2] + ‖φ∗(0, y2)‖L2[−2,2] + |κ|).
(4.27)

Then (4.22) and (4.23) follow immediately.
Step 2: Existence and uniqueness of weak solutions. Due to the linearity, any

solution φ to problem (4.15) can be decomposed as φ = φ1 + φ2, where φi, i=1,2,
satisfy the following equation respectively⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∂2
y1
φ1 + a2(y1)∂2

y2
φ1 + a1(y1)∂y1φ1 − a0(y1)φ1(Ls, y2) = ∂y1f, inQ,

∂y1φ1(Ls, y2) − a3φ1(Ls, y2) = g1(y2),

∂y1φ1(L1, y2) = g2(y2),

∂y2φ1(y1,±1) = 0,

(4.28)

and⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∂2
y1
φ2 + a2(y1)∂2

y2
φ2 + a1(y1)∂y1φ2 − a0(y1)(κ+ φ2(Ls, y2)) = 0, inQ,

∂y1φ2(Ls, y2) − a3(κ+ φ2(Ls, y2)) = 0,

∂y1φ2(L1, y2) = ∂y2φ2(y1,±1) = 0,

φ2(Ls,−1) = −φ1(Ls,−1).
(4.29)
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Combing lemma 4.1 with the Fredholm alternative theorem, one can easily derive
that (4.28) has a unique H1(Q) solution φ1 which satisfies (4.20). On the other
hand, one can prove that the only weak solution to (4.29) must be (φ2, κ) =
(−φ1(Ls, −1), φ1(Ls, −1)) by applying the maximum principle. For the detailed
proof, one can refer to lemma 4.1 in [17]. Thus, the proof is complete. �

At this point, we can easily illustrate the well-posedness to reformulated problem
(4.13)–(4.14).

Lemma 4.3. Problem (4.13)–(4.14) has a unique solution (φ, κ) ∈ C2,α(Q̄) × R

satisfying

‖φ‖Ck,α(Q̄) + |κ| � C(‖(G1, G2)‖Ck−1,α(Q̄)

+ ‖(R6(y2), R7(y2))‖C1,α[−1,1] + ‖εP̂ex(y2)‖C1,α[−1,1]), k = 1, 2,
(4.30)

for some positive constant C.

Proof. It suffices to verify solvability condition (4.16) for problem (4.13)–(4.14). A
direct but tedious computation shows that

a0(y1) = −b0λ0(y1) = − 2c2(ρ̄+)f̄ b0b3
ū(c2(ρ̄+) − ū2)2

> 0,

a1(y1) = λ1(y1) =
γū2 + c2(ρ̄+)
(c2(ρ̄+) − ū2)2

f̄ > 0,

a2(y1) =
1

1 − M̄2
> 0,

a3 = b0(b2 − λ(Ls)) = b0
c2(ρ̄+)(ρ̄+−ρ̄−)f̄(Ls)
ρ̄+ū(c2(ρ̄+) − ū2)

> 0,

since the background solution is subsonic and smooth, the upper bound is trivial.
Hence, proposition 4.2 implies that there exists a unique weak solution (φ, κ), and
estimate (4.30) follows from (4.22) and (4.23). �

In view of the analysis of problem (4.13)–(4.14), the well-posedness of equation
(4.8)–(4.9) follows.

Lemma 4.4. Problem (4.8)–(4.9) admits a unique solution (v1, v2, v4(−1)) ∈
(C2,α(Q̄))2 × R satisfying

‖(v1, v2)‖Ck,α(Q̄) + |v4(−1)| � C(‖(G1, G2)‖Ck−1,α(Q̄)

+ ‖(R6(y2), R7(y2))‖Ck,α[−1,1] + ‖εP̂ex(y2)‖Ck,α[−1,1]), k = 1, 2,
(4.31)

and the compatibility conditions

∂y2v1(y1,±1) = 0, ∂y2v2(y1,±1) = ∂2
y2
v2(y1,±1) = 0. (4.32)
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Proof. Combine (4.12) and (4.30), we conclude that there is a unique solution
(v1, v2, v4(−1)) ∈ (C1,α(Q̄))2 × R such that

‖(v1, v2)‖Cα(Q̄) + |v4(−1)| � C(‖(G1, G2)‖Cα(Q̄)

+ ‖(R6(y2), R7(y2))‖C1,α[−1,1] + ‖εP̂ex(y2)‖C1,α[−1,1]). (4.33)

The similar estimates also hold true for ‖(v1, v2)‖C1,α(Q̄), but we can derive an even
better estimate by rewriting (4.8) into an elliptic equation of v1. To this end, we
first rewrite system (4.8) as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂y1v1 + 1
1−M̄2 ∂y2v2 + λ1(y1)v1 = G1(y),

∂y1v2 − ∂y2v1 = G2(y),

v1(Ls, y2) = R6(y2),

v1(L1, y2) = R7(y2),

v2(y1,±1) = 0,

(4.34)

where

G1(y) = G1(y) − B3(y1)b3 +B4(y1)
(c2(ρ̄+) − (ū+)2)

(v4(−1) +
∫ y2

−1

b0v2(Ls, τ) dτ),

G2(y) = G2(y) + b0v2(Ls, y2),

R6(y2) = b2(v4(−1) +
∫ y2

−1

b0v2(Ls, τ) dτ) +R6(y2),

R7(y2) =
b3

ū(L1)
(v4(−1) +

∫ y2

−1

b0v2(Ls, τ) dτ) − εP̂ex(y2)
ū(L1)

+R7(y2),

and

∂y2G1(y1,±1) = 0, G2(y1,±1) = 0, R′
6(±1) = 0, R′

7(±1) = 0. (4.35)

Note that (4.12) and the boundary conditions of φ imply that

v2(y1,±1) = 0, ∂y2v1(y1,±1) = 0. (4.36)

A simple cancellation yields to⎧⎪⎪⎪⎨
⎪⎪⎪⎩
∂y1((1 − M̄2)∂y1v1) + ∂2

y2
v1 + ∂y1(λ1(1 − M̄2)v1) = ∂y1((1 − M̄2)G1) − ∂y2G2,

v1(Ls, y2) = R6(y2), v1(L1, y2) = R7(y2),

∂y2v1(y1,±1) = 0.
(4.37)

Since the boundary conditions in (4.37) are compatible at the corners, we obtain
the following estimates for v1 by using the symmetric extension defined by (4.24)

‖v1‖Ck,α(Q̄) � C(‖v2‖Ck−1,α(Q̄) + |v4(−1)| + ‖(G1, G2)‖Ck−1,α(Q̄)

+ ‖P̂ex‖Ck,α[−1,1] + ‖(R6, R7)‖Ck,α[−1,1]), k = 1, 2.
(4.38)
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These estimates together with (4.34) also imply that

‖v2‖Ck,α(Q̄) � C(‖v2‖Ck−1,α(Q̄) + |v4(−1)| + ‖(G1, G2)‖Ck−1,α(Q̄)

+ ‖P̂ex‖Ck,α[−1,1] + ‖(R6, R7)‖Ck,α[−1,1]), k = 1, 2.
(4.39)

Hence, (4.31) follows from (4.33) and (4.38)–(4.39). Finally, differentiating the first
equation in (4.34) with respect to x2 and combining with ∂y2G1(y1, ±1) = 0 and
∂y2v1(y1, ±1) = 0, we obtain

∂2
y2
v2(y1,±1) = 0,

which gives compatibility condition (4.32). Thus, the proof is complete. �

5. A priori estimates and proofs of main results

In this section, we will use the Banach contraction mapping theorem to prove
theorem 3.1. Given any V̂ ∈ Vδ, we could establish some a priori estimates to the
linearized problems defined in subsection 4.1, and construct a contractible mapping
from Vδ into itself so that there exists a unique fixed point, which is the solutions
obtained in theorem 3.1 and the proof of theorem 3.1 will be finished.

Lemma 4.4 implies that there is a unique solution (v1, v2, v4(−1)) ∈
(C2,α(Q̄))2 × R to system (4.8)–(4.9) satisfying

‖(v1, v2)‖C2,α(Q̄) + |v4(−1)| � C(‖(G1, G2)‖C1,α(Q̄)

+ ‖(R6(y2), R7(y2))‖C2,α[−1,1] + ‖εP̂ex(y2)‖C2,α[−1,1])

� C(ε+ δ2),

(5.1)

and compatibility condition (4.32) holds true.
The shock curve v4 is given by (4.3), which satisfies

‖v4‖C3,α[−1,1] � C(|v4(−1)| + ‖v2‖C2,α(Q̄) + ‖F5‖C2,α(Q̄)) � C(ε+ δ2). (5.2)

Moreover, it follows from (4.32) and (4.4) that

v′4(±1) = 0 = v
(3)
4 (±1). (5.3)

It remains to solve v3. Due to (4.6), combining with (4.7) and (5.3), we obtain
the estimate

‖v3‖C2,α(Q̄) � C(‖v4‖C2,α[−1,1] + ‖F6‖C2,α(Q̄)) � C(ε+ δ2), (5.4)

and the compatibility condition

∂y2v3(y1,±1) = 0. (5.5)

Taking δ = O(1)ε, then for any given V̂ ∈ Vδ we can define a continuous mapping
T : Vδ → Vδ as

T V̂ = V, (5.6)

due to the iteration scheme introduced in the previous section and estimates
(5.1)–(5.5). Finally, we show that the mapping is also contractible in the space
(C1,α(Q̄))3 × C2,α[−1, 1].
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For arbitrarily given two states V̂i = (v̂i
1, v̂

i
2, v̂

i
3, v̂

i
4) ∈ Vδ, i = 1, 2 with the

corresponding fluid variable (ûi
1, û

i
2, B̂

i, ξ̂i), set

Vi = T V̂i, i = 1, 2,

where Vi = (vi
1, v

i
2, v

i
3, v

i
4). For the convenience, we denote Ŵ = V̂1 − V̂2 and W =

V1 − V2, or equivalently,

ŵk = v̂1
k − v̂2

k, wk = v1
k − v2

k, 1 � k � 4.

Equation (4.2) implies that

w′
4 = b0w2 +O(ε)

4∑
i=1

ŵi, (5.7)

which yields that

‖w′
4‖C1,α[−1,1] � C‖w2‖C1,α(Q̄) + Cε

(
3∑

i=1

‖ŵi‖C1,α(Q̄) + ‖ŵ4‖C1,α[−1,1]

)
. (5.8)

It follows from (4.6) that

w3 = b3w4 − b3

∫ β2(y)

β1(y)

(v̂1
4(τ))′ dτ + b3

∫ β2(y)

y2

ŵ′
4(τ) dτ +O(ε)

3∑
i=1

ŵi, (5.9)

where βi, i = 1, 2 is the initial position such that the corresponding characteristic
yi
2(s, βi) going through (y1, y2) with yi

2(Ls) = βi. It is easy to verify that

‖β1(y) − β2(y)‖C1,α(Q̄) � C(‖ŵ1‖C1,α(Q̄) + ‖ŵ2‖C1,α(Q̄) + ‖ŵ4‖C2,α[−1,1]), (5.10)

thus,

‖w3‖C1,α(Q̄) � C‖w4‖C1,α[−1,1] + Cε

(
3∑

i=1

‖ŵi‖C1,α(Q̄) + ‖ŵ4‖C2,α[−1,1]

)
. (5.11)

It is straightforward to show that w1, w2 satisfies⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∂y1w1 + 1
1−M̄2 ∂y2w2 + λ1(y1)w1 + λ2(y1)(w4(−1) +

∫ y2

−1
b0w2(Ls, τ) dτ)

=
∑4

i=1(O(ε)ŵi +O(ε)∇ŵi) +O(ε)(β1 − β2) +O(1)
∫ β2(y)

y2
ŵ′

4(τ) dτ,

∂y1w2 − ∂y2 [w1 − λ(y1)(w4(−1) +
∫ y2

−1
b0w2(Ls, τ) dτ)]

=
∑4

i=1(O(ε)ŵi +O(ε)∇ŵi) +O(ε)∂y2(β1 − β2) +O(1)∂y2

∫ β2(y)

y2
ŵ′

4(τ) dτ,
(5.12)

and the boundary conditions⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

w1(Ls, y2) = b2(ŵ4(−1) +
∫ y2

−1
b0ŵ2(Ls, τ) dτ) +

∑4
i=1O(ε)ŵi,

w1(L1, y2) = b3
ū(L1)

(ŵ4(−1) +
∫ y2

−1
b0ŵ2(Ls, τ) dτ) +

∑4
i=1O(ε)ŵi

+O(ε)(β1 − β2)(L1, y2) +O(1)
∫ β2(L1,y2)

y2
ŵ′

4(τ) dτ,

w2(y1,±1) = 0,

(5.13)
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where

λ2(y1) =
B3(y1)b3 +B4(y1)
c2(ρ̄+) − (ū+)2

.

Then, applying estimate (4.31) to system (5.12)–(5.13) with k = 1 and together
with (5.10), we obtain

‖(w1, w2)‖C1,α(Q̄) + |w4(−1)| � Cε

(
3∑

i=1

‖ŵi‖C1,α(Q̄) + ‖ŵ4‖C2,α[−1,1]

)
. (5.14)

Finally, collecting all these estimates above leads to

3∑
i=1

‖wi‖C1,α(Q̄) + ‖w4‖C2,α[−1,1] � Cε

(
3∑

i=1

‖ŵi‖C1,α(Q̄) + ‖ŵ4‖C2,α[−1,1]

)
.

(5.15)
By (5.15), there is a small constant ε0 such that for all ε ∈ (0, ε0], the mapping
T defined by (5.6) is contractible in the Banach space (C1,α(Q̄))3 × C2,α[−1, 1].
Therefore, there exists a unique solution V in (C1,α(Q̄))3 × C2,α[−1, 1]. Due to
lemma 4.4 and a priori estimates (5.2), (5.4), we know that V also belongs to
Vδ. It follows that V satisfies estimates (3.23). Thus, the proof of theorem 3.1 is
complete. Theorem 2.3 is a direct inference of theorem 3.1. We omit the details.
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