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A Class of Finsler Metrics with
Bounded Cartan Torsion

Xiaohuan Mo and Linfeng Zhou

Abstract. In this paper, we find a class of (α, β) metrics which have a bounded Cartan torsion. This

class contains all Randers metrics. Furthermore, we give some applications and obtain two corollaries

about curvature of this metrics.

1 Introduction

On a manifold M, Finsler metrics are Riemannian metrics without the quadratic re-

striction. They give Minkowski norms instead of inner products on each tangent

space TxM. So they are more colorful and more complicated than Riemannian met-

rics. We mention the fact that Finsler metrics also have a (flag) curvature, but the

meaning of constancy of this curvature remains mysterious today.

Cartan torsion is one of the most fundamental non-Riemannian quantities. It was

first introduced by P. Finsler [8] and emphasized by E. Cartan [5], and it measures a

departure from a Riemannian manifold. Precisely, a Finsler metric is Riemannian if

and only if it has vanishing Cartan torsion. Intuitively, if the norm of Cartan torsion

is far from zero, then this Finsler manifold is very different being a Riemannian mani-

fold. For example, J. Nash [11] proved that any n-dimensional Riemannian manifold

can be isometrically imbedded into a higher dimensional Euclidean space. So one

question in Finsler geometry is whether every Finsler manifold can be isometrically

imbedded into a Minkowski space. The answer is negative, as Burago–Ivanov [4]

showed that there exists a Finsler metric on any non-compact manifold M that can-

not be imbedded into any finite dimensional Banach space. Shen [15] proved that a

Finsler manifold with unbounded Cartan torsion cannot be isometrically imbedded

into any Minkowski space.

Randers metrics, which can be viewed as a perturbation of a Riemannian metric

[3], are the simplest non-Riemannian Finsler metrics having the form

F = α + β (‖β‖α < 1)

where α :=
√

ai j(x)yi y j is a Riemannian metric and β := bi(x)yi is a 1-form. It is

proved that the Cartan torsion of Randers metrics is uniformly bounded by 3/
√

2.

The bound for two dimensional Randers metrics was verified by B. Lackey and was

extended to higher dimensions by Z. Shen [2, 13].
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A Class of Finsler Metrics with Bounded Cartan Torsion 123

A natural task for us is to find other Finsler metrics which have bounded Cartan

torsion. In this paper we explicitly construct a class of Finsler metrics (including

Randers metrics and Berwald’s famous example [12]) which have the following form

F =
(α + β)s

αs−1
(s ∈ [1, 2]).

We will prove the following theorem.

Theorem 1.1 Suppose that

F =
(α + β)s

αs−1
,

with 1 ≤ s < 2 and ‖β‖α < 1, is an (α, β) metric on a manifold M, where α :=
√

ai j(x)yi y j is a Riemannian metric and β := bi(x)yi is a 1-form. Then the Cartan

torsion of F is bounded.

As an application, we obtain the following rigidity results.

Corollary 1.2 Let (M, F) be a positively complete Finsler manifold. Suppose F is

R-quadratic and has the form

F =
(α + β)s

αs−1
(s ∈ [1, 2), ‖β‖α < 1)

where α :=
√

ai j(x)yi y j is Riemannian metric and β := bi(x)yi is a 1-form. Then F

must be Berwaldian.

Corollary 1.3 Let (M, F) be a complete Finsler manifold. Suppose F has constant flag

curvature K and has the form

F =
(α + β)s

αs−1
(s ∈ [1, 2), ‖β‖α < 1)

where α :=
√

ai j(x)yi y j is a Riemannian metric and β := bi(x)yi is a 1-form.

(i) If K < 0, then F must be Riemannian.

(ii) If K = 0, then F must be locally Minkowskian.

2 Cartan Torsion and Curvature

A Finsler metric on a manifold M is a C∞ function on TM\{0} having the following

properties.

• F(x, y) ≥ 0 for any y ∈ TxM and F(x, y) = 0 if and only if y = 0;
• F(x, λy) = λF(x, y) for any y ∈ TxM and λ > 0;
• For each y ∈ TxM, the following bilinear symmetric form gy is positive definite:

gy(u, v) := 1
2
[F2(y + su + tv)]|s,t=0 u, v ∈ TxM.
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A Riemannian metric is a special case such that at each point x ∈ M the funda-

mental tensor gy is independent of the tangent vector y ∈ TxM\{0}. To measure the

non-Riemannian feature of F, define Cy : TxM × TxM × TxM → R by

Cy(u, v, w) :=
1

2

d

dt
[gy+tw(u, v)]|t=0, u, v, w ∈ TxM.

This trilinear symmetric form on the pullback bundle π∗TM(over TM\{0}) is called

Cartan torsion. E. Cartan got this quantity when he introduced his metric-compatible

connection. Obviously F is a Riemannian metric if and only if Cy = 0.

In fact, the mean Cartan torsion can also characterize the Riemannian metric. It is

defined by

Iy(u) := g i j(y)Cy

(

u,
∂

∂xi
,

∂

∂xi

)

.

Deicke [7] proved that F is a Riemannian metric if and only if the mean Cartan

torsion satisfies Iy = 0 for any y ∈ TxM\{0}.

The bound of Cartan torsion C at a point x ∈ M is defined by

‖C‖x := sup
y,u∈TxM

F(x, y)|Cy(u, u, u)|
√

gy(u, u)3

and the bound of Cartan torsion on M is defined by ‖C‖ := supx∈M ‖C‖x.

Let r(t) : [0, 1] → M be a piecewise C∞ curve on a Finsler manifold (M, F). We

can define the length of r(t) by L(r) :=
∫ 1

0
F(r(t), r ′(t)) dt . By the first variation of

length we can see a geodesic must satisfy the equation

d2ri

dt2
+ 2Gi(r(t), r ′(t)) = 0,

where Gi(x, y) are called the spray coefficients of F [12] and are given in local coordi-

nates by

Gi :=
1

4
g il

( ∂2F2

∂xk∂y l
yk − ∂F2

∂xl

)

.

A Finsler manifold is positive complete if every geodesic r(t) with t ∈ [0, 1] can be

extended to [0, +∞).

For a tangent vector y ∈ TxM\{0}, define a tensor on the pullback bundle π∗TM

By : TxM ⊗ TxM ⊗ TxM → TxM in local coordinates by

By(u, v, w) := Bi
jkl(y)u jvkwl ∂

∂xi
,

where u = ui ∂
∂xi |x, v = vi ∂

∂xi |x, w = wi ∂
∂xi |x, and

Bi
jkl :=

∂3Gi

∂y j∂yk∂y l
.
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A Finsler metric is called a Berwald metric if B = 0. This is equivalent to its spray

coefficients Gi being quadratic in y at every point x ∈ M. A Riemannian metric is

Berwaldian because in this case Gi
=

1
2
Γ

i
jk(x)y j yk, where Γ

i
jk are Christoffel symbols.

Using the above tensor By , we can define another tensor

Ly := − 1
2

gy(By(u, v, w), y).

In local coordinates, Ly(u, v, w) := Li jk(y)uiv jwk where u = ui ∂
∂xi |x, v = vi ∂

∂xi |x,

w = wi ∂
∂xi |x, and Li jk = − 1

2
ymgml(y)Bl

i jk(y). A Finsler metric is called a Landsberg

metric if L = 0. Obviously, Berwald metrics must be Landsberg metrics.

Now we recall the definition of Riemannian curvature. For a vector y = yi ∂
∂xi |x ∈

TxM, define Ry = Ri
jdx j ⊗ ∂

∂xi : TxM → TxM by

Ri
j := 2

∂Gi

∂x j
− yk ∂2Gi

∂xk∂y j
+ 2Gk ∂2Gi

∂y j∂yk
− ∂Gi

∂yk

∂Gk

∂y j
.

A Finsler metric is said to be R-quadratic if its Riemannian curvature Ry is quadratic

in y ∈ TxM. All Berwald metrics are R-quadratic. The notion of R-quadratic metric

is weaker than that of Berwald metric. See the example in Section 4.

For any tangent plane P = span{y, u} ⊂ TxM define

K(P, y) :=
gy(Ry(u), u)

gy(y, y)gy(u, u) − gy(y, u)gy(y, u)
;

K is called flag curvature. Usually, K(P, y) depends on the direction y ∈ P. In the

Riemannian case, K(P, y) is independent of y ∈ P. So flag curvature generalizes

sectional curvature in Riemannian geometry. If flag curvature K is constant, we say

F has constant flag curvature. It is easy to see that F has constant flag curvature if and

only if [2]

Ri
j = KF2

(

δi
j −

yi

F
Fy j

)

.

3 A Class of (α, β) Metrics with Bounded Cartan Torsion

A Finsler metric F on a manifold is called an (α, β)-metric if it is in the form F =

αφ(β/α),where α :=
√

ai j(x)yi y j is a Riemannian metric, β := bi(x)yi is a 1-form,

φ = φ(t) is a positive C∞ function on some interval (−r, r), and ‖β‖α < r.

Lemma 3.1 F = αφ(β/α) is a Finsler metric for any Riemannian α and 1-form β
with ‖β‖α < r if and only if φ = φ(t) satisfies the following conditions

φ(t) > 0, (φ(t) − tφ ′(t)) + (b2 − t2)φ ′ ′(t) > 0,

where t and b are arbitrary numbers with |t| ≤ b < r.
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For the proof, see [6] for more details.

Below is a family of special (α, β) metrics. Let φ : (−1, 1) → R, φ(t) = (1 + t)s,

where 1 ≤ s ≤ 2 and ‖β‖α < 1. It is easy to see that

φ ′(t) = s(1 + t)s−1, φ ′ ′(t) = s(s − 1)(1 + t)s−2.

It follows that

φ(t) = (1 + t)s > 0, φ(t) − tφ ′(t) = (1 + t)s−1[1 + t(1 − s)] > 0,

φ ′ ′(t) = s(s − 1)(1 + t)s−2 ≥ 0

for |t| < 1. Thus F = αφ
(

β
α

)

= (α + β)s/αs−1 is a Finsler metric.

Example 3.2 Let ζ be an arbitrary constant and Ω = Bn(r) where r = 1/
√
−ζ if

ζ < 0 and r = +∞ if ζ ≥ 0. Define F = α + β : TΩ → [0, ∞) by

α(x, y) :=

√

κ2〈x, y〉2 + ǫ|y|2(1 + ζ|x|2)

(1 + ζ|x|2)p
and β(x, y) :=

κ〈x, y〉
(1 + ζ|x|2)p

,

where ǫ is an arbitrary positive constant, and κ, p are arbitrary constants. A direct

calculation yields

‖β‖2
α =

κ2|x|2
ǫ + ̺2|x|2 < 1,

where ̺2 := ǫζ + κ2 and α is a Riemannian metric.

Thus we get the following (α, β)-metrics.

(3.1) F̃(x, y) :=

(
√

κ2〈x, y〉2 + ǫ|y|2(1 + ζ|x|2) + κ〈x, y〉
) q

(1 + ζ|x|2)p
(
√

κ2〈x, y〉2 + ǫ|y|2(1 + ζ|x|2)
) q−1

.

Note that β is an exact form.

Remark We have several special cases of the above Example.

• When p = q = 1, our metrics have been studied in [10]. Furthermore, if ζ = −1,

κ = ±1 and ǫ = 1, they are reduced to the famous Funk metrics.
• When p = q = 2, ζ = −1, κ = ±1 and ǫ = 1 (3.1) is reduced to Berwald’s

example. Its projective factor is exactly the Funk metric.

Proof of Theorem 1.1 Let us first consider the case of dim M = 2. There exists a

local orthonormal coframe {ω1, ω2} of Riemannian metric α. So α2 can be written

as α2
= ω2

1 + ω2
2 . If we let α =

√

ai j yi y j where y =
∑2

i=1 yiei and {ei} is the

dual frame of {ωi}, then ai j = δi j and ai j
= δi j . Adjust the coframe {ω1, ω2}
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properly so that β = κω1. Then b1 = κ, b2 = 0 where β =
∑2

i=1 bi yi . Hence

‖β‖α :=
√

ai jbib j = κ.

For an arbitrary tangent vector y = ue1 + ve2 ∈ TpM we can obtain that

α(p, y) =

√
u2 + v2, β(p, y) = κu, F(p, y) =

√
u2 + v2

(

1 +
κu√

u2 + v2

) s

.

Assume that y⊥ satisfies

(3.2) gy(y, y⊥) = 0, gy(y⊥, y⊥) = F2(p, y).

Obviously y⊥ is unique, because the metric is non-degenerate. The frame {y, y⊥} is

called the Berwald frame [1].

Let y = r cos θe1 + r sin θe2, i.e., u = r cos θ and v = r sin θ. Plugging the above

expression into (3.2) and computing with Maple (see Section A.1 below) yields

(3.3) y⊥ =
r
(

sin θ(−1 − κ cos θ + sκ cos θ), κ(s − 1) cos2 θ − cos θ − sκ
)

√
cos2 θκ2(1 − s2) + sκ2(s − 1) − κ cos θ(s − 2) + 1

.

By the definition of the bound of Cartan torsion it is easy to show that for the

Berwald frame {y, y⊥},

‖C‖p = sup
y∈TpM\{0}

ξ(p, y),

where

ξ(p, y) :=
F(p, y)|Cy(y⊥, y⊥, y⊥)|

|gy(y⊥, y⊥)|3/2
.

Again computing with Maple (see Section A.2 below), we obtain

(3.4) ξ(p, y)

=

∣

∣

∣

∣

sκ sin θ
(

4(s2 − 1)κ2 cos2 θ + κ(6s − 9) cos θ + 6sκ2 − 4s2κ2 − 2κ2 − 3
)

2
(

−κ2(s2 − 1) cos2 θ + κ(2 − s) cos θ + s2k2 − sκ2 + 1
) 3/2

∣

∣

∣

∣

.

Define two functions on [0, 1) × [−1, 1]:

(3.5) f (κ, x) := −κ2(s2 − 1)x2 + κ(2 − s)x + s2κ2 − sκ2 + 1,

(3.6) g(κ, x) :=
sκ
√

1 − x2

2 f (κ, x)
3
2

[

4(s2 − 1)κ2x2 + κ(6s− 9)x + 6sκ2 − 4s2κ2 − 2κ2 − 3
]

.

Hence

(3.7) ‖C‖p = max
0≤θ≤2π

|g(κ, cos θ)|.
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Notice that

lim
κ→1−

g(κ, x) =
s
√

1 − x|4xs2 − 4x − 5 − 4s2 + 6s|
2|x − xs2 + s2 − s + 1| ,

for all x ∈ [−1, 1] with 2(−x +xs2− s2 + s−1) 6= 0. So limκ→1− g(κ, x) is continuous

and has an upper bound G. Then it follows that there exists δ > 0, such that when

1 − δ ≤ κ < 1 and x ∈ [−1, 1] we have g(κ, x) ≤ G + 1. From (3.7) we get

(3.8) ‖C‖p ≤ G + 1.

Now we consider the case of 0 ≤ κ ≤ 1 − δ. For a fixed κ = κ0, f (κ0, x) is a

parabola and opening downwards. So f (κ0, x) ≥ min{ f (κ0, 1), f (κ0,−1)}. By a

direct computation we obtain

f (κ0, 1) = (1 + κ0)[1 − (s − 1)κ0], f (κ0,−1) = (1 − κ0)[1 + (s − 1)κ0].

Since 1 ≤ s < 2, we can choose an infinitesimal ǫ > 0 satisfying 1 ≤ s < 2 − ǫ.

As ǫ is infinitesimal and 0 ≤ κ0 ≤ 1 − δ < 1, so

f (κ0, 1) > (1 + κ0)[1 − (1 − ǫ)κ0] > (1 + 1)[1 − (1 − ǫ)] = 2ǫ,

f (κ0,−1) ≥ δ[1 + (s − 1)(1 − δ)] > δ.

Then f (κ0, x) > ζ := min{2ǫ, δ}. From (3.6) and (3.7), we have

‖C‖p < max
0≤θ≤2π

∣

∣

∣

∣

sκ sin θ
(

4(s2 − 1)κ2 cos2 θ + κ(6s − 9) cos θ

+ 6sκ2 − 4s2κ2 − 2κ2 − 3
)

∣

∣

∣

∣

4ζ3/2

≤ max
0≤θ≤2π

sκ| sin θ|
(

4(s2 − 1)κ2 cos2 θ + κ|(6s − 9) cos θ|
+ |6sκ2 − 4s2κ2 − 2κ2 − 3|

)

4ζ3/2

≤ sκ
(

4(s2 − 1)κ2 + κ|6s − 9| + |6sκ2 − 4s2κ2 − 2κ2 − 3|
)

4ζ3/2

≤ 2(4 × 3 + 3 + 9)

4ζ3/2
=

12

ζ3/2
.

(3.9)

From (3.8) and (3.9) we can draw a conclusion that the Cartan torsion is bounded.

In higher dimensions, the definition of the Cartan torsion’s bound at p ∈ M is

‖C‖p := sup
y,u∈TpM

F(p, y)
|Cy(u, u, u)|
|gy(u, u)3/2| .

Considering the plane P = span{u, y}, from the above conclusion we obtain that

‖C‖p is bounded. Furthermore, the bound is independent of the plane P ⊆ TpM

and the point p ∈ M. Hence the Cartan torsion is also bounded.
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Remark

• The second Cartan torsion [13] can also be computed and proved to be bounded

in the similar way.
• When s = 1, the above metric is reduced to the well-known Randers metric, and

(3.3) has been obtained in [12] by a direct calculation (see also [13]); (3.4) has

been obtained in [13].

4 Some Applications

As applications of Section 3, we prove Corollary 1.2 and Corollary 1.3 concerning

curvature of F = (α + β)s/αs−1, (s ∈ [1, 2), ‖β‖α < 1).

Proof of Corollary 1.2 By Theorem 1.1 we know that the Cartan torsion of F =

(α + β)s/αs−1 must be bounded when s ∈ [1, 2). Shen showed that if a positive

complete Finsler metric with bounded Cartan torsion is R-quadratic, then it must

be a Landsberg metric [14]. For this type of metric notice that φ(t) = (1 + t)s and

φ(t) 6= c1

√
1 + c2t2 for any constancy c1 > 0 and c2 when s ≥ 1. Shen proved that a

regular (α, β) metric is Landsbergian if and only if it is Berwaldian. This completes

the proof.

Remark The condition of positive completeness in Corollary 1.2 cannot be omit-

ted. Consider the following Randers metric defined near the origin in R
n.

F :=

[

|y|2 − (|xQ|2|y|2 − 〈y, xQ〉2)
]1/2

1 − |xQ|2 − 〈y, xQ〉
1 − |xQ|2 ,

where Q = (q j
i) is an anti-symmetric matrix. Then according to the classification

theorem of Randers metrics with constant flag curvature in [3], F has zero flag cur-

vature. Hence it is R-quadratic. It is obvious that F is not a Berwald metric when

Q 6= 0.

Proof of Corollary 1.3 By Theorem 1.1, the Cartan torsion of F is bounded. Accord-

ing to the well-known Akbar–Zadeh theorem [2], we can get the result.

Remark Again, the condition of completeness cannot be omitted. Consider the

following Randers metric as a counterexample:

F :=

√

|y|2 − (|x|2|y|2 − 〈x, y〉2) + 〈x, y〉
1 − |x|2 ,

where x ∈ Bn(1) and y ∈ Tx

(

Bn(1)
)

. Then F is a Funk metric with flag curvature

K = − 1
4
. However, it is not Riemannian. In fact, we know that the Funk metric is

only positively complete.
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A Maple Programs

A.1 Construction of the Berwald frame

> with(linalg):

> F:=sqrt(u^2+v^2)*(1+k*u/sqrt(u^2+v^2))^s:

> g:=simplify(1/2*hessian(F^2,[u,v])):

> gr:=simplify(subs(u=cos(theta),v=sin(theta),g)):

> y:=vector(2,[r*cos(theta),r*sin(theta)]);

y := [r cos(θ), r sin(θ)]

> yp:=vector(2):

> eq:=simplify(evalm(transpose(y)&*gr&*yp))=0:

> x:=solve(eq,yp[1]);

x := −
yp2 (−k cos(θ) + s k cos(θ) − 1) sin(θ)

−cos(θ)2 k + cos(θ)2 k s − k s − cos(θ)

> ny:=simplify(r^2*subs(u=cos(theta),v=sin(theta),F^2));

ny := r2 (1 + k cos(θ))(2 s)

> yp[1]:=-(s*k*cos(theta)-k*cos(theta)-1)*sin(theta):

> yp[2]:=k*(s-1)*cos(theta)^2-cos(theta)-s*k:

> nyp:=simplify(evalm(transpose(yp)&*gr&*yp)):

> lambda:=simplify(sqrt(r^2*nyp/ny)/r):

> yp[1]:=yp[1]/lambda:

> yp[2]:=yp[2]/lambda:

> print(yp);

»

−
(−k cos(θ) + s k cos(θ) − 1) sin(θ) r

√

−cos(θ)2 s2 k2 + cos(θ)2 k2
− s k2 + s2 k2

− s k cos(θ) + 2 k cos(θ) + 1
,

(k (−1 + s) cos(θ)2
− cos(θ) − k s) r

√

−cos(θ)2 s2 k2 + cos(θ)2 k2
− s k2 + s2 k2

− s k cos(θ) + 2 k cos(θ) + 1

–

• The method of computation:

Step 1: Solve the equation gy(y, y⊥) = 0

(x, y p[2]) =

( y p[2] y p[1]

y p[2]

, y p[2]

)

.

Then y p := (y p[1], y p[2]) is a particular solution.

Step 2: Assume that y⊥ =
1
λ y p is the satisfied solution. Notice that when

gy(y⊥, y⊥) = F2(y) := ny,
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we can get

λ =

√

ny p

ny

where ny p is defined by ny p := gy(y p, y p).

Step 3: Plug these results into y⊥; we get the Berwald frame {y, y⊥}.

A.2 Computation of ξ(p, y)

> nyp:=simplify(evalm(transpose(yp)&*gr&*yp));

nyp := r2 (1 + k cos(θ))(2 s)

> bc:=abs(simplify(r^2*subs(t=0,q=0,p=0,diff(subs(u=cos(theta)
> +t*yp[1]/r+q*yp[1]/r+p*yp[1]/r,
> v=sin(theta)+t*yp[2]/r+q*yp[2]/r+p*yp[2]/r,F^2/4),
> [t,q,p])))/nyp);

bc :=
1

2

˛

˛ s k sin(θ)
`

4 s2 k2 cos(θ)2
− 4 k2 cos(θ)2

− 9 k cos(θ)

+6 s k cos(θ) − 3 − 2 k2
− 4 s2 k2 + 6 s k2

´

‹ `

k2 cos(θ)2
− s2 k2 cos(θ)2 + s2 k2

− s k2
− s k cos(θ) + 2 k cos(θ) + 1

´ (3/2)˛
˛

• The method of computation: Let ny p := gy(y p, y p) = gy(y⊥, y⊥). Then com-

pute

bc =
F(y)cy(y⊥, y⊥, y⊥)

gy(y⊥, y⊥)
3
2

.

This is prepared for estimating the bound of Cartan torsion.
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