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Abstract  21 

Background: One of the challenges of psychiatry is the staging of patients, especially those 22 

with severe mental disorders. Therefore, we aim to develop an empirical staging model for 23 

schizophrenia.  24 

Methods: Data were obtained from 212 stable outpatients with schizophrenia: demographic, 25 

clinical, psychometric (PANSS, CAINS, CDSS, OSQ, CGI-S, PSP, MATRICS), inflammatory 26 

peripheral blood markers (C-reactive protein, interleukins-1RA and 6, and platelet/lymphocyte 27 

(PLR), neutrophil/lymphocyte (NLR), and monocyte/lymphocyte (MLR) ratios). We used 28 

machine learning techniques to develop the model (genetic algorithms, support vector 29 

machines) and applied a fitness function to measure the model's accuracy (% agreement 30 

between patient classification of our model and the CGI-S).  31 

Results: Our model includes 12 variables from 5 dimensions: 1) Psychopathology: positive, 32 

negative, depressive, general psychopathology symptoms; 2) Clinical features: number of 33 

hospitalizations; 3) Cognition: processing speed, visual learning, social cognition; 4) 34 

Biomarkers: PLR, NLR, MLR; and 5) Functioning: PSP total score. Accuracy was 62% 35 

(SD=5.3), and sensitivity values were appropriate for mild, moderate, and marked severity 36 

(from 0.62106 to 0.6728).  37 

Discussion: We present a multidimensional, accessible, and easy-to-apply model that goes 38 

beyond simply categorizing patients according to CGI-S score. It provides clinicians with a 39 

multifaceted patient profile that facilitates the design of personalized intervention plans.  40 

 41 

Keywords: schizophrenia, empirical staging model, clinical tool, multidimensional model, 42 

personalized intervention. 43 
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Introduction 45 

Increasing schizophrenia research studies are providing important insights into some of its main 46 

challenges, such as genetic, neurobiological, and neuroimaging biomarkers [1-2]. However, 47 

another significant challenge yet to be achieved is developing a staging model for this disorder. 48 

Staging models allow us to integrate clinical information with biomarkers, comorbid conditions, 49 

and other significant variables [3]. Thus, they offer a unitary framework for providing effective 50 

interventions adapted to the stages of the disorder [4-6] and reducing heterogeneity in clinical 51 

practice [5, 7].  52 

The first staging model for schizophrenia was proposed by Fava & Kellner in 1993 [8]. 53 

Since then, different theoretical staging models have been proposed, ranging from the simplest, 54 

which includes only psychotic psychopathology and functioning [8], to the most complex, 55 

which also comprises affective symptoms, cognition, neuroimaging, and biological and 56 

endophenotypic markers [9, 10]. In this regard, the recently developed models based solely on 57 

the Positive and Negative Syndrome Scale (PANSS) deserve a separate mention [11-13].  58 

Additionally, we have notice growing interest in validating some of the proposed theoretical 59 

models [6] for the purpose of establishing their validity and/or improving them [14-22]. 60 

However, despite these above-mentioned efforts, practically all of these models have significant 61 

limitations [6]. According to the literature, most were theoretical proposals, only partially 62 

validated at best, and have rarely been integrated into routine clinical practice.  63 

In this context, our study aims to develop a staging model for schizophrenia that overcomes 64 

the limitations of those already proposed, using machine-learning methodologies from 65 

information on different dimensions relevant to this disorder.  66 

 67 

Methods 68 

This is a naturalistic and cross-sectional study of patients with schizophrenia in outpatient 69 

treatment. The study was developed according to the ethical principles of the Declaration of 70 

Helsinki and the Good Clinical Practice guidelines. The Clinical Research Ethics Committee of 71 
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Hospital Universitario Central de Asturias in Oviedo also approved the study protocol 72 

(Ref.36/2012, Ref.25/2014). Before enrollment, written informed consent was obtained from all 73 

subjects. 74 

 75 

Participants 76 

A total of 212 patients with stable schizophrenia were recruited. Inclusion criteria were (1) 77 

outpatients with a confirmed diagnosis of schizophrenia according to the ICD-10 (International 78 

Classification of Diseases 10th Edition) criteria, in treatment at any of the participating centers 79 

(La Eria and La Corredoria mental health centers in Oviedo, Spain)]; (2) age >17 years; and (3) 80 

written informed consent to participate in the study. 81 

Exclusion criteria were designed to be minimal to obtain a representative and heterogeneous 82 

sample. Therefore, only patients with an intellectual developmental disability or acquired brain 83 

injury were excluded from the study. 84 

 85 

Evaluations 86 

Extensive evaluations were performed for all subjects where demographic and clinical data were 87 

collected, such as length of illness, number of hospitalizations, and physical comorbidities. In 88 

addition, we also included pragmatic variables, which are an indirect measure of functionality, 89 

such as educational level, marital status, employment status, official disability status, etc.  90 

The assessment was developed by trained clinicians and also included the Spanish versions 91 

of the following instruments:  92 

 93 

Psychopathology. Positive and Negative Syndrome Scale (PANSS) [23], Clinical Assessment 94 

Interview of Negative Symptoms (CAINS) [24], and Calgary Depression Scale for 95 

Schizophrenia (CDSS) [25]. The presence of sleep disturbances was also assessed through the 96 

Oviedo Sleep Questionnaire (OSQ) [26]. Although the OSQ comprises three subscales 97 

(subjective satisfaction, insomnia, and hypersomnia), we used only the subjective satisfaction 98 
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subscale for this study. In addition, we included the items that assessed sleep latency (OSQ3) 99 

and efficiency (OSQ6), and the use of pharmacotherapy or other sleep remedies (OSQ11). 100 

As for negative symptoms, the PANSS negative subscale (PANSS-N) and Marder Negative 101 

Factor (PANSS-MNF) scores were calculated. The PANSS-MNF includes the items of the 102 

PANSS-N, except difficulty in abstract thinking and stereotyped thinking, plus two items from 103 

the PANSS general psychopathology subscale of the (PANSS-GP): motor retardation and active 104 

social avoidance. In addition, due to the psychometric limitations of existing instruments to 105 

evaluate negative symptoms [27], we used the CAINS scale, which focuses on the patient's 106 

subjective experience of the negative signs and symptoms instead of the patient’s functioning. 107 

This scale comprises two subscales: motivation and pleasure (MAP), which evaluates the 108 

severity of abulia and anhedonia, and emotional expression (EXP), which measures the severity 109 

of alogia and blunted affect. It provides scores for each subscale and a total score obtained by 110 

combining the scores on the two subscales, where higher scores reflect greater symptom 111 

severity. 112 

 113 

Cognition. We used the Measurement and Treatment Research to Improve Cognition in 114 

Schizophrenia Consensus Cognitive Battery (MATRICS-CCB) [28], which consists of 10 tests 115 

that are grouped into seven cognitive domains: Processing Speed (Trail Making Test: Part A; 116 

Brief Assessment of Cognition in Schizophrenia: Symbol Coding and Category Fluency Test: 117 

Animal Naming); Attention/Vigilance (Continuous Performance Test: Identical Pairs); Working 118 

Memory (Wechsler Memory Scale Spatial Span-III, and Letter Number Span Test); Visual 119 

Learning (Brief Visuospatial Memory Test-Revised); Verbal Learning (Hopkins Verbal 120 

Learning Test-Revised); Reasoning/Problem-Solving (Neuropsychological Assessment Battery: 121 

Mazes); and Social Cognition (Mayer-Salovey-Caruso Emotional Intelligence Test: Managing 122 

Emotions [D and H sections]). First, the raw score was obtained for each of the subtests, where 123 

higher scores reflect better cognitive performance, except for Trail Making Test A, where 124 

higher scores reflect greater impairment. Secondly, we transformed the raw scores, according to 125 
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age and sex, into t-scores. Finally, we summed the t-scores from each domain test and 126 

transformed them into the final score using the tables provided by the MATRICS.  127 

 128 

Real-world functioning. The Personal and Social Performance scale (PSP) [29] was employed, 129 

and its total score was used. We chose this instrument due to the well-known difficulties 130 

associated with the GAF [30, 31] and because it was available in several languages. 131 

 132 

Global severity. We used the score on the Clinical Global Impression-Schizophrenia Severity 133 

scale (CGI-S) [32] as the "best current gold standard" to determine the performance of each of 134 

the models generated by genetic algorithms. We decided to use this scale because, as reported in 135 

previous studies [32-34], it demonstrates high interrater reliability when raters are specifically 136 

trained in the use of this instrument. Consistent with the inclusion criteria, the percentage of 137 

people recruited with CGI-S scores of 1 (normal, not ill), 2 (minimally ill), 6 (severely ill), or 7 138 

(Among the most severely ill) was inadequate. Therefore, we regrouped these CGI-S scores: 1 139 

and 2 into the same dimension and 6 and 7 into the same category. 140 

 141 

Biological assessment. A physical examination of the patients was also performed, in which 142 

height, weight, waist circumference, heart rate, and blood pressure were recorded. In addition, 143 

blood samples were collected to perform laboratory tests (hematology, biochemistry, and 144 

hormones) after a confirmed overnight fast. Additionally, the following blood biomarkers of 145 

inflammation were obtained: C-reactive protein (CRP), interleukin (IL) 1RA and IL6, and 146 

platelet/lymphocyte (PLR), neutrophil/lymphocyte (NLR), and monocyte/lymphocyte (MLR) 147 

ratios (Table 2). In addition, we used the NHANES criteria [35] to determine the presence of 148 

metabolic syndrome. 149 

 150 

Machine-learning Model 151 

Genetic algorithms.  152 
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Genetic algorithms (GA) are a methodology based on the natural selection process and suitable 153 

for solving optimization problems. These algorithms simulate natural selection processes such 154 

as inheritance, mutation, crossover, and selection [36]. Every genetic algorithm uses an initial 155 

population from which the algorithm will start searching for optimum values. A fitness function 156 

is applied to the initial population to assess how suitable each initial population's elements are as 157 

the solution to the problem under study. 158 

The solutions that are deemed to be the best, as determined by the fitness function, will be 159 

chosen to transmit knowledge to the following generation. This knowledge transmission is 160 

performed with the help of the genetic operators' mutation, crossover, and elitism applied to 161 

create a new generation that achieves better values when assessed with the fitness function. 162 

 163 

Support-vector machines.  164 

Support-vector machines (SVM) are supervised-learning models for classification problems. 165 

Given a set of training data, each marked with the category to which it belongs, an SVM model 166 

can assign new examples in one category or another. Using the kernel method, SVM can 167 

efficiently perform linear and nonlinear classifications [37]. This implicitly assumes mapping its 168 

inputs into high-dimensional feature spaces. The original SVM algorithm was created by 169 

Vapnik and Chervonenkis (1962) [38]. Years later, Boser et al. (1992) [39] suggested creating 170 

nonlinear classifiers by applying the kernel method to maximum margin hyperplanes. Currently, 171 

the most widely used implementation of this method is the one proposed by Cortes and Vapnik 172 

(1995) [40]. 173 

 174 

The proposed algorithm.  175 

The algorithm proposed for the variable selection made use of GA and SVM. Their steps are 176 

presented as a flowchart in Figure 1. The first step consists of initialization of the GA 177 

population. Each population's member is formed by a string of '0s' and '1s' with a length of 61, 178 

which is the total number of possible input variables of the model. The criteria for 179 
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including/excluding data from the analysis were the subject of our previous systematic review 180 

[6] and the team discussion. Each '0' means that the variable will not be present in the model 181 

under study, and each '1' means that the variable will be employed for training the model. 182 

To evaluate the performance of all the trained models, we used the CGI-S patient 183 

classification as the "best current gold standard." We applied a fitness function to measure the 184 

model's accuracy: the percentage of concordance between the classification of patients 185 

according to our model and the CGI-S.  186 

To avoid the selected subsets influencing the model’s performance, a three-fold cross-187 

validation was applied [41]. This means that the data set was randomly divided into three parts, 188 

two of which were employed for the model training and the other for the validation. Three-fold 189 

cross-validation is a particularization of the k-fold cross-validation methodology, also known as 190 

out-of-sample testing, for 𝑘 = 3. This methodology is frequently applied in machine-learning 191 

studies to reduce bias, with good performance [42], suggesting that it is beneficial in 192 

minimizing data-testing uncertainties and overfitting issues [43]. 193 

The three-fold cross-validation process was repeated 10,000 times for each model (see 194 

Figure 2). Therefore, the value of the fitness function is the average of the model performance 195 

of all models trained for each variable's subset. The stop criterion employed in this research was 196 

for the algorithm to stop after 100 cycles where none of the individuals in the population   197 

improved the percentage of patients classified in the correct category according to the CGI-S 198 

classification. 199 

The population size for the GA was 10,000. For the mutation, the value of 1% was chosen, 200 

for the crossover it was 100%, and for elitism it was 5%. Please note that these values have 201 

shown good performance in previous research studies by the authors [44, 45]. The classification 202 

version of SVM was applied in this algorithm, using the radial basis function kernel and a 203 

gamma value equal to the inverse of the number of input variables of the model. The tolerance 204 

values of the models were 0.001 with an epsilon of 0.1, as those values showed good 205 

performance in previous research [46, 47]. 206 
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 207 

Results 208 

Demographic and clinical characteristics 209 

The mean age of our sample was 40.3 (SD=13.1) years, 63.7% were males, 74.1% were never 210 

married, and 37.7% received disability benefits due to schizophrenia. The rest of the 211 

sociodemographic characteristics are shown in Table 1. 212 

The mean age at diagnosis was 28.3 (SD=8.2) years, the mean length of the disorder was 213 

12.0 (SD=12.0) years, and 16% had a comorbid mental disorder. Regarding the use of 214 

substances, while cannabis was the substance with the highest reported consumption (51.9%), 215 

tobacco (43.4%) and alcohol (28.3%) were currently the most used. On average, our sample's 216 

mean severity level was 4.2 (SD=0.9) (Table 2). The patients' psychometric scores and 217 

laboratory results are shown in Table 2. Concerning physical health, 68.4% had at least one 218 

comorbid physical disease, and 70 (33.3%) patients had metabolic syndrome.  219 

 220 

Development of the “PsiOvi Staging Model for Schizophrenia (PsiOvi SMS)” 221 

The best SVM model used the following 12 variables as input variables: PANSS-Positive 222 

subscale, PANSS-MNF subscale, PANSS-GP subscale, Calgary Depression scale, number of 223 

hospitalizations, Trail Making Test – Part A, Brief Visuospatial Memory Test-Revised, Mayer-224 

Salovey-Caruso Emotional Intelligence Test: Managing Emotions (D and H sections), PLR, 225 

NLR, MLR and total PSP (Figure 3).  226 

Concerning the performance of PsiOvi SMS, we found a percentage of concordance of 62% 227 

(SD=5.3) between the CGI-S and our model’s classifications. Its specificity and sensitivity 228 

(mean and standard deviation) are shown in Table 3. As can be seen, in general, the specificity 229 

values are quite high, but depending on the characteristics of the model and the problem under 230 

study, the sensitivity values seem to be of greater interest. In this regard, the sensitivity values 231 

are satisfactory for patients classified as Mildly ill, Moderately ill, and Markedly ill by the CGI-232 
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S (values ranging from 0.62106 to 0.6728). In contrast, they are moderate and low for the 233 

minimally ill and severely ill groups, respectively. 234 

Discussion 235 

Our work provides clinicians with a staging model, PsiOvi SMS, that is easily and directly 236 

transferable to daily clinical practice to classify patients with schizophrenia according to the 237 

severity of their disorder. This model is aligned with personalized medicine, the prevailing trend 238 

in the 21st century across most medical specialties. In addition to classifying patients by 239 

severity, our model provides clinicians with a comprehensive profile including 240 

symptomatology, cognition, functionality, and biological factors for each patient. This will 241 

allow clinicians to design specific interventions aimed at enhancing the strengths of each 242 

individual and reducing, as much as possible, their deficits. 243 

Although we used a large number of psychometric and biological assessments, our final 244 

model comprises only 12 easily obtainable profilers. Profilers include positive, negative, 245 

depressive, and general psychopathology symptoms, number of hospitalizations, processing 246 

speed, visual learning, social cognition, PLR, MLR, NLR, and real-world functioning. 247 

In the past few years, the use of machine-learning methodologies has become common in 248 

healthcare. These methodologies have proved their interest in other fields of science and 249 

engineering [48, 49]. They have also been adopted in the healthcare field, and their performance 250 

has been tested in very different applications, e.g., exploitation of electronic health record data 251 

[50], training and validation of models able to prevent cardiovascular diseases [51], and 252 

improvement of patient outcomes in dermatology [52]. 253 

The specialty of psychiatry is no stranger to such emergence of new techniques. According 254 

to some authors, these methodologies would promote a paradigm shift in the diagnosis, 255 

prognosis, monitoring, and treatment of mental illnesses [53]. One of the most recent research 256 

studies in this field is the one performed by Ramos-Lima et al. (2022) [54], which investigated 257 

the viability of a predictive model to support posttraumatic stress disorders (PTSD). In that 258 

study, a model with four stages suitable for PTSD staging was developed. 259 
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In the present research, we have developed a machine-learning-based staging model for 260 

patients with schizophrenia. The proposed model uses genetic algorithms and SVM for patient 261 

classification. Although the sensitivity values can be considered adequate globally, values for 262 

the CGI-S minimally ill and severely ill categories, 0.22331 and 0.36334, respectively, can be 263 

regarded as low. However, it must be taken into account that, according to the inclusion criteria, 264 

both categories are composed of a very small set of individuals, which makes the process of 265 

training and validating the model more complex. 266 

One of the benefits of this work is the neutrality and absence of bias when generating the 267 

models. This is achieved thanks to the three-fold cross-validation [55] and the 10,000-fold 268 

repetition of each randomly selected subset of variables – the methodology used in the 269 

development and validation process. Although this way of working reduces specificity and 270 

sensitivity, not using this methodology can lead to severely inflated performance indicators 271 

[56]. Furthermore, it means that certain machine-learning models may appear to predict well 272 

when they do not if they have not been overtrained [57]. Please note that this practice is 273 

sometimes hidden in some research studies testing different machine-learning models until one 274 

seems to predict well enough for the problem under study [58, 59]. 275 

As stated in the Methods section, our model was trained against the CGI-S patient 276 

classification. We may face criticism for our decision to use the CGI-S, as it has been suggested 277 

that our methodology is tautological and that the CGI-S is easier to use and requires minimal 278 

administration time. First, we do recognize that our model requires greater effort on the part of 279 

clinicians in terms of patient assessment. They will need to become familiar with the 12 280 

profilers, which represent the patient's scores on specific instruments and the results of a 281 

complete blood count. Although incorporating the model into routine clinical practice may seem 282 

laborious, we firmly believe that this effort is justified. Schizophrenia is one of the most severe 283 

mental disorders, associated with poor prognosis and substantial variability in intervention 284 

outcomes. Therefore, not performing fundamental assessments of core symptomatology, 285 

cognition, functioning, and basic laboratory tests could be considered negligent. Second, as 286 
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noted in the Methods section, with specific training, this instrument can be considered the "best 287 

current gold standard" grading system. However, psychiatrists lack it. Generally speaking then, 288 

the CGI-S should be viewed as a “black box,” as the dimensions of the disorder that clinicians 289 

take into consideration and the scoring anchors used when assessing severity are unknown [60, 290 

61]. It is also important to highlight the conceptual change schizophrenia has undergone since 291 

the CGI-S scale was developed. In these almost 50 years, schizophrenia has gone from being 292 

considered an exclusively mental illness to a disease underlying by chronic subclinical 293 

inflammation and presenting high rates of somatic comorbidity, mainly endocrine-metabolic 294 

and cardiovascular diseases [62]. In line with the results of Dunlop et al. (2017) [63], we doubt 295 

that these changes are borne in mind by clinicians when using the CGI-S. Finally, since it 296 

provides a single index rather than a profile of a patient's strengths and deficits, it does not help 297 

design personalized intervention plans to enhance strengths and reduce deficits as much as 298 

possible.  299 

The 12 profilers included in PsiOvi SMS pertain to the following five dimensions: 300 

psychopathology, clinical features, functioning, cognition, and biomarkers. Although other 301 

authors have also proposed these dimensions and primarily psychopathology [4, 11-13, 64], and 302 

functioning [8, 9, 10, 16, 65, 66], most models do not provide information on how to evaluate 303 

them. 304 

Regarding the psychopathology dimension, our model includes positive, negative, 305 

depressive, and general symptoms. It seems logical that psychotic symptoms should be part of 306 

the model since they are the disorder's core symptoms. However, traditionally, the literature has 307 

placed less importance on depressive symptoms. Specifically, in the theoretical model of 308 

McGorry et al. (2010) [9], they were included only in the premorbid and prodromal phases of 309 

the disorder. However, recent studies have analyzed the impact of depressive symptoms on the 310 

long-term evolution of the disorder, finding that depressive symptoms play a significant role in 311 

functional remission and personal recovery [67, 68]. Our model also includes the number of 312 
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hospitalizations, which refers to relapses requiring hospitalization. It makes sense to include this 313 

profiler due to its demonstrated negative impact on the disorder's prognosis [69, 70]. 314 

In cognition, significant domains emerged: processing speed and visual learning assessed 315 

with Trail Making Test – Part A and Brief Visuospatial Memory Test-Revised, respectively. 316 

Different cognitive dimensions have also been included in previous staging models [4, 9, 10-13, 317 

16, 18, 21, 64]. However, it is worth noting the findings of Lin et al. (2022) [71], who 318 

demonstrated that processing speed and visual learning and memory tests were the best 319 

predictors of global cognition in schizophrenia. Therefore, their results may explain why 320 

processing speed and visual learning were the only cognitive domains that emerged in our 321 

model. Thus, it might be possible to obtain an approximation of the global cognitive function of 322 

these patients only through the Trail Making Test – Part A and Brief Visuospatial Memory Test-323 

Revised tests. On the other hand, we would point out that the model does not include pure 324 

dimensions of cognition only, since social cognition has also emerged as a significant variable. 325 

Although several authors mentioned social deficits and impairment of social functioning [9, 64, 326 

65], only Hickie et al. (2013) [10] included social cognition in their staging model. Social 327 

cognition consists of the fundamental ability to engage in social interactions, such as 328 

recognizing other people's feelings, perceiving their intentions, and understanding social and 329 

cultural norms [72, 73]. For this reason, development of social cognition is crucial for 330 

appropriate psychosocial and work-related adjustment of these patients [74, 75].  331 

Another important finding is that PLR, MLR, and NLR have emerged as profilers within 332 

PsiOvi SMS. Other authors had previously included biomarkers in their theoretical models [9, 333 

10], but they were not empirically validated. Specifically, Godín et al. (2019) [16], whose 334 

objective was to empirically validate and improve the model of McGorry et al. (2010) [9], found 335 

no association between CRP and the severity stages of the model. Therefore, to the best of our 336 

knowledge, our model is the first to include specific empirically validated biomarkers associated 337 

with the severity of the disorder. Furthermore, in keeping with the present results, a previous 338 

study by Özdin and Bökeb (2019) [76] found that NLR, PLR, and MLR increased significantly 339 
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in the relapse period. Additionally, MLR and PLR were found to be significantly higher in the 340 

remission period of patients with schizophrenia compared with the control group. Therefore, 341 

these results support the possibility that PLR, MLR, and NLR could be biomarkers of 342 

schizophrenia severity. Furthermore, although our model did not include any somatic 343 

comorbidities, these would be indirectly indicated by peripheral inflammation biomarkers, 344 

underlying metabolic syndrome, and obesity. 345 

Finally, functioning also emerged as a significant variable in our staging model. Previous 346 

theoretical models also included this variable; even McGorry et al. (2010) [9] and Hickie et al. 347 

(2013) [10] proposed specific psychometric ranges of the Global Assessment of Functioning 348 

(GAF) scale [77]. However, we use the PSP to assess functioning since its scores include 349 

objective indicators and do not overlap with psychopathology [30, 31] as occurs with the GAF 350 

scale. 351 

Strengths and limitations 352 

From a methodological point of view, using the CGI-S to train and obtain the best model might 353 

be viewed as the main limitation, and even a tautology, of the study. We have explained our 354 

point of view extensively and discussed this topic in the Discussion section. Another significant 355 

limitation is the small sample size of each CGI-S group, which may affect the generalization of 356 

our results. However, as stated before, we consider our sample a good fit with the typical 357 

severity distribution found in outpatient clinical practice. Thus, we would point out that the 358 

PsiOvi SMS is applicable only to patients with schizophrenia in outpatient treatment, and the 359 

prodromal and extremely severe phases are outside the scope of the model. However, since 360 

people with schizophrenia will spend most of their lives in outpatient treatment, as very severe 361 

acute phases are rare and brief, our model can be used in virtually all patients. 362 

Our study had several strengths. First, we developed an empirical staging model to classify 363 

patients in a standardized manner, based on psychometric and biological parameters, that is 364 

easily translatable into clinical practice. The required biological parameters are available in 365 

almost all settings, easy to obtain, and inexpensive. A second strength is the transparency in the 366 
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data and selection criteria employed in the model development. Thus, readers can check their 367 

strengths and limitations. A third strength is that the raters were extensively trained in 368 

psychometric assessments, including the CGI-S. This allowed us to correctly assess the patient’s 369 

level of severity for training and obtaining an accurate staging model. Its final strengths are its 370 

neutrality, absence of bias, and reproducibility. Furthermore, in addition to the previously 371 

mentioned clinical advantages, the "PsiOvi SMS" is associated with a calculator 372 

(https://areapsiquiatria.unioviedo.es/enlaces/temas-clinicos/) that automatically generates the 373 

patient's stage, which makes our model truly transferable to clinical practice. 374 

Therefore, the next step after developing our model will be to follow patients over time and 375 

evaluate the effectiveness of the interventions implemented at each stage. This will allow us to 376 

verify and propose interventions that are truly useful to improve patient outcomes depending on 377 

the stage in which they are located, which could represent progress in the standardization of 378 

clinical practice and the implementation of personalized medicine. 379 

Conclusion 380 

To the best of our knowledge, ours is the first development of an empirical multidimensional 381 

staging model for schizophrenia using machine learning. Our model constitutes a unique, 382 

accessible, inexpensive, and easy-to-apply tool to help doctors manage the heterogeneity of 383 

schizophrenia, facilitate the transfer of information between professionals, and implement 384 

personalized therapeutic interventions. Therefore, they should be aware of these results, as they 385 

represent a further step towards implementing patient-centered precision medicine. 386 
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Table 1 655 

Sociodemographic and clinical characteristics of the sample. 656 

            Sociodemographic characteristics                        Mean (SD) 

Age  40.30 (13.05) 

Sex, males [n (%)] 135 (63.70) 

Marital status [n (%)]  

   Never married 157 (74.10) 

   Married1 55 (25.9) 

Educational level [n (%)]  

   Primary school 46 (21.70) 

   Secondary school 125 (59.50) 

   University 41 (19.30) 

Work status [n (%)]  

   Working (full-/part-time) 31 (14.60) 

   Not working2 152 (71.70) 

   Homemaker or student  29 (13.70) 

Recognized disability, yes [n (%)] 80 (37.70) 

Clinical characteristics Mean (SD) 

Length of illness, years  11.97 (12.02) 

Number of hospitalizations  1.62 (1.89) 

Suicide attempts  

   Yes [n (%)] 34 (16.00) 

   No. of suicide attempts 1.71 (1.50) 

Use of substances  

   Coffee (current) [n (%)] 

   No. of cups 

   Tobacco (current) [n (%)] 

   No. of cigarettes 

 

122 (57.50) 

2.68 (1.78) 

91 (42.90) 

17.88 (9.63) 

   Alcohol (current) [n (%)] 60 (28.30) 

   Cannabis (lifetime) [n (%)] 110 (51.90) 

Metabolic Syndrome   

   Yes [n (%)] 

   No. of criteria  

 

70 (33.02) 

1.89 (1.40) 

Physical disease (Yes) [n (%)] 145 (68.39) 

Physical treatment (Yes) [n (%)] 62 (29.25) 
 657 
1Married includes married, cohabiting, widowed, and divorced. 2Not working includes permanently 658 
disabled due to health conditions, temporarily disabled, retired, and unemployed. 659 
Note: SD Standard Deviation. 660 
  661 
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Table 2  662 

Psychometric, cognitive, functional, and laboratory results for the total sample. 663 

Psychometric scores Mean (SD) 

PANSS-Positive  12.90 (5.10) 

PANSS-Negative 18.21 (5.59) 

PANSS-Marder Negative Factor 18.14 (6.12) 

PANSS-General Psychopathology 29.382 (7.44) 

CAINS-MAP  20.81 (8.98) 

CAINS-EXP  6.95 (4.56) 

CDSS  3.17 (4.03) 

CGI-S 4.18 (0.93) 

OSQ-Satisfaction 

OSQ3 

OSQ6 

OSQ11 

4.55 (1.64) 

2.21 (1.21) 

1.87 (1.28) 

2.49 (1.79) 

Cognition scores  Mean (SD) 

MATRICS-CCB Subtest Raw Scores  

TMT A 52.75 (35.09) 

BACS 38.23 (14.30) 

HVLT-R 21.92 (6.66) 

WMSIII 14.13 (4.08) 

LNS 12.36 (4.12) 

NAB:MAZES 11.66 (8.02) 

BVMT-R 16.88 (9.42) 

CF 17.85 (5.95) 

MSCEIT ME 88.95 (14.69) 

CPT-IP 1.91 (0.83) 

MATRICS-CCB Domain Scores  

Speed of processing 32.68 (15.04) 

Attention/Vigilance 34.06 (11.19) 

Working Memory 38.70 (12.93) 

Visual Learning 36.46 (13.73) 

Verbal Learning 38.78 (10.31) 

Reasoning/Problem-Solving 37.17 (9.46) 

Social Cognition 41.46 (16.36) 

MATRICS-CS 259.34 (63.02) 

Functioning scores Mean (SD) 

PSP-Total 53.54 (17.67) 

Laboratory results Mean (SD) 

Hematology  

RBCs (µl) 4.88 (0.48) 

Hemoglobin (g/dl) 14.67 (1.54) 

Platelets (µl) 229.67 (57.34) 

PLR (µl) 198.78 (41.47) 

NLR (µl) 1.96 (1.02) 

MLR (µl) 0.26 (0.11) 

Hormones  

Insulin (µU/ml) 16.23 (12.60) 

Inflammatory and oxidative biomarkers  
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CRP (ml/dl) 0.43 (0.66) 

IL_1RA (pg/ml) 209.12 (142.85) 

IL_6 (pg/ml) 1.40 (0.82) 

Note: SD standard deviation; PANSS Positive and Negative Syndrome Scale; CAINS Clinical 664 
Assessment Interview for Negative Symptoms; CAINS-EXP Expression subscale; CAINS-MAP 665 
Motivation and Pleasure subscale; CDSS Calgary Depression Scale for Schizophrenia; CGI-S Clinical 666 
Global Impression-Schizophrenia Severity; PSP Personal and Social Performance; OSQ Oviedo Sleep 667 
Questionnaire; MATRICS-CCB Measurement and Treatment Research to Improve Cognition in 668 
Schizophrenia-Consensus Cognitive Battery; TMTA Trail Making Test A; BACS Brief Assessment of 669 
Cognition in Schizophrenia: Symbol Coding; HVLT-R Hopkins Verbal Learning Test-Revised; WMSIII 670 
Wechsler Memory Scale Spatial Span-III; LNS Letter Number Span; NAB:MAZES Neuropsychological 671 
Assessment Battery: Mazes; BVMT-R Brief Visuospatial Memory Test Revised; CF Category Fluency; 672 
MSCEIT ME Mayer-Salovey-Caruso Emotional Intelligence Test: Managing Emotions; CPT-IP 673 
Continuous Performance Test: Identical Pairs; MATRICS-CS Composite Score; PLR 674 
Platelet/Lymphocyte Ratio; NLR Neutrophil/Lymphocyte Ratio; MLR Monocyte/Lymphocyte Ratio; 675 
CRP C-Reactive Protein; IL Interleukin; RBCs Red Blood cells. 676 
 677 
 678 

 679 

  680 
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Table 3 681 

Model specificity and sensitivity of patient classification according to CGI-S category. 682 

  

Model 

Specificity 

Model 

Sensitivity 

CGI-S Category Mean SD Mean SD 

Stage 1 0.96692 0.01920 0.22331 0.30293 

Stage 2 0.91212 0.03675 0.62106 0.13500 

Stage 3 0.79897 0.06656 0.63647 0.07970 

Stage 4 0.83270 0.05222 0.67284 0.09089 

Stage 5 0.95384 0.02211 0.36334 0.32796 
Note: SD Standard Deviation; CGI-S Clinical Global Impression-Schizophrenia Severity. 683 

 684 

 685 

 686 

 687 
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