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Abstract

Probabilistic quasi-metric spaces are introduced and used to define ordered probabilistic metric
spaces. The latter spaces arise naturally in the study of probability and statistics; they closely
resemble the uniform ordered spaces of L. Nachbin. A procedure is described for constructing
ordered probabilistic metric spaces from quasi-simple spaces, and a completion theory is de-
veloped simultaneously for probabilistic quasi-metric spaces and ordered probabilistic metric
spaces.
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1. Introduction

A probabilistic metric space is a generalized metric space appropriate to the
study of situations in which "distances" are measured in terms of distribution
functions rather than non-negative real numbers. In many cases, a probabilistic
metric space is endowed with an intrinsic order and questions naturally arise
concerning the interaction between the order and the generalized metric, possible
ways to extend the order to a completion space, etc..

An effective way to define compatibility between a uniform structure and an
order structure on the same set S was introduced by L. Nachbin [2]. A quasi-
uniformity (which Nachbin calls a "semi-uniform structure") is a filter ^ on
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S x S which is required to satisfy all the propert ies of uniformity except the
symmetry property % = ^ - 1 . Nachbin defines a triple (S, 3 ^ , < ) , where 2 ^ is a
uniformity and < a part ial order on 5 , t o be a uniform ordered space if there is
a quasi-uniformity % on S, such t h a t 2 ^ = % A %~x is the smallest uniformity
containing 'U', and p < q if and only if (p, q) €. U for all £/ € ^ . In a similar
way, a (probabilistic) quasi-metric on S gives rise to an ordered (probabilistic)
metric space.

Probabilistic quasi-metric spaces, ordered probabilistic metric spaces, and the
relationships between them are the subject of Sections 2 and 3. Section 4 deals
with quasi-simple spaces; these are probabilistic quasi-metric spaces derived from
ordinary quasi-metrics. I t is shown in Section 4 t h a t every ordered probabilistic
metric space is compatible with a quasi-simple space. I t is also shown in this
section t h a t a probabilistic metr ic space wi th a par t ia l order is an ordered proba-
bilistic metric space if and only if the associated s t rong uniformity and the given
order const i tute a uniform ordered space. In Section 5, a completion theory,
similar to tha t of Sherwood [4] for probabilistic metric spaces, is developed for
probabilistic quasi-metric spaces and ordered probabilistic metric spaces.

2. Probabilistic quasi-metric spaces

A distance distribution function F is a non-decreasing function from R+ =
[0,oo] into [0,1], which is left continuous on (0,00) and takes on the values
F(0) = 0 and i^(oo) = 1. The set of all distance distribution functions, denoted
by A+, is equipped with the modified LeVy metric di, (see page 45 of [4]).
Convergence in the metric space (A+.dj,) is characterized by: (Fn) —• F if and
only if (Fn (x)) - » f ( i ) in R, whenever x is a point of continuity of F. The metric
space (A+,di,) is compact, and A+ is partially ordered by the usual (pointwise)
order for real-valued functions.

Let £0 be the element of A+ defined by

I, x = 0,

, x > 0.

A triangle function T is defined to be a binary operation on A+ which is commu-
tative, associative, non-decreasing in each component, and has e0 as its identity.
All triangle functions considered in this paper will, in addition, be assumed to
be continuous with respect to the topology induced by metric di,. Given t > 0,
let N£o(t) = {F € A+ : di,{F,£Q) < t} denote a basic neighborhood of e0 in this
topology.
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90 D. C. Kent and G. D. Richardson [3)

DEFINITION 2 . 1 . Let S be a non-empty set, and let r be a triangle function
on A + . A function &~: SxS —• A + is a probabilistic quasi-metric if the following
conditions are satisfied for all p , q, r in 5 :

(PM)2 if &{p,q) = e0 and &{q,p) = e0, then p = q;
(PM)3 f(p,q) > r(^(p,r),^(r,q)).

is a probabilistic quasi-metric, then the triple {S,^, r) is called a probabilis-
tic quasi-metric space (abbreviated PQM space). A probabilistic quasi-metric
&~ is called a probabilistic metric if it satisfies the symmetry condition

(PM)4 &'(p,q)=$r(q,p) for all p,q in S.
In the latter case, (S,&~,T) is a probabilistic metric space (abbreviated PM
space).

We shall often adopt the common practice of writing Fpq in place of ^{p, q).

In [1], P. S. Marcus gives an example of a PQM space based on stationary
Markov chains which is not a PM space.

An excellent treatment of PM spaces is given in the book co-authored by
B. Schweizer and A. Sklar [4]. One familiar concept associated with a PM
space (S, &~, T) (recall that r is always assumed to be continuous) is the strong
uniformity % on 5. For each t > 0, let U{t) = {(p,q) G S x S: Fpq e Neo{t)};
the sets {U{t): t> 0} constitute a filter base for %. If {S,^, r) is a PQM space,
it is easy to verify that the filter ^ constructed in this way is a quasi-uniformity,
which we shall call the strong quasi-uniformity determined by (S,^,r). From
the strong quasi-uniformity, we obtain the strong topology a associated with &"
which has for its neighborhood base at p 6 S the collection {Up(t): C / € ^ ,
t > 0}, where Up(t) = {q&S: {p,q) € U{t)}.

We can also associate with any PQM space (S, &~, T) an "inverse PQM space"
(S,^',T), where &~'(p,q) = ^(q,p) for all p,q in 5. If % is the strong quasi-
uniformity for &, then %~x is the strong quasi-uniformity for &'. Also as-
sociated with y is the uniformity & = % V ^~x. From ^ , ^ ~ \ and ^ we
derive in the natural way the topologies a, a1, a. In the next section, we define a
probabilistic metric &~ associated with J?", such that ^ (respectively, a) is the
strong uniformity (respectively, strong topology) for &~. Some properties of the
topologies a, a1, and & are given in the next two propositions; the straightfor-
ward proofs are omitted. The symbols A and V are used throughout this work
to denote the greatest lower bound and least upper bound, respectively.

PROPOSITION 2 .1 . Let (S,^,T) be a PQM space, let (pn) be a sequence in
S, andpES.

(1) (pn) -> p in {S,o-) if and only if FPPn -> e0 in {A+,dL).

(2) (Pn) — P in (S,<T') if and only if FPnP — £0 in (A+,dL).
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(3) {pn) -* P in {S,a) if and only if FPPn A FPnP -* e0 in ( A + , d L ) or,
equivalently if and only if (1) and (2) hold.

Given a non-empty subset A of S, let Fpj\ = sup{Fpg: q € A} and FAP —
sup{Fqp: q G .4}; note that Fv\ and FAP are both elements of A+.

PROPOSITION 2.2 . Let (S,&~,r) be a PQM space. A non-empty subset A
of S is a-closed (respectively, a'-closed) if and only if FPA ^ £o {respectively,
FAP ¥" £o) whenever p$ A.

In addition to generating certain quasi-uniformities and topologies on S, a
probabilistic quasi-metric &" also determines an order on S according to the
rule: p < q if and only if Fpq = So- This is also the order induced by the strong
quasi-uniformity associated with &~. If &" is a probabilistic metric, the induced
order is the discrete (or trivial) order: p < q if and only if p = q.

3. Ordered probabilistic metric spaces

DEFINITION 3.1. A quadruple (5 ,^ , r , <) is an ordered probabilistic metric
space (abbreviated OPM space) if (5 ,^ , r ) is a PM space, and there is a PQM
space (S, &~, T') such that the following conditions are satisfied:

(i) If ^ is the strong quasi-uniformity for ^", then %( — ^ V ^ - 1 is the strong
uniformity for W'.

(ii) (S, <) is a poset with partial order determined by 9~.
A PQM space (S,&,T') and an OPM space (5 ,^ , r ,<) which are related in

the manner specified in Definition 3.1 are said to be compatible. Any PM space
(S, S",T) with the discrete order can be regarded as an OPM space, where a
compatible PQM space is ( 5 , ^ , r) = (S, &, r). If (5, £ \ r, <) is an OPM space,
then (5, ^ , <) is a uniform ordered space. Two OPM spaces are uniformly
equivalent if they induce the same uniform ordered space; uniformly equivalent
OPM spaces must have the same underlying set, but their triangle functions may
be different.

It is obvious from Definition 3.1, that every OPM space is compatible with a
PQM space. We next describe a procedure for constructing an OPM space from
a given PQM space. Starting with a PQM space (S,^~,T), recall that &"' is the
probabilistic quasi-metric inverse to &~.

Let T* denote any (continuous) triangle function which dominates r (see [4],
page 209), and define ^*{p,q) = T*(^(p,q), ^'{p,q)). The triangle function
defined by T(F, G) = F A G dominates T and note that &~* reduces to
in this case. Define &" = 9~ f\&~'. Moreover, T ^> T ([4], page 210).
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PROPOSITION 3 .2 . 7/ (S ,^" , r ) is a PQM space and < the partial order
determined byS1', then (S,&~*,T, <) is an OPM space compatible with (S,&~,T).

In particular, {S,^,T,<) and (S,^,T) are compatible.

PROOF. It must be shown that (S,^*,T) is a PM space and T' =
where 2̂ " is the strong uniformity for &~* and % is the strong quasi-uniformity
for^".

First, note that the symmetry of ̂ * is obvious and that F*p = T*(FPP, FPP) =
e0. Next, if F*q = eo, then Fpq A Fqp > T*(Fpq,Fqp) = e0, which implies that
Fpq = Fqp = eo and thus p = q. Let us use the definition of r* 3> r to prove
the triangle inequality. We have r(Fp*r,Fr*9) = r(r*(Fpr,Frp), T*(Frq,Fqr)) <
T*(T(Fpr,Frq), r(Frp,Fqr)) < T*{Fpq,Fqp) = F;q. Hence, (5 ,^* , r ) is a PM
space.

Note f » T* » r. Using the continuity of r at (eo>£o)> it is straightforward
to verify that the strong uniformities for T* = T and T* = f coincide. Moreover,
for r* = f, 'V = ^ V ^ - 1 and thus (S,9',T) and (S,^*,T, <) are compatible
whenever r* ^ r.

EXAMPLES 3.3. To illustrate the above, we show that the set of all equiv-
alence classes of random variables defined on a given probability space and
equipped with partial order less than or equal almost surely is an OPM space.
The probabilistic metric on this space induces convergence in probability.

Let (fi, A, P) denote a probability space and denote by [X] the set of all ran-
dom variables defined on (fi, A, P) which are equal to X almost surely. Suppose
that 5 is the set of all such equivalence classes.

For each p — [X], q — [Y], define Fpq to be the distribution function of the
random variable Z = {X — Y). l{x>y}5 where

\{w) _ f 1, iiX{w)>Y{w)

{X > Y} ~ { 0, otherwise,

w e fi. Since Z is a non-negative random variable, then FpqsA+. Clearly,
Fpp = £o- Next, suppose that Fpq = Fqp = EQ. Then Z = 0 almost surely and
thus X < Y almost surely. Similarly, Y < X almost surely, and hence p — q.

Let I = [0,1] and define W: I x I — I by W(a,b) = (a + b - 1) V 0 and let
T W ( F , G ) ( X ) = s u p { W { F ( y ) , F ( z ) ) \ y , z G I , y + z - x } , w h e r e F , G € A + a n d
x > 0. The proof that Fpq > Tw(Fpr,Frq) is given in Theorem 9.1.2 of [4] and
thus (S,&~,T\y) is a PQM space. Recall that p = [X] < q = [Y] if and only if
Fpq — So- Again, this happens if and only if X < Y almost surely, and thus, this
is the partial order induced by the PQM space (S,&~, ity).

Let us characterize convergence in (S, a). Denote by pn — [Xn], p — [X], and
Zn = {Xn - X) • l{Xn>x} • Then, for t > 0, FPnP(t) = P{Zn < t) - 1 if and only
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ifP{Xn-X <t}->l. Similarly, FPPn{t) -» 1 if and only if P{X-Xn <t}^l,
and thus, pn -* p in (S, a) if and only if Xn -+ X in probability.

Let us conclude this section with another probabilistic quasi-metric which
induces the same order on S above. Define, for each p = [X],q = [Y],Gpg to
be the distribution function of the random variable 1{X>Y}- It can by shown
that (S,2?,TW) is a PQM space. Moreover, note that p < q if and only if
P{l{x>Y} < t} — 1 for each t > 0. Hence p < q if and only if X < Y almost
surely, which agrees with the order induced in the example above. However, if
Pn = [Xn],P - [X], then pn -> p in (S,&) if and only if P{l{xn>x} < *} -> 1
and P{l{x>xn} < t} —» 1, for each t > 0. This implies that pn —> p in (S,a)
if and only if P{Xn — X} —> 1. The topology here is strictly finer than that of
the example above even though the partial orders agree.

4. Quasi-simple spaces

A quasi-simple space is a PQM space derived (as in [4, Section 8.4] from a
quasi-metric 8 on S. It turns out that in the definition of OPM space (Definition
3.1), there is no loss of generality if the PQM space (S,^, r') is assumed to be
a quasi-simple space.

Let rjr be the triangle function defined as follows: Tj^(F, G)(X) — s\xp{F(y) A
G{z): y > 0,z > 0,y + z = x}. A quasi-metric S on S is a function from
S x S into [0, oo), which is required to satisfy the following properties: (1)
6{p,p) = 0 for each p e S; (2) if 6{p,q) = 6(q,p) = 0, then p = q; and (3)
5(p, q) < 6(p, r)+6(r, q) for each p, q, r in S. Given a quasi-metric space (S, 6) and
an element G of A+ which is distinct from eo\ define &s(p,q)(x) = G(x/6(p,q))
for each p, q, eS and x > 0. A PQM space (S,^, r) is said to be a quasi-simple
space if r = TM and there is a quasi-metric 6 on 5 such that &~ = ^ . It
is shown in [4, Theorem 8.4.2] that ^ is a probabilistic metric relative to the
triangle function TM whenever 6 is a metric on S. This theorem generalizes
without difficulty to quasi-metrics. It should be noted that &$ depends on G as
well as 6.

PROPOSITION 4.1 . Let (S, 6) be a quasi-metric space and let G be an element
of A+ which is distinct from eo- Then (S,&$,TM) is a PQM space.

With each quasi-metric 8 on S, we associate the metric 6 defined by S(p, q) =
6(p,q) V S(q,p) for all p, q in S; we also associate the quasi-uniformity 2^ gen-
erated by sets of the form V(t) = {(p,q): 6(p,q) < t} for all t > 0, and the
uniformity 2^ = % V <^~1 determined by 6. For a given G € A+, the simple
spaces generated by 8 and 8 are related in the expected way.
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PROPOSITION 4 .2 . Let 6 be a quasi-metric on S and let G € A+ be such
that G ^ e0; let &{p,q)(x) = G{x/8{p, q)) for allx € [0, oo]. Then {S,9,T>) is
the simple space determined by G and 6; in other words, &~(p,q){x)
= G(x/6{p,q)), for all x E [0,oo].

PROOF. Note that Fpq(x) = Fpq{x) AFqp(x) = G{x/6(p,q)) AG{x/6{q,p)) =
G{x/6{p,q)), for all x € [0,oo].

It is also true that the quasi-uniformity determined by a quasi-metric coincides
with the strong quasi-uniformity determined by the quasi-simple space arising
from the same quasi-metric.

PROPOSITION 4 . 3 . Let 6,G, and 9 be as specified in Proposition 4.2. As-
sume that G is an element in A + which is distinct from eo and such that
l\my-tooG(y) = 1, and let %/ be the strong quasi-uniformity for [S,9 ,Tj().

PROOF. Let U(t) - {(p,q): Fpq E NEo(t)} be a basic set for ^ , and let
s > 0 be chosen so that G(t/s) > 1 — t; this choice for s is possible because
limy-Kx,G(y) = 1. Then if (p,q) E V(s) — {(p,q): 6(p,q) < s}, it follows that
Fpq{t) = G(t/6{p,q)) > G{t/s) > 1 - t, and so {p,q) e U{t). Thus, %? CT~.

Conversely, let s be given, where 0 < s < 1. Since G ^ Eo, we can assume
without loss of generality that G(0+) < 1 — s. Denote G ' ( l - s ) — sup{x: G(x) <
1 - s}. Note that G'(l - s) > 0, and let t = sG'(l -s)As. We will show that
U(t) C V(s). If (p,g) $ V(s), then 6(p,q) > s, and so Fpq(t) = G(t/S(p,q)) <
G(sG'{l - s)/6{p,q)) < G(G'(1 - s)) < 1 - s < 1 - t. Thus, {p,q) <£ U{t). It
follows that ^ = W.

THEOREM 4.4 . Let (S,&,T) be a PM space with strong uniformity W, and
let < be a partial order on S. Then (S,&,T,<) is 0PM space if and only if
(S,W,<) is a uniform ordered space.

PROOF. If (S,&,T, <) is an OPM space compatible with the PQM space
(5 ,^" , r ' ) and ^ the strong quasi-uniformity for (S,^,T'), then (S,W,<) is
the uniform ordered space determined by ^ .

Conversely, assume (S, W, <) is a uniform ordered space, and let ^ be a
quasi-uniformity on S, such that W = ftf y ^~l and p < q if and only if
(p,q) e U, for all U E %. Since W has a countable base, we may assume
that ^ has a countable base. It follows from [2, Theorem 8] that there is a
quasi-metric 6 on S, such that % = % and p < q if and only if 6(p, q) = 0.

Let G be any element of A + , such that G £ eo and limJ/_oo G(y) = 1, and
define &~ = 91 as in Proposition 4.1; then {S,9,Tjf) is a quasi-simple space.
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By Proposition 4.3, the strong quasi-uniformity for (S,^, T^) is 1/ = %, and so
(S,^,Tjf) generates both the order and the strong uniformity for (S,2?,T, <).
In other words, (S, 3?, r, <) is an OPM space.

The next corollary follows immediately from the proof of Theorem 4.4.

COROLLARY 4 .5 . Every OPM space is compatible with a quasi-simple space.

A distance distribution function, abbreviated ddf, that is continuous and
strictly increasing on [0, oo] is said to be a strict ddf [4, page 48]. Let (S, 6) be a
metric space, T a strict t norm (see [4], pages 65, 66) and define TT(F,G)(Z) =
s\xp{T(F(x), G{y)) | x + y = z}. It is proved in [5, Theorem 2] that if a > 1,
there exists a strict ddf G such that &~(p,q){x) = G{x/{8(p,q))a) defines a
probabilistic metric with respect to the triangle function TT. The verification of
condition (PM)3 did not require symmetry of 6. Hence, if {S,6) is only a quasi-
metric space, it follows that J?~, defined above, is a PQM space with respect
to the triangle function TT- In this case (S,&~,TT) is called an a-quasi-simple
space.

It is straightforward to modify the proof of Proposition 4.3 to show that the
strong uniformity of an a-quasi-simple space coincides with the quasi-uniformity
determined by the quasi-metric. This fact, combined with the proof of Theorem
4.4, gives the following.

COROLLARY 4.6. Every OPM space {S,^,TT,<), where T is a strict r-
norm, is compatible with an a-quasi-simple space, for each a > 1.

A characterization as to when a uniform space with a partial order is in fact
a uniform ordered space is given in [2, Theorem 10]. In particular, (S, W, <) is
a uniform ordered space when it is a sup-lattice such that the map (p,q) —> p V q
is uniformly continuous [2, Proposition 11].

5. Completions of OPM spaces

A completion theory for PM spaces has been developed by Sherwood (see
[3], [4]). Completing an OPM space involves extending the order of the original
space to its Sherwood completion, and this requires completing a compatible
PQM space.

DEFINITION 5.1. Let (S,&,T,<) be an OPM space. Then (S*,&*,T, <*)
is an OPM completion of {S,2/,T, <) if (5*,^*,r) is a probabilistic metric com-
pletion of (S,S?,T) (see Section 12.5 of [4]) and the embedding of S into S* is
an order isomorphism.
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We shall show that every PQM space has a PQM completion which induces
an OPM completion of any compatible OPM space. Let g: Si x 52 —> T be any
function and let Ai be a subset of Si,i = 1,2. Then g(Ai x A2) denotes the
subset {</(ai, a?) | a* € Ai} and, moreover, if $* is a filter on Si, then g($i x $2)
denotes the filter {A | g{A^ x A2) C A C T , for some Ai G $ J , i = 1,2. Recall
that a filter converges to an element in a topological space provided it contains
each neighborhood of this element.

Let (S,&~,T) be a PQM space. A filter $ on S is defined to be a &~-Cauchy
filter if and only if ^ " ( $ x $ ) —> e0 in (A+,d/ , ) . Equivalently, $ is a ^"-Cauchy
filter if and only if % C $ x $ , where 2^ is the strong quasi-uniformity for &~.
Note that the statements ^ C $ x $ , ^ - 1 C $ x $, and ̂  C $ x $ are all
equivalent. Thus there is no difference between ^-Cauchy filters, ^ ' -Cauchy
filters, and ^"-Cauchy filters. Furthermore, if (S,S?,T',<) is any OPM space
with which (S,^,T) is compatible, then the ^-Cauchy filters are the same as
the ^-Cauchy filters since ^ is the strong uniformity for &. For simplicity, we
shall henceforth refer to the "^"-Cauchy filters" simply as "Cauchy filters."

Two Cauchy filters $ and $ are equivalent if and only if $ n * is also a Cauchy
filter. Let [$] be the equivalence class of all Cauchy filters equivalent to $, and
let S* = {[$]: $ a Cauchy filter}. For p e S, let p denote the fixed ultrafilter
generated by {p}. The canonical map j : S —> 5* is given by j(p) = [p]. Before
defining a probabilistic quasi-metric 3~* on S*, we need the following lemma.

LEMMA 5.2. Let(S,^,r) be a PQM space. / / $ , * are Cauchy filters, then
x #) is a Cauchy filter relative to (A+,d L ) .

PROOF. It must be shown that dL [^"($ x *) x ^ " ( $ x *)] -> 0 in R. Let 6 > 0
be given. By [4, Lemma 12.2.1], there exists 77 > 0 such that, if F,G,H € A + ,
with F > T{H,G), G > T{H,F), and dL{H,e0) < r), then dL{F,G) < 6.

Since ^ " ( $ x $) —> e0, ̂ " ( $ x *) —> e0, and r is continuous at (eoiCo), we
can choose .4 G $ , B G * , such that T\9~(A X A) X ^{B X B)\ C Neo(r)). Let
p,p' G A and q,q' G B. Then

i W > T ( F P . , , F , , 0 > T [ T ( F P . P > F M ) , F M . ] = T[T(Fp,p,Fqq,),Fpq)

> T[T(FP,P A Fpp,,Fq,q A F, , , ) , F w ] .

Similarly, Fpq > T[T{FPP, A Fp,p,Fqq, A F,-,),Fp/,-]. Since r[#"(i4 x A) x
#"(B x B)] C Neo{rj), it follows that r(Fp p, A Fplp,Fqql A F,-,) G NSo{ri). Let
F = Fp>q>, G = Fpq, H = T{FPP, A FP,P, Fqq. A Fq,q); then by [4, Lemma 12.2.1]
dL (Fplq>,Fpq) < 8. This implies that dL(F(A x B)) x 9~{A x B)) C [0,6], and
thus 3~{§ x * ) is a Cauchy filter on ( A + , d L ) .

Returning to the construction of a PQM completion of a PQM space (S, &~, r),
we define &*: S* x S* - • A+ as follows: ^"*([$],[*]) = l im^"($ x tf) in
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z,). The preceding lemma implies that this limit exists for any Cauchy
filters in the given equivalence classes; furthermore, this limit is well defined
because each equivalence class contains a smallest (coarsest) filter. Note
that ^*([p],[?]) = 9~(p,q). It will be convenient to write -fr̂ ir*] in place of

PROPOSITION 5.3. If(S,&~,T) is a PQM space, then (S*,&~*,T) is also a
PQM space.

PROOF. Ail parts are straightforward to verify except the triangle inequality.
Let [*], [*], [r] belong to S*; we shall show that Ffam > r(F^]{r],Ffr]m). It
is sufficient to show that F^u^Ax) > T(F?Qur,,F?r,,q,)(x) when a; is a point of
continuity of J ^ H * ] and r (̂ 1*1 rri > ̂ fri [*]) - Since we are dealing with Cauchy
filters for a metrizable uniform space (S, &), we can formulate the argument in
terms of sequences. Let (pn) be a sequence in S, such that (pn) e [$], where
(pn) is the filter generated by (pn); similarly, let {qn) e [*], and (rn) € [T].
Then FPnqn > r(FPnrn,Frnqn), and so Ffam(x) > r(F^][r],F{rm)(x). Thus,
(5*,y*,T) is a PQM space.

Since, as we have noted, &~ and J ^ / A &' have the same Cauchy filters,
the completion sets for (S,^, r) and (S,&~, r) are the same set S* described
above. Note that Lemma 5.2 is valid for (S,&~, r) as well as for (S, J?", r); indeed,
for (S,&~,T) the conclusion follows by [4, Theorem 12.2.2]. If the construction
which was applied to &~ in order to obtain J?"* is applied instead to <!?", we
obtain a PM space (5*,(^)*,r), which is indeed the Sherwood completion of

PROPOSITION 5.4. For any PQM space (S,f,T), {&)* = (#*) .

PROOF. We must show that, for arbitrary [$], [*] € S*, [F)^9] = *}*][*]
verification is straightforward using (pn) e [$] and (qn) G [*].

COROLLARY 5.5. 7 / (5 , ^ , r ) is a PQM space, then (S*,&~*,r) is a PQM
completion relative to the embedding map j : S —• S*.

PROOF. The map j is clearly an isometry (see paragraph preceding Proposi-
tion 5.3) of (S ,y , r ) into the PQM space (5*,^"*,r). Since {9~)* is complete,
it follows by Proposition 5.4 that (P*) is complete. Since (^*) and y * have
the same Cauchy filters and the strong topology for &* is coarser than that for
{9"*), it follows that (S*,9~*,T) is also complete.
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THEOREM 5.6. Every OPM space (S,&,T,<) has OPM completion.

PROOF. Let {S,9~,r') be a PQM space compatible with (S,&,T,<). If
% is the strong quasi-uniformity for 9~, then ^ = % V (2/~x is the strong
uniformity for &. Let {S*,&*,T) be the PM completion of {S,&,T); by our
previous remarks, we can assume that the same set S* is the underlying set
for the PQM completion (S*,&~*,T') of (S,J?~, r'). Furthermore, the strong
uniformity for (S*,S^*,r) is (2JQ*, where (S*,(^)*) is the uniform completion
ot(S,&).

Let f/* be the strong quasi-uniformity for (S*,&~*,T'). By Proposition 5.4,
(&)* =%?*V {%")-K Thus 5?* is compatible with 9~*. Let <* be the order on
S* determined by y * . Since ^{p,q) = EQ if and only if &~*{\p], [<?]) = eo, the
embedding map j : (S, 3?, r, <) —> (S*, ̂ * , r, <*) is an order-preserving isometry.
Thus {S*,2?*,T, <*) is an OPM completion of (5 ,^ , r , <).

A function / : (S, %/) —* (T, If) between two quasi-uniform spaces is called
uniformly continuous when f~l(y) € f/ for each V € 7^. The following is an
extension result to the completion space for an increasing, uniformly continuous
function.

PROPOSITION 5.7. Let f be an increasing function from the OPM space
(S,&,T,<) into the complete OPM space (T,3?',TI,<I). Suppose that {S,^,T')

and (T,^,T[) are compatible PQM spaces with corresponding strong quasi-
uniformities % andl^', respectively. If f: (S,%/) —• (T, 2̂ ") is uniformly contin-
uous, then the uniformly continuous extension to the completion (S*,^*,r*,<*)
is also increasing.

PROOF. Suppose that [$] <* [*]; then Ffa[9] = l i m ^ ( $ x *) = e0 and this
implies that ^ C $ x *. Since / is uniformly continuous, 2^ C / $ x / ^ and
thus ^ ( l i m / $ , l im/¥) = lim ^ ( / $ x / * ) = e0. It follows that the uniformly
continuous extension of / to (5*,^*,r*, <*) is increasing.

Acknowledgment

The authors are indebted to the referee for suggesting numerous improvements
in the original manuscript. In particular, the generalization of Proposition 3.2
from (S,&~,T, <) to (S,&~*,T, <) is due to the referee and, moreover, Corollary
4.6 is entirely his observation.

https://doi.org/10.1017/S1446788700030391 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700030391


[12] Ordered probabilistic metric spaces 99

References

[1] P. S. Marcus, 'Probabilistic metric spaces constructed from stationary Markov chains',
Aequationes Math. 15 (1977), 169-171.

[2] L. Nachbin, Topology and order (Van Nostrand Math. Studies, No. 4, Princeton, N.J,
1965).

[3] H. Sherwood,'On the completion of probabilistic metric spaces',/. Wahrsch. Verw. Gebiete
6 (1966), 62-64.

[4] B. Schweizer and A. Sklar, Probabilistic metric spaces (North-Holland, New York, 1983).
[5] , 'Triangle inequalities in a class of statistical metric spaces', J. London Math. Soc.

38 (1963), 401-406.

Department of Pure and Departments of Mathematics
Applied Mathematics and Statistics
Washington State University University of Central Florida
Pullman, Washington 99164 Orlando, Florida 32816
U.S.A. U.S.A.

https://doi.org/10.1017/S1446788700030391 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700030391

