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We consider closed-loop control of a two-dimensional supersonic boundary layer at
M = 4.5 that aims at reducing the linear growth of second Mack mode instabilities. These
instabilities are first characterized with local spatial and global resolvent analyses, which
allow us to refine the control strategy and to select appropriate actuators and sensors. After
linear input–output reduced-order models have been identified, multi-criteria structured
mixed H2/H∞ synthesis allows us to fix beforehand the controller structure and to
minimize appropriate norms of various transfer functions: the H2 norm to guarantee
performance (reduction of perturbation amplification in nominal condition), and the
H∞ norm to maintain performance robustness (with respect to sensor noise) and
stability robustness (with respect to uncertain free-stream velocity/density variations).
Both feedforward and feedback set-ups, i.e. with estimation sensor placed respectively
upstream/downstream of the actuator, allow us to maintain the local perturbation energy
below a given threshold over a significant distance downstream of the actuator, even
in the case of noisy estimation sensors or free-stream density variations. However, the
feedforward set-up becomes completely ineffective when convective time delays are
altered by free-stream velocity variations of ±5 %, which highlights the strong relevance
of the feedback set-up for performance robustness in convectively unstable flows.

Key words: boundary layer control, boundary layer stability, instability control

1. Introduction

Transition to turbulence in a boundary layer results in increased wall friction, penalizing
aircraft drag. At high speeds, the generated heat is significant and becomes a major
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concern for the design of supersonic/hypersonic vehicles (Juliano, Borg & Schneider
2015). The transition to turbulence in boundary layers is initiated by amplification of
external disturbances of various kinds (roughness, sound waves, free-stream turbulence,
etc.), and several paths to transition are possible depending on the nature and intensity
of incoming disturbances (Morkovin 1969). With low levels of disturbances, their growth
is described by linear stability theory. The stability of a supersonic boundary layer has
been studied widely in the literature (Mack 1984; Malik 1989; Ma & Zhong 2003; Bugeat
et al. 2019; and many others). For sufficiently high Mach numbers, this configuration
is characterized by the presence of two distinct inviscid instability mechanisms: a
generalized inflection point for the first Mack mode (Mack 1984), and a region where
the streamwise base-flow velocity relative to the disturbance phase velocity is supersonic
for the second Mack mode, implying that acoustic noise is trapped in this region
(Mack 1984; Fedorov 2011). A classical approach for relating instability to transition is
based precisely on this linear framework and is called the N-factor method (Smith &
Gamberoni 1956), wherein transition is assumed to occur when a perturbation has been
amplified by a factor eN , which defines an energy threshold depending on the disturbance
environment.

Numerous studies addressed the problem of transition delay in the supersonic boundary
layer flow using active control: Gaponov & Smorodsky (2016) injected heavy gas through
porous wall to reduce surface friction and heat transfer, Sharma et al. (2019) resorted
to the generation of streaks to counter transient instabilities, Yao & Hussain (2019)
investigated the impact of spanwise wall oscillation on the drag of a supersonic turbulent
boundary layer, and Jahanbakhshi & Zaki (2021) took advantage of the sensitivity of the
Mack modes to temperature to delay transition to turbulence. More recently, Celep et al.
(2022) combined both streak generation and wall heating/cooling effects to control oblique
breakdown in a supersonic boundary layer. However, all the aforementioned studies
employed predetermined active strategies that do not exploit any real-time measurement
and may therefore be less cost-effective and robust to changes in operating conditions
than a reactive control strategy (Gad-el Hak 2000). To the best of our knowledge,
reactive control of convective instabilities in a supersonic boundary layer has not yet been
considered.

Contrary to oscillator flows (Barbagallo, Sipp & Schmid 2009; Schmid & Sipp 2016),
which are by definition linearly globally unstable (Huerre & Monkewitz 1990) and
have intrinsic dynamics, noise-amplifier flows like the supersonic boundary layer are
extremely sensitive to external disturbances, which are amplified downstream as they
are convected by the flow (hence the name convective instabilities). In this context, the
purpose of reactive control is to cancel out noise-induced perturbations (Bagheri, Brandt
& Henningson 2009; Barbagallo et al. 2012) by producing destructive interferences with
an actuator. This task is difficult for mainly two reasons: (a) the detection of the time
delay associated with the convection of perturbations that may trigger out-of-phase actions
with respect to the incoming perturbations; (b) the wide spatially evolving range of
amplified frequencies along the plate, from higher frequencies upstream to lower ones
downstream.

1.1. Historical dominance of feedforward/linear–quadratic–Gaussian synthesis for the
control of noise-amplifier flows

Controller synthesis is feasible only for models of small dimensions, of the order of 102

degrees of freedom at most, because of the computational cost and storage requirements

954 A20-2

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

99
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.997


Reactive control of second Mack mode

of currently available tools (Ramesh, Utku & Garba 1989). Therefore, most fluidic control
problems require the identification of reduced-order models (ROMs), using for instance
the eigensystem realization algorithm (ERA) on impulse response data. This popular tool,
introduced by Juang & Pappa (1985), has already been used in many control studies for
noise-amplifier flows (Belson et al. 2013; Dadfar et al. 2013; Sasaki et al. 2020; and many
others). Once ROMs are obtained, the control law is built with classical tools of control
theory that are mathematically well-established in a linear framework and thus perfectly
suited for controlling the linear growth of small perturbations.

In noise-amplifier flows, there is no synchronization of the dynamics at a global scale,
and perturbations from an actuator u are rapidly damped in the upstream direction, hence
the control set-up changes fundamentally depending on the position of the estimation
sensor y relative to u. When y is placed upstream, actuator-induced perturbations are not
observable, and the configuration is termed ‘feedforward’ (Bagheri et al. 2009; Semeraro
et al. 2011; Hervé et al. 2012; Juillet, Schmid & Huerre 2013; Morra et al. 2020). On
the other hand, when y is placed downstream, the sensor measures the superposition of
noise-induced and actuator-induced perturbations, hence the term ‘feedback’ (Barbagallo
et al. 2012; Belson et al. 2013; Semeraro et al. 2013b; Vemuri et al. 2018; Tol, Kotsonis
& de Visser 2019). In this case, though, there may be a significant time delay before the
effect of actuation may be seen by the sensor, because perturbations are convected at a
finite rate by the underlying base flow: the farther downstream y is, the longer the delay.

The literature on noise-amplifier control is dominated by the linear–quadratic–Gaussian
(LQG) synthesis (Semeraro et al. 2011; Barbagallo et al. 2012; Juillet et al. 2013; Sasaki
et al. 2018a; Tol et al. 2019; and many others), a synthesis method dating back to the
1960s (Kalman 1964). Despite being theoretically optimal with respect to a performance
criterion, this method comes with no guarantees on stability margins (Doyle 1978). In
other words, tiny errors in the model may end up with an unstable feedback loop when y is
placed downstream of u (feedback set-up), which represents a major drawback for practical
applications. Using the loop-transfer-recovery method, it is in some cases possible to
overcome this lack of stability robustness by overwhelming the control signal entering
the estimator (Kwakernaak 1969; Doyle & Stein 1981). This procedure has, for example,
been used successfully by Sipp & Schmid (2016) to improve the stability robustness of
their controller in the case of a flow over an open square cavity (oscillator flow). The
recovery procedure works by inverting the plant dynamics in order to obtain ultra-fast
estimators. This procedure leads to an unstable closed loop in the case of systems with time
delays, because they possess right-half-plane zeros that are converted into right-half-plane
poles (Zhang & Freudenberg 1987; Skogestad & Postlethwaite 2005; Sipp & Schmid
2016). As a result, this method is not suitable for noise-amplifier flows in general, and
in particular, the supersonic boundary layer flow. Contrary to the feedback structure, the
feedforward design is unconditionally stable, and its implementation via LQG synthesis
is not a problem. Therefore, feedforward configurations combined with LQG syntheses
dominate the noise-amplifier flow control literature, particularly in the incompressible
boundary layer control studies (Bagheri et al. 2009; Semeraro et al. 2011, 2013a,b; Dadfar
et al. 2013, 2014; Sasaki et al. 2018a, 2020; Freire et al. 2020; Morra et al. 2020).

1.2. Feedforward ‘Achilles heel’: performance robustness
However, the use of a feedforward set-up raises the problem of robustness to performance,
which can be defined as the control law’s ability to remain efficient in terms of perturbation
amplitude reduction despite modelling errors or free-stream condition variations around
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the reference case. This problem has been little addressed in the boundary layer control
literature, despite the advent of robust synthesis, introduced by Doyle et al. (1989). So
far, these modern methods have been used mainly in the case of oscillator flows (Flinois &
Morgans 2016; Leclercq et al. 2019; Shaqarin et al. 2021) to have some stability guarantees,
because using a feedback set-up is mandatory to stabilize a globally unstable flow.

To improve performance robustness compared to a simple fixed-structure LQG
feedforward controller, Erdmann et al. (2011) and Fabbiane et al. (2014, 2015) used
an adaptive feedforward method for boundary layer control, based on the filtered-X
least-mean-squares (FXLMS) algorithm, where the controller structure is adjusted
according to the variations of the flow conditions through real-time measurements.
However, this method is not robust to abrupt changes in inflow conditions because the
controller coefficients are adjusted in a quasi-static fashion. Due to its natural ability to be
robust to unknown disturbances or uncertainties on the model (Skogestad & Postlethwaite
2005), feedback design appears to be a promising alternative for performance robustness
on short time scales. Barbagallo et al. (2012) employed a feedback structure combined with
an LQG synthesis to control instabilities over a backward-facing step, and emphasized the
importance of placing the estimation sensor close to the actuator to obtain a reasonable
performance. Doing so increases the controllable bandwidth indeed, as it is limited in
feedback set-up by the convection delay of the disturbances from the actuator to the
estimation sensor. However, some of their feedback controllers turned out to be unstable on
the real plant (the full linearized Navier–Stokes equations), because of the poor stability
robustness of LQG synthesis to tiny errors in the ROM. Tol et al. (2019) also obtained
some unstable controllers when trying to control Tollmien–Schlichting (TS) waves in
an incompressible two-dimensional (2-D) boundary layer using LQG synthesis on a
feedback set-up. Belson et al. (2013) are among the first to demonstrate the feasibility
of a feedback set-up with stability and performance robustness for the same flow, using a
simple proportional integral (PI) controller that was tuned by hand. However, the simple
structure of the PI controller did not allow them to obtain a satisfactory performance
for the chosen actuator/sensor pair, forcing the authors to change it, despite the good
performance obtained with LQG synthesis on the ROMs with the same actuator/sensor
pair. A similar approach was used by Vemuri et al. (2018) in order to cancel out TS waves
in an experimental set-up. The authors tuned a proportional controller by hand to optimize
the controller gain in a closed loop while ensuring robust stability of their feedback
configuration. Such loop-shaping approaches provide guarantees on stability robustness
but are far from optimal from a performance viewpoint. And perhaps more importantly,
they are very limited in the sense that they cannot be applied to more complex controller
structures in a systematic way.

1.3. Designing robust controllers: structured mixed H2/H∞ synthesis techniques
In contrast, modern tools for robust multi-criteria synthesis, such as the structured mixed
H2/H∞ synthesis (Apkarian, Gahinet & Buhr 2014), allow us to optimize complex
control laws. The structured mixed H2/H∞ synthesis is able to treat different kinds of
mathematical criteria simultaneously, contrary to the LQG method, which minimizes
a single quadratic criterion based on performance and cost. Furthermore, structured
synthesis (Apkarian & Noll 2006) has the advantage of limiting the controller order
and imposing its structure beforehand (e.g. state-space model of order 10, proportional
integral derivative controller, etc.), unlike methods that solve Riccati equations, such as
LQG (Freire et al. 2020), H∞ (Flinois & Morgans 2016) or H2 (Tol et al. 2017) optimal
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controls, which lead to high-order controllers (of the same order as the plant augmented by
weighting functions). These are often too expensive to use in real-time applications, and
require reducing the controller order in a post-processing step. Performing this reduction
optimally while maintaining stability and performance guarantees on the closed loop
remains an open problem (Chen, Zhou & Chang 1994; Goddard & Glover 1995). The
possibility of working with both H2 (an integrated gain over all frequencies) and H∞
(the maximum gain over all frequencies) criteria ensures performance, robustness to
stability and robustness to performance (Apkarian, Noll & Rondepierre 2010). Indeed,
the use of H∞ criteria on some transfer functions allows us to respect stability margins
on the feedback design (what was missing within the LQG synthesis) despite modelling
errors, and to desensitize the controller on certain frequency ranges, allowing optimal
performance to be maintained despite the presence of, for example, noise on the estimation
sensor. The use of H2 criteria makes it possible to have a performance objective of
disturbance rejection during the synthesis (which was sometimes lacking in previous
feedback studies).

1.4. Objective and outline of the paper
In the present paper, we will consider a supersonic boundary layer at M = 4.5 and focus
on 2-D (i.e. spanwise-invariant) and linear perturbations. We will not be dealing with
oblique modes or finite-amplitude perturbations, even if they often do play a significant
role in transition in practice. Hence the present work is only a first step in learning how to
design robust control laws for the problem of transition in the supersonic boundary layer.
One key question that we wish to address before introducing more physical complexity
is how do the feedforward and feedback set-ups compare on this noise-amplifier flow,
using modern robust synthesis tools? With the help of multi-criteria structured H2/H∞
controller synthesis, can we design a feedback set-up that outperforms the often-used
feedforward/LQG synthesis with regards to performance robustness to realistic changes
in operating conditions, i.e. velocity and density variations?

The paper is organized as follows. Sections 2 and 3 provide a description of the flow
configuration and numerical methods. In § 4, local and global linear stability tools are used
to define appropriate closed-loop specifications, i.e. determining the actuators, sensors and
performance criterion to be optimized. Section 5 is devoted to ROM identification from
impulse responses using the ERA, with special emphasis on the problem of time delays
in such noise-amplifier flows. Next, we formally introduce the multi-criteria structured
mixed H2/H∞ synthesis and the associated constraint minimization problem that we wish
to solve. In § 6, we compare the results obtained on and off design (noisy sensors, density
and velocity variations) for the feedforward and feedback set-ups. Conclusions are drawn
in § 7.

2. Flow configuration

A 2-D compressible ideal gas flowing over a flat plate is considered. The flow is governed
by the Navier–Stokes equations:

∂ρ

∂t
+ ∇ · (ρu) = 0, (2.1a)

∂ρu
∂t

+ ∇ · (ρu ⊗ u) = −∇p + ∇ · τ , (2.1b)
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Figure 1. (a) Diagram of the computational domain. Inputs and outputs of the control problem are in red and
blue, respectively. (b) Boundary layer profile used for the inlet condition.

∂ρE
∂t

+ ∇ · (ρEu) = ∇ · (−pu + τ · u − θ), (2.1c)

where ρ is the fluid density, u is the velocity vector, p is the static pressure, E =
p/ρ(γ − 1) + (u · u)/2 is the total energy, τ is the viscous stress tensor, and θ is the
heat flux vector. The viscous stress tensor and the heat flux vector are given by

τ = μ
(
∇ ⊗ u + (∇ ⊗ u)T − 2

3 (∇ · u)I
)

, (2.2)

θ = −k ∇T, (2.3)

with I the identity tensor, k the thermal conductivity, and μ the dynamic viscosity, which
is deduced from the local temperature T via Sutherland’s law,

μ = μref

(
T

Tref

)3/2 Tref + S
T + S

. (2.4)

The parameters of Sutherland’s law are taken as μref = 1.716 × 10−5 Pa s, Tref =
273.15 K and S = 110.4 K. The gas considered being air, we have γ = 1.4, r =
287 J K−1 kg−1 and Pr = μγ r/k(γ − 1) = 0.725. The free-stream flow conditions are
very close to those used experimentally by Kendall (1975) and in the simulations of Ma &
Zhong (2003), i.e. T∞ = 65.149 K, U∞ = 728.191 m s−1 and p∞ = 728.312 Pa. Thus the
free-stream Mach number of the simulation is M∞ = U∞/

√
γ rT∞ = 4.5.

The computational domain is represented in figure 1(a). It consists of a rectangular
domain where the lower boundary is an adiabatic flat plate of length Lx = 2002.1δ∗

0 , with
δ∗

0 = 3.2656 × 10−4 m the compressible displacement thickness at the inlet of the domain
(defined as δ∗

0 = ∫∞
0 (1 − ρu/ρ∞u∞) dy), which results in Reδ∗

0
= ρ∞U∞δ∗

0/μ∞ ≈ 2121.
Far-field and supersonic exit conditions are respectively applied at the top (y = 275δ∗

0)
and at the outlet of the computational domain. Furthermore, a sponge area is used
downstream and in the upper part of the domain to minimize reflections. This sponge area
has length Lsponge = 91.9δ∗

0 in both streamwise and wall-normal directions; it consists in
adding a source term in (2.1) on the last 10 cells closest to the boundaries to bring the flow
back to its equilibrium point. In addition, the mesh is stretched in the longitudinal direction
for the downstream boundary (30 cells in the streamwise direction). A supersonic inlet
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condition is imposed at the upstream boundary where the complete state is prescribed and
matches a zero-pressure gradient laminar boundary layer profile (see figure 1b) computed
with the ONERA boundary layer code CLICET (see, for instance, Olazabal-Loume
et al. 2017). It corresponds to a profile taken at distance 19δ∗

0 from the leading edge.
The beginning of the numerical domain has been chosen to be in a stable area for all
frequencies according to local linear stability theory (see § 4.1). The boundary layer
thickness (denoted δ) at the end of the domain of interest leads to Reδ ≈ 35 081. Overall,
the useful numerical domain (i.e. not counting the length of the sponge area) extends over
4 × 104 < Rex = ρ∞U∞x/μ∞ < 4.1 × 106.

3. Base-flow and spatial stability analyses

3.1. Base flow and linearized DNS
Direct numerical simulations (DNS) are performed using the finite volume code elsA
(Cambier, Heib & Plot 2013). An upwind AUSM + up scheme (Liou 2006) associated
with a third-order MUSCL extrapolation method (van Leer 1979) is used for the spatial
discretization of the convective fluxes. The viscous fluxes are obtained by a second-order
centred scheme. The semi-discretized Navier–Stokes equations then read

dq
dt

= N(q) + Pf , (3.1)

where q = [ρ, ρu, ρE]T, and N(q) is the discretized compressible Navier–Stokes
equations (including the boundary conditions). The momentum forcing f may represent
either a noise source or the effect of an actuator. The matrix P represents the prolongation
operator that transforms the momentum forcing into a full state-vector forcing by adding
zero components. The laminar base flow q̄, defined as

N(q̄) = 0, (3.2)

is obtained by time stepping the unforced unsteady (3.1) with an implicit time-stepping
method based on a local time step, up to convergence of the residuals. The unsteady
simulations for the development of instabilities are performed with an implicit
second-order Gear scheme (Gear 1971) with four sub-iterations and a time step dt ensuring
a Courant–Friedrichs–Lewy number lower than 1.4 in the whole domain. For these
unsteady simulations, the amplitude of the forcing f is chosen sufficiently small to ensure
that the induced perturbation q′ = q − q̄ remains in the linear regime until the end of the
computational domain. The time step and the number of sub-iterations of the temporal
method have been validated by comparing transfer functions from the linearized DNS and
those determined from the frequency-domain resolvent approach (defined in § 3.2).

A resolution of 3200 × 220 cells for the useful domain is chosen. The mesh is uniform
in the x direction, while a geometric law is used in the y direction to resolve strong
gradients near the wall. The base-flow and linear growth rates have been verified against
the linearized DNS results of Ma & Zhong (2003), allowing us to validate the resolution
and the numerical schemes (see Appendix A).

3.2. Global resolvent analysis
For purposes of controlling instabilities, the choice of the type and position of the
actuator/sensors will play an essential role. This choice is guided by resolvent analysis,
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which characterizes the noise-amplifier behaviour from an input–output viewpoint. The
method is detailed briefly in this subsection.

The purpose of control is to reduce the amplitude of disturbances that develop naturally
in the boundary layer, and thus to maintain the flow as close as possible to its equilibrium q̄.
By injecting the ansatz q = q̄ + q′ into (3.1) and considering only small-amplitude forcing
f , we obtain after linearization that

dq′

dt
= Aq′ + Pf , (3.3)

where A is the Jacobian matrix defined as A = dN/dq|q̄. In our configuration, all the
eigenvalues of A have a negative real part, and the flow is therefore globally stable.
Switching to the frequency domain, a direct relation between the spatial structure of a
harmonic forcing f (x, y, t) = f̃ (x, y) eiωt and its flow response q′(x, y, t) = q̃(x, y) eiωt is
established:

q̃ = R f̃ , (3.4)

where R = (iωI − A)−1P is the resolvent operator, and ω = 2πf ∈ R is the angular
frequency. For a given frequency and among all the possible forcings, we examine the
one that maximizes the gain:

g̃2(ω) = sup
f̃ /= 0

‖q̃‖2
E

‖f̃ ‖2
F

, (3.5)

where ‖ · ‖2
E and ‖ · ‖2

F respectively denote the Chu energy norm and the energy of the
momentum forcing (Bugeat et al. 2019). The Chu energy is defined as

EChu = 1
2

∫
V

⎛⎜⎜⎜⎝
eChu︷ ︸︸ ︷

ρ̄(|u′|2 + |v′|2︸ ︷︷ ︸
eu′

) + r
T̄
ρ̄

|ρ′|2︸ ︷︷ ︸
eρ′

+ r
γ − 1

ρ̄

T̄
|T ′|2︸ ︷︷ ︸

eT′

⎞⎟⎟⎟⎠ dV; (3.6)

it contains terms relative to thermodynamic perturbations in addition to the kinetic one,
and is therefore commonly used to study the global behaviour of compressible flows
(Hanifi, Schmid & Henningson 1996; Bugeat et al. 2019). For a given frequency, the
fields f̃ and q̃ corresponding to the optimal gain g̃ are respectively called optimal forcing
and response modes. Determining the optimal gain amounts to computing the largest
eigenvalue of a positive generalized eigenvalue problem with the Arnoldi algorithm
(ARPACK library, Lehoucq, Sorensen & Yang 1998) using a sparse LU solver (MUMPS
library, Amestoy et al. 2001) for linear system solution. The Jacobian matrix A = dN/dq|q̄
is extracted explicitly using a second-order finite-difference method (Beneddine 2017).
This global analysis tool developed in previous work (Beneddine, Mettot & Sipp 2015) was
validated on the supersonic boundary layer results of Bugeat et al. (2019). In our study, the
domains involved in the definition of ‖ · ‖2

E and ‖ · ‖2
F correspond to both x ∈ [0; 1910.2δ∗

0]
and y ∈ [0; 92δ∗

0].

3.3. Local stability analysis
The primary aim of the local linear stability theory (LLST) for the present study is to
classify the mechanisms involved in our DNS and resolvent analysis by associating local
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modal mechanisms from the LLST with those observed in our purely non-modal DNS and
global resolvent study. Indeed, the flow being globally stable, the growth of disturbances
is due only to non-modal phenomena. These non-modal effects are a consequence of the
non-normality of A (Schmid 2007). The non-normal effects can be cast in two categories
for open-flows: the component-type non-normality, and the convective-type non-normality
(Sipp et al. 2010). Component-type non-normality is characterized by a componentwise
transfer of energy between the forcing and response fields, like in the Orr or lift-up
mechanisms (Bugeat et al. 2019) – but note that the latter is absent here since lift-up is
three-dimensional (3-D). Convective-type non-normality is caused by modal amplification
on the local scale and is characterized by a separation of the spatial supports of the forcing
and response fields.

In LLST, we consider perturbations that are evolving very rapidly in the x direction
compared to the base flow. At each streamwise position, the base flow is considered frozen
with respect to the perturbations φ′ = [ρ′, u′, v′, T ′], therefore the latter can be sought in
the form

φ′ = φ̃( y) ei(αx−ωt), (3.7)

where in general the wavenumber α and the frequency ω are complex numbers. Plugging
this ansatz into the linearized Navier–Stokes equations with frozen base-flow profile leads
to a different dispersion relation D(α, ω; x) = 0 for each value of x. In the spatial stability
framework, we consider real angular frequencies ω and solve for the complex wavenumber
α = αr + iαi, where αr is the wavenumber, and −αi is the spatial growth rate along x.
All perturbations are assumed to vanish at the free-stream boundary y → ∞, while on
the flat plate, y = 0, ũ = ṽ = 0 and dρ̃/dy = dT̃/dy = 0 (adiabatic plate). Equations are
discretized along the wall-normal direction y using a Chebyshev collocation method. For
all values of x and ω, an eigenvalue problem is solved, using the LAPACK library, in order
to determine the complex eigenvalue α and corresponding eigenvector φ̃ = [ρ̃, ũ, ṽ, T̃].
The analysis is performed using an in-house code detailed fully in Saint-James (2020) and
validated here by comparing with the linear local growth rates of the supersonic boundary
layer from Ma & Zhong (2003).

4. Noise-amplifier behaviour and control set-up

4.1. Characterization of instabilities
The local spatial stability diagram of spanwise-invariant perturbations is displayed in
figure 2(a), with F = 2πf δ∗

0/U∞ the dimensionless frequency. It is characterized by
two distinct instability regions (i.e. where the spatial growth rate is positive, −αi > 0):
one for the first Mack mode, and one for the second Mack mode. For each mode,
the instability domain (depicted by the red solid line) for a given frequency is located
between branch I (convectively stable/unstable boundary) and branch II (convectively
unstable/stable boundary). Each frequency is therefore amplified only on a certain portion
of the domain: high frequencies are amplified upstream, while low frequencies are found
further downstream. Compared to the first mode, the unstable frequencies of the second
mode are higher and are associated with higher growth rates. Transition to turbulence is
often predicted from LLST using the N-factor (Smith & Gamberoni 1956)

N(ω, x) =
∫ x

xc

−αi(ω) dx = ln
( |φ′|

|φ′|c

)
, (4.1)
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Figure 2. (a) Stability diagram; red solid lines represent isolines αi = 0. (b) Calculation of the N-factors (black
solid lines) for transition prediction based on LLST: transition occurs at xt when Ñ > Nt (notional diagram).
(c) Performance objective for closed-loop control based on the N-factor criterion. (d) Modification of the
N-factor criterion using the H2 norm, in order to reduce conservatism. The quantity F = 2πf δ∗

0/U∞ represents
the dimensionless frequency.

with xc the location of branch I for the considered frequency, and |φ′|c the amplitude of the
mode at this location. The N-factors for different frequencies are represented in figure 2(b).
Although the instability range of the first Mack mode is larger, the N-factors of the
second mode are greater all along the domain due to their higher growth rates. Transition
is often assumed to occur when the quantity Ñ(x) = maxω N(ω, x) (red solid lines in
figures 2b,c) at the position xt reaches a threshold value Nt (dashed lines in figures 2b,c,
placed arbitrarily for the explanation). This criterion means that the transition process
begins when a perturbation has been amplified by a factor eNt . Thus in order to delay
transition to turbulence, when x > xt, a control action should transform the quantity Ñ
obtained without control into the quantity Ñc (blue line in figure 2d) with control, such that
Ñc < Nt for as long as possible (see figure 2d). The dominant frequency being different
at each streamwise location of the domain, a large frequency range needs to be controlled,
which complicates the design of the control law. The Ñc < Nt criterion could be translated
directly into an H∞ criterion, because this would mean that the maximum amplification
over the entire frequency spectrum must not exceed a threshold over the entire domain,
exactly as in the N-factor method. However, this method may be considered conservative
as it is based on the worst perturbation, which is purely harmonic and therefore not quite
realistic (Mack 1977). Fedorov & Tumin (2022) recommended instead the use of a criterion
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Reactive control of second Mack mode

based on both the N-factors and the entire frequency spectrum of the incoming disturbance
|φ′|c, which amounts to considering an H2 norm rather than an H∞ norm. We follow
this recommendation and choose a performance objective based on an H2 norm. More
precisely, our objective will be to maintain the spatially integrated amplification below a
given threshold along the plate, and this integrated amplification will be quantified using
an H2 norm (see figure 2d).

The global stability results based on resolvent analysis complement those obtained
previously from LLST. The optimal energy gain g̃ as a function of the forcing frequency F
is represented in figure 3(a). This curve displays two peaks at F ≈ 0.118 and F ≈ 0.237,
which correspond respectively to the first and second Mack modes identified in LLST.
Global resolvent analyses are consistent with those of the local approach, since the optimal
energy gain is closely related to N-factors (Sipp et al. 2010; Beneddine et al. 2015).

For the frequency F = 0.237 leading to the highest gain, the real parts of the streamwise
optimal forcing and velocity response are shown in figures 3(b,c). The spatial structure
of the forcing is located upstream of the domain, while that of the response is located
further downstream. This separation of the spatial supports, related to the convective-type
non-normality of the Jacobian operator, implies a time delay between actuation upstream
and sensing downstream, making the design of a robust control law even more complex.

Figure 3(d) shows that the peak of the forcing density def (x) = ∫ y=92δ∗
0

0 ‖ f̃ ‖2 dy (resp.

Chu energy density deChu(x) = ∫ y=92δ∗
0

0 eChu dy) is not very far from the position of branch
I (resp. II) from LLST (Sipp et al. 2010). The energy of the response is dominated at each
abscissa by the thermodynamic quantities eT ′ and eρ′ , while quantity eu′ has a smaller
contribution. Note that the most amplified frequencies depend on the extent of the domain
used in the optimization problem (not shown here): the longer the domain, the lower the
dominant frequency. The gain of the frequencies that already reach their peak of forcing
density and Chu energy density (linked to the positions of branches I and II, respectively)
does not vary with an increase of the domain size in the streamwise direction as these
frequencies can no longer be amplified. For all the other frequencies (which are lower),
the phenomenon of amplification continues, leading to higher gains for a wider area.

A comparison between the spatial amplification rates −αi from LLST (red dashed
line) and −α̃i = (1/|ũ(x, y = 1.7δ∗

0)|)∂x|ũ(x, y = 1.7δ∗
0)| from resolvent analysis (black

dashed line) is depicted in figure 3(e). The quantity −α̃i represents the slope of ln |ũ|
with respect to x (black solid line) and can therefore be compared to a growth rate; when
the convective-type non-normality effects dominate, this growth rate is independent of
the choice of y and the primitive variable. The growth of the resolvent mode within
x ∈ [0; 1078δ∗

0] is due to the optimal forcing that is non-zero in this region (see figure 3d)
and that induces the response. The inclined pattern in the forcing field (see figure 2b)
indicates that the response also takes advantage of the Orr mechanism (Orr 1907) and more
generally of non-modal local interactions. After this initial growth region induced by the
forcing, both −αi and −α̃i exhibit similar values in the region in x ∈ [1200δ∗

0; 1730δ∗
0],

which indicates that transient growth is then dominated by the convective instability
associated with the second Mack mode.

To maximize the amplification of the second Mack mode, the forcing field (see
figures 3b, f ) must be localized near the generalized inflection point yg (denoted in
figures 3b,c, f,g with a dashed line), defined as ∂y(ρ̄ ∂yū)|yg = 0. A region of supersonic
instabilities (below the dashed-dotted line in figures 3b,c, f,g) – defined as M̂ =
|ū − ω/α̃r|/

√
γ rT̄ > 1, with α̃r the global resolvent streamwise wavenumber computed
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Figure 3. (a) Optimal resolvent gain as a function of the dimensionless frequency F. According to LLST, red
and green dashed areas represent the unstable frequency range of first and second Mack modes, respectively.
The region where both modes are unstable corresponds to an area where the first mode is unstable over
a tiny distance. (b) Real part of the streamwise component of the optimal forcing and (c) its associated
streamwise velocity response, at F = 0.237. (d) Evolution at F = 0.237 of the forcing density and the different
contributions to the Chu energy density normalized by their maximum values. The positions of branches I
and II from LLST are symbolized by vertical dashed lines. (e) Comparison of −αi and −α̃i at F = 0.237.
( f ) Profiles of the optimal forcing components at x = 867.2δ∗

0 , and (g) response at x = 1766.7δ∗
0 , at F = 0.237.

The black dashed and dashed-dotted lines in (b), (c), ( f ) and (g) represent respectively the generalized inflection
point position and the limit of the region of supersonic instabilities (M̂ > 1 below this line).

as α̃r = ∂x arg(ũ), where arg denotes the argument of a complex number (see Beneddine
et al. 2015) – is detected close to the wall (see figure 3c). This confirms that the optimal
response mode at F = 0.237 corresponds to a second Mack mode (Mack 1984). Note that
the critical layer, where ū = ω/α̃r, is not shown here as it is similar to the generalized
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Figure 4. Block diagram for noise-amplifier flows for feedforward and feedback configurations in an ideal case
(with quantities in blue and black) and in a realistic set-up (with quantities in red and black). The quantities
in black are common to the ideal and realistic cases. The red dotted zone therefore represents the system used
with the aim of an experimentally feasible synthesis. In a feedforward set-up, Tyu = Δ = 0.

inflection point; indeed, the phase velocity of an inflectional neutral wave in the LLST is
equal to the mean velocity at yg (Mack 1984).

Finally, we observe in figure 3(g) that the different components of the second
Mack mode peak at different locations in the wall-normal direction y. Hydrodynamic
perturbations (velocity and pressure) peak close to the wall and seem trapped in the
region M̂ > 1, whereas thermodynamic quantities (density and temperature) peak near the
generalized inflection point. This observation is in complete agreement with the qualitative
results of Bugeat et al. (2019).

4.2. Control set-up
External perturbations are modelled using a random time signal w (see figure 1a)
that multiplies a time-independent volume force field. In the case of small-amplitude
noise considered in this paper, the dynamics is linear and will take advantage of the
various instability mechanisms described in the previous subsection. If we consider
several performance sensors zi measuring the flow perturbations along the plate, then
the transfer functions Tziw = zi(s)/w(s), with s ∈ C the Laplace variable, provide an
accurate prediction of the downstream perturbation level without control. The reactive
control set-up is depicted in figure 4. An upstream actuation u generates small-amplitude
perturbations that again take advantage of the instability mechanisms to grow and
eventually cancel the fluctuations at the downstream measurements zi. The phase of the
generated perturbations is therefore important and needs to be tuned with respect to the
incoming perturbations that are governed by w. For this, we introduce an upstream sensor y
and design a controller K, which actually corresponds to the transfer function K = Tuy, and
which transforms the noise measurement y into an actuation signal u. It is straightforward
to show that in the presence of control, the transfer functions from w to zi, denoted with
the superscript c, become

Tc
ziw = Tziw + TziuK(1 − TyuK)−1Tyw. (4.2)

The design of K therefore requires additional transfer functions: Tyw characterizes the
influence of noise on the upstream measurement y, Tziu characterizes the influence of
the actuator on the downstream performance sensors, and for feedback set-ups only, Tyu
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characterizes the influence of the actuator on the upstream sensor. In the following, we
will assume that w is a white-noise input and will seek to reduce the expected power of
the measurements zi. This expected power, normalized by the intensity of the white-noise
input, is measured by the H2 norm of Tc

ziw. For any stable SISO transfer function G, the
H2 norm is defined as

‖G‖2 =
(

1
2π

∫ +∞

−∞
|G|2 dω

)1/2

. (4.3)

However, determining the transfers coming from the noise w is not possible in realistic
cases because the noise environment is unknown (it depends on the characteristics of
the wind tunnel or the free-stream turbulence on aeroplanes). An experimentally feasible
control design must therefore not be based on Tziw and Tyw. Following Hervé et al. (2012),
the solution proposed here is to introduce an artificial transfer function Tziỹ, which is
intended to predict the downstream measurements zi from the upstream measurement y
in the absence of a control. This apparent transfer function (y is not a source) is defined as
Tziỹ = TziwT−1

yw (Sasaki et al. 2018a,b). In real applications, we can identify this transfer
function from uncontrolled ( y, zi) data. In the following, we will consider ỹ = Tyww as the
new exogenous input of the system. We are therefore led to the modified block diagram
framed by the red dotted zone in figure 4, where in case of actuation, the upstream
measurement reads y = ỹ + Tyuu (+n, which is a measurement noise). In such a case,
the controlled transfer function becomes

Tc
ziỹ = Tziỹ + TziuK(1 − TyuK)−1. (4.4)

The ideal and realistic control schemes shown in figure 4 are related through

‖Tc
ziw‖2 = ‖ |Tyw| Tc

ziỹ‖2. (4.5)

The term |Tyw| can be replaced by the weighting function Wy whose module corresponds
to
√

PSDy(ω) (where PSDy is the power spectral density of the estimation sensor y in
the absence of control) without any loss of generality because the linear minimization
problem is defined to within one amplitude; the term Wy represents the fact that the new
system input ỹ is no longer a white noise as w but a coloured noise. Therefore, the four
quantities needed for the synthesis are Tziu, Tyu, Tziỹ and Wy. They can all be obtained in
a realistic set-up as the temporal data of zi, u and y would be available, and these transfers
will be the ones used for identification (see § 5.1) and controller synthesis (see § 5.2). For
the sake of clarity and to simplify notations, the quantity ‖Wy Tc

ziỹ
‖2 will be replaced in

the rest of the paper by ‖Tc
ziw‖2.

Maintaining closed-loop performance in spite of modelling errors or inflow conditions
variations around the nominal case requires first and foremost the stability robustness of
the control law. From a control design point of view, this implies considering uncertainties
Δ representing a model error on Tyu that can lead to the instability of the feedback loop. For
example, for the block Δ represented in figure 4, if no upstream noise is considered, then
we have y = (Tyu/(1 − Δ))u, so that Δ represents an inverse multiplicative uncertainty
on Tyu such that Δ = (Treal

yu − Tyu)/Treal
yu , with Treal

yu representing the real transfer function
and not the modelled one. This type of uncertainty has the advantage of representing
a relative error, which facilitates its interpretation. Since −Treal

yu K does not exhibit any
unstable pole (Treal

yu is stable because the boundary layer flow is globally stable, while
K is stable by design), the closed loop system is stable if and only if the Nyquist
plot of −Treal

yu K does not encircle the critical point (−1, 0), which is equivalent to
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|1 − TyuK|−1 < 1/|Δ| (Skogestad & Postlethwaite 2005). Therefore, the stability of the
closed loop can be guaranteed by working on the sensitivity function

S = (1 − TyuK)−1. (4.6)

Defining the H∞ norm of a stable SISO transfer function G as

‖G(s)‖∞ = sup
ω∈R

|G(iω)|, (4.7)

we request to maintain the H∞ norm of the sensitivity function S below a threshold, which
allows us to keep adequate stability margins. By measuring directly the minimal distance
between the Nyquist plot and the critical point (−1, 0) after which the closed loop becomes
unstable for a negative feedback loop, the modulus margin ‖S‖−1∞ appears to be the most
generic measure for quantifying the available stability margin (Skogestad & Postlethwaite
2005).

Finally, maintaining optimal performance despite uncertainties on a certain frequency
range of the measurement y means minimizing the H∞ norm of the transfer function

u
n

= KS. (4.8)

Desensitizing the control output u on certain frequency ranges allows us to be robust to
noise n on the estimation sensor y. Even if these frequencies are attenuated far downstream
of the actuator (if they are convectively stable, resulting in low |Tziỹ|), strong injection
of energy may occur in the direct vicinity of the actuator, which may in turn provoke
transition to turbulence in a 3-D set-up.

In summary, the fluidic specifications for noise-amplifier flows may be reformulated
from a control point of view as an optimization problem based on H2 and H∞ norms,
in order to guarantee both performance and robustness. The constrained minimization
problem for our specific study will be formulated in § 5.2.

4.3. Selecting actuator and sensors
For a given external perturbation, the choice of appropriate actuator and sensors is
essential to ensure effective flow control. The input perturbation, representing an external
disturbance (acoustic noise, roughness, free-stream turbulence, etc.) is modelled by a
volume forcing w(t) Bw(x, y) in the right-hand side of the momentum equations (2.1b),
where the noise w(t) is chosen Gaussian white (with a variance sufficiently small for the
perturbation to remain in the linear regime) and Bw(x, y) is divergence-free and compact
in space (Bagheri et al. 2009; Semeraro et al. 2011; Belson et al. 2013):

Bw = h

(
10.66

δ∗2

0

, 4.1δ∗
0 , δ∗

0 , 1.5δ∗
0 , 0.15δ∗

0

)
, (4.9)

with

h(Ah, x0, y0, σx, σy) = Ah

(
( y − y0)σx/σy
−(x − x0)σy/σx

)
exp

(
−((x − x0)/σx)

2 − (( y − y0)/σy)
2
)

.

(4.10)

It is centred around the generalized inflection point in the wall-normal direction in order to
maximize the receptivity process by exciting the optimal mechanisms of the second Mack
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Figure 5. (a) Evolution of F|Tz(x)w|2. (b) Variation of the frequency magnitude as a function of the plate
abscissa. For each frequency, the green (resp. blue) dots represent branch I and branch II of the first (resp.
second) Mack modes according to LLST. (c) Evolution of the H2 norm. The vertical dotted line in (b) and (c)
shows the streamwise location of the actuator Bu, denoted xu. (d) Evolution of the ratio |Tz(x)u|/|Tz(x)w| as a
function of frequency F for several plate abscissa.

mode, which is the most amplified, as shown by the resolvent analysis results in § 4.1. The
position of Bw in the streamwise direction is upstream of branch I (locally stable regions)
for all frequencies according to the LLST.

For the sensors, in order to have strong observability of the disturbances, we choose y
and z(x) to be wall-pressure fluctuation sensors. This choice is supported by the fact that
second Mack modes exhibit strong pressure fluctuations close to the wall, as shown by the
optimal response profiles in figure 3(g). Also, that kind of sensor is commonly used in
supersonic experimental studies (Lugrin et al. 2022).

In figure 5(a), we represent the quantity F|Tz(x)w|2 as a function of ln F, where F is
the frequency, such that the integral represents the H2 norm of Tz(x)w. The module of
|Tz(x)w| is obtained by Fourier transform of the signals from an impulse response. At each
abscissa x of the plate, the energy contribution to the sensor z(x) is due to only a certain
frequency range. Indeed, after reaching a peak, the magnitude associated with a frequency
decreases rapidly, as can be seen in figure 5(b). Therefore, for control, we will need to use
several performance sensors zi to obtain a suitable frequency representation at different
streamwise positions, and capture the entire amplified bandwidth. As the spectrum of
F|Tz(x)w|2 is narrow (especially downstream of the domain), reducing ‖Tc

ziw‖2 should
also lead to a significant reduction in ‖Tc

ziw‖∞. Sufficiently far downstream from Bw,
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Reactive control of second Mack mode

the most amplified frequency at each abscissa of the domain (red line in figure 5b) is
similar to the one that could be found with the N-factors (see figure 2b). As the magnitude
of the perturbations increases for all frequencies in spatially stable regions upstream of
branch I (see first dot symbols in figure 5), the perturbations seem to be subject first to
a growth due to the non-modal Orr mechanism, before being dominated by the ‘modal’
growth of the unstable Mack mode. The highest value of |Tz(x)w| is found at the end of
the domain of interest, at frequency F = 0.223, close to the frequency leading to the
highest gain in the global resolvent analysis (F = 0.237). Therefore, the optimal response
mechanisms already observed in § 4.1 are well triggered by the chosen disturbance Bw,
which is therefore representative of a more general transition scenario due to the second
Mack mode.

The control goal is to create a destructive interference by generating a second wave of
appropriate amplitude and phase, which will oppose the one generated by the upstream
noise w(t) (Hervé et al. 2012; Sasaki et al. 2018a). Thus, in order to maximize the
impact of control, the perturbations generated by the actuator must match those induced
by the upstream noise. The incoming disturbance being mainly due to second Mack
mode instabilities, an efficient actuator can be obtained with a volume forcing around
the generalized inflection point in the wall-normal direction. This wall-normal actuator
location is potentially far from a real experiment implementation, but the modelling of a
realistic actuator is beyond the scope of our study. We just select this wall-normal position
to ease the control of the instabilities by maximizing the receptivity process. We therefore
consider Buu(t) in the right-hand side of (2.1b) to model the actuator, with the same
divergence-free spatial support as for the disturbance Bw:

Bu = h

(
10.66

δ∗2

0

, 867.2δ∗
0 , 7.79δ∗

0 , 1.5δ∗
0 , 0.5δ∗

0

)
. (4.11)

The actuator is placed sufficiently far downstream of Bw (xu = 867.2δ∗
0) for two reasons.

The first is to allow disturbances to strengthen sufficiently (see figure 5c) to be detected
easily by the estimation sensor y (which is close to the actuator), which in an experimental
configuration would mean placing the actuator a little upstream of the beginning of the
transition process. The second reason is to limit the bandwidth of the frequencies to
be controlled (see figure 5b) in order to keep the complexity of the control problem
reasonable. Hence, for the chosen streamwise position of the actuator, the frequency
range to be controlled is around F ∈ [0.225, 0.324]; a more upstream actuator should have
controlled a wider bandwidth. The streamwise position of the actuator remains sufficiently
upstream so that incoming perturbations are controlled over a sufficiently long domain
(∼0.34 m) representative of an experimental configuration (the plate of the experimental
tests of Kendall (1975) measured 0.35 m).

A comparison of |Tz(x)w| and |Tz(x)u| is shown in figure 5(d). It can be noted that in
the vicinity of the actuator, the ratio |Tz(x)w|/|Tz(x)u| evolves with the x abscissa. As this
phenomenon no longer appears for abscissas further away from the actuator, and the ratio
becomes constant, it could be attributed to a non-modal transient behaviour. Indeed, we
have

|Tz(x)u|
|Tz(x)w| ∝ e

∫ x
xu −(α̃i)u dx

e
∫ x

xu −(α̃i)w dx
, (4.12)

where −(α̃i)u and −(α̃i)w represent the slopes of ln |Tz(x)u| and ln |Tz(x)w| with respect to
x, respectively. Therefore, a constant ratio implies having the same slope from a certain
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Bw Bu y zi

Streamwise position xw = 4.1δ∗
0 xu = 867.2δ∗

0 xff = 801.2δ∗
0 x1 = 933.2δ∗

0
xfb = 885.7δ∗

0 x2 = 1029.4δ∗
0

x3 = 1125.6δ∗
0

x4 = 1317.9δ∗
0

x5 = 1510.2δ∗
0

x6 = 1766.7δ∗
0

Table 1. Streamwise positions of the input perturbation, the actuator and the sensors used for the identification
and synthesis steps. The positions of the estimation sensor for feedforward and feedback configurations are
denoted xff and xfb, respectively.

distance x. This distance x represents the non-modal distance due to the receptivity of
multiple modes to the volume forcing of the actuator on the flow.

The impact of the position of the estimation sensor y has already been studied
extensively in the noise-amplifier flow control literature (Barbagallo et al. 2012; Belson
et al. 2013; Juillet et al. 2013; Freire et al. 2020), hence the detailed analysis for the
case of the supersonic boundary layer is left to Appendix B. It is just pointed out that
for a feedback design, the estimation sensor y has to be close enough to the actuator to
avoid sending outdated information and limit the effective delay impacting the maximum
achievable performance. For a feedforward design where the impact of the actuator on
the estimation sensor y is assumed to be negligible in the synthesis step (Tyu = 0), the
estimation sensor has to be located sufficiently upstream of the actuator for the hypothesis
to be valid.

Regarding the number of performance sensors zi used in the identification/synthesis
step, it was found by numerical simulations that six probes are required to achieve
nearly uniform performance along the domain because of the need to capture the entire
amplified bandwidth and the non-modal effects due to the actuator (see Appendix C). The
streamwise positions of the input perturbation, the actuator and the sensors used for the
identification and synthesis steps are summarized in table 1.

5. Identification and synthesis methods

5.1. Identification of a state-space model
Most synthesis methods require the use of state-space ROMs corresponding to the transfers
involved in the controller synthesis. For the model reduction step, some of the input/output
delays linked to the convective nature of the flow may be discarded due to the fact that the
H2 norm is not modified by delays. In a feedback configuration (u, y, zi), the delays verify
τziu = τziỹ + τyu, so that

‖Tc
ziw‖2 = ‖e−τziỹsWy(T ′

ziỹ + e−τyusT ′
ziuKS)‖2

= ‖ Wy(T ′
ziỹ + e−τyusT ′

ziuKS)‖2, (5.1)

where T ′(s) designates the ‘dead-time-free’ transfer function associated with T(s). The
same idea can be applied also to a feedforward design ( y, u, zi), with the result

‖Tc
ziw‖2 = ‖Wy(e−τuysT ′

ziỹ + T ′
ziuK)‖2. (5.2)
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Reactive control of second Mack mode

Thus the only remaining delay is the one between the actuator and the estimation sensor,
τyu or τuy, which is reasonably small (compared to the delays involving zi). Removing
unnecessary delays (for example, τziỹ in the feedback case) leads to a significant reduction
in the size of the ROMs when the dead time scale is important compared to the time
scale of the physical phenomenon to be captured (the period of the second Mack mode).
This reduction in the order of the ROMs is beneficial for both the identification and the
synthesis step: the higher the order, the more difficult the identification, and the larger the
cost of the controller synthesis.

The quantities required for the synthesis are obtained by impulse responses of w and u.
The state-space ROMs associated with the transfer functions Tziu, Tyu and Tziỹ are obtained
by the subspace identification method ERA, which requires impulse responses for each
of the inputs, and involves performing a singular value decomposition to compress the
state (Juang & Pappa 1985). This method has been used several times for the control of
2-D (Belson et al. 2013) or 3-D (Sasaki et al. 2018a; Morra et al. 2020) incompressible
boundary layers. The ERA is applied after removing (just by shifting the time axis) either
τziỹ (in the feedback case) or τziu (in the feedforward case) within the impulses from y
and u to zi. The impulse responses from y to zi are obtained by inverse Fourier transform
of TziwT−1

yw , each individual transfer function being obtained by Fourier transform of an
impulse from w. The sampling time for the ERA is 5 × dt; the discrete time models
obtained are then converted to continuous time models by the first-order hold method
(Franklin, Powell & Workman 1997). As shown in figures 6(a–c) for the performance
sensor z6 and the feedback estimation sensor yfb, the constructed ROMs capture most of
the dynamics.

The identification of the quantity Wy is obtained by a vector-fitting method (Matlab
function tfest) designed to fit frequency response measurements (Drmac, Gugercin &
Beattie 2015). For this quantity, there is no uniqueness of the identified model as the phase
can vary from one model to another without impacting the results of the synthesis (see
(4.5)); the ROM just needs to be stable and causal. Hence we simply choose to define
Wy such that its module fits with

√
PSDy(ω), where y is the response from an impulse in

w. Good agreement is achieved between Wyfb and the ROM in the case of the feedback
estimation sensor yfb (see figure 6d).

For the current application and with the six performance sensors zi, the sum of the orders
of each ROM is 130 for the case of the feedback configuration, and 115 for the feedforward
one. By comparison, identifying the single transfer function Tz6u (corresponding to the
farthest performance sensor downstream) without suppressing the dead time leads to a
ROM of order 220, which is already greater than the sum of the orders of each ROM
without their unnecessary dead times.

In the control result in § 6, because the models are of excellent quality (see figure 6),
the distinction between ROMs and real transfer functions is not deemed necessary and the
depicted results are those on the complete system after implementation of the controllers
in the CFD solver elsA.

5.2. Multi-objective structured H2/H∞ synthesis
In this study, control laws are designed following a structured mixed H2/H∞ synthesis
implemented in the Matlab function systune (Apkarian et al. 2014). The general framework
of this modern synthesis is illustrated in figure 7. In this figure, wH∞ (resp. wH2) and zH∞
(resp. zH2) represent the sets of inputs and outputs whose associated transfers are subject to
H∞ (resp. H2) norms. This synthesis thus allows us to minimize different H2/H∞ norms
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Figure 6. (a–c) Comparison between impulse responses (blue lines) and the ROMs (red circles) for the
performance sensor z6 and for the feedback estimation sensor yfb. Note that for the ROMs of Tz6u and Tz6 ỹfb , the
time axes of the impulse responses are shifted by τziỹU∞/δ∗

0 ≈ 897 (black dashed lines), which corresponds
to the suppression of unnecessary dead times. (d) Comparison between the quantity Wyfb from the linear
simulation (blue line) and the ROM (red circles).

under closed-loop stability constraints despite model uncertainties Δ. The structure of the
controller K is defined by the user independently from the order of the state-space model
to be controlled, which makes it a particularly powerful and flexible synthesis method.
The set of transfer functions subject to an H2/H∞ norm minimization or constraints
constitutes the augmented plant; these transfer functions are composed of the transfers
of the controlled system allowing us to respect the specifications, along with weighting
functions (Skogestad & Postlethwaite 2005). Weighting functions act as frequency domain
constraints in order to shape adequately the transfer functions to achieve specific design
goals. Furthermore, weighting functions allow us to normalize the different requirements
to be able to balance them during the constrained minimization problem.

In our specific study, the structure of the controller K is imposed beforehand in the
following way: (1) the controller K is searched in a state-space representation form; (2)
the controller K must be stable; (3) we limit the controller order to 5 as high-order
controllers are less easily implemented in practice (Goddard & Glover 1995); (4) we
impose a tridiagonal state matrix that has significantly fewer parameters to determine
than the full matrix, given that any real square matrix is similar to a real tridiagonal form

954 A20-20

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

99
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.997


Reactive control of second Mack mode
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Figure 7. Multiple requirements H2/H∞ synthesis.

(McKelvey & Helmersson 1996); (5) we impose a strictly proper controller involving a
natural roll-off of the high frequencies −20dB per decade in order to neglect dynamics
in high frequencies and to be robust to high-frequency noise on the estimation sensor y
naturally present in every experimental set-up. For the controller structure imposed above,
the algorithm then solves the following constrained minimization problem:

minimize max
i=1,...,6

(‖Tc
ziw‖2),

subject to ‖WSS‖∞ < 1 and ‖WKSKS‖∞ < 1.
(5.3)

This constrained minimization problem is the transcription of the fluidic specifications
established throughout § 4.

First, the minimization of H2 norms of Tc
ziw directly allows the reduction of the expected

power for the six performance sensors zi used in the synthesis when they are excited by
white-noise perturbations w and sensed by the estimation sensor y. A multi-objective
synthesis approach is necessary for our problem by minimizing the expected power of
sensors at different abscissa of the flat plate instead of minimizing an overall energy.
Indeed, the disturbance energy growing as it is convected downstream, an overall energy
would then essentially account for the fluctuating energy downstream of the domain,
leaving aside the structures further upstream in the case of a very large computational
domain. Transition to turbulence appearing locally above a certain perturbation energy
threshold (see § 4.1), we advocate the need for minimizing the largest H2 norm of the
controlled system over the set of performance sensors zi used to assess the local character
of transition to turbulence.

Second, the H∞ constraint on WSS maintains adequate stability margins. To prevent
the closed loop from being unstable in a feedback design, a frequent choice is to ensure
that ‖S‖∞ < 2 (Skogestad & Postlethwaite 2005; Belson et al. 2013). Thus the weighting
function WS has a constant frequency template such as WS(s) = 0.5 because the H∞
constraint on WSS is equivalent to |S| < 1/|WS| ∀ ω ∈ R. This means that the system will
be guaranteed stable up to 50 % of relative model errors Δ on Tyu (see § 4.2). In the case
of a feedforward design, S(s) = 1 (because Tyu = 0), and this H∞ constraint is always
satisfied, which explains the unconditional stability of the feedforward configuration.
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Finally, the H∞ constraint on WKSKS is here to desensitize the controller to new noise
sources on a certain bandwidth. Our controller being already robust to high-frequency
uncertainties due to the strictly proper structure imposed, WKS is just designed to limit
low-frequency actuator activity in case, for example, of low-frequency noise on the
estimation sensor y.

By minimizing the maximum value between several transfer functions and using H∞
norm constraints, a non-smooth optimization is performed; as non-smooth optimization
is computationally intensive (compared to LQG synthesis), it is all the more important to
obtain ROMs with the least possible states (see § 5.1), giving in our case computations of
several tens of minutes.

6. Feedforward versus feedback control

6.1. Performance on the nominal case
The results of both feedforward (denoted ‘Ff’) and feedback (denoted ‘Fb’) controllers
resulting from the constraint minimization problem (5.3) are evaluated by implementing
the controllers in the DNS solver elsA. The implementation consists in solving the
first-order differential equations of the controller state-space representation at different
time steps of the simulations to update the control signal u(t) from the estimation
measurement y(t):

ẋ(t) = A x(t) + B y(t),
u(t) = C x(t),

}
(6.1)

where x ∈ R5×1 is the state vector, A ∈ R5×5 is the state matrix, B ∈ R5×1 is the
input matrix, and C ∈ R1×5 is the output matrix. The state vector equation is solved
with a backward differentiation method of the second order. Figure 8(a) shows the
sensitivity function S for the feedback design that respects the H∞ constraint on the
sensitivity function (i.e. |S| < 1/|WS| = 6 dB) imposed in the minimization problem
(5.3) (represented by the black dashed line). As explained previously, for the feedforward
design, |S| = 1 (red line) and the constraint is satisfied automatically. Figure 8(b)
represents |KS| for both the feedforward and feedback cases. The weighting function WKS,
which allows us to limit actuator activity in case of low-frequency disturbances, is also
shown, and we verify that |KS| < 1/|WKS| ∀ ω ∈ R. For the feedback design, |KS| is close
to 1/|WKS| at low frequencies, meaning that there is a trade-off between minimizing H2
norms and desensitizing the controller in the low-frequency range. We notice the natural
roll-off of the controllers of −20 dB per decade at high frequencies related to the strictly
proper structure imposed in the synthesis.

The control results in a significant reduction in the local H2 norm of the transfers
Tz(x)w at each abscissa of the plate (see figure 8c) for both the feedforward and feedback
configurations. As expected from the literature (Belson et al. 2013; Juillet et al. 2013;
Semeraro et al. 2013b; Tol et al. 2019), the feedforward design minimizes the local
H2 norm even more than the feedback one. Nevertheless, for both configurations, the
minimization of the cost functional maxi=1,...,6(‖Tc

ziw‖2) allowed the local H2 norm of
Tz(x)w not to exceed, before x = x6, a threshold given by the H2 norm at x = x1. Thus both
configurations successfully achieve the control strategy set forth in figure 2. The use of
an H2 performance criterion alongside the H∞ criterion on the stability margin allows to
address both performance in terms of disturbance rejection and stability robustness in the
design of the feedback loop.

954 A20-22

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

99
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.997


Reactive control of second Mack mode

10–2 10–1

F F
100

–4

–3

–2

–1

0

1

2

3

4

5

6

7

10–3 10–2 10–1 100
–70

–60

–50

–40

–30

–20

–10

0

10

250 500 750 1000 1250 1500 1750

x/δ∗
0

0

0.5

1.0

1.5

2.0

2.5

||T
z(

x)
w

|| 2
/|
|T

z 1
w

|| 2

Without control

Fb

Ff

Fb

Ff

1/WKS

Fb

Ff

2
0
 l

o
g

1
0
 |S

| (
d

B
)

2
0
 l

o
g

1
0
 |K

S|
 (

d
B

)

1/WS

(a)

(c)

(b)

Figure 8. Blue, red and dashed lines represent the feedback case, the feedforward case and the constraints
(weighting functions) imposed for the control design, respectively. (a) Magnitude of S. (b) Magnitude of KS.
(c) Evolution of the local H2 norm of the transfer Tz(x)w as obtained from the DNS simulation. (Those obtained
with the ROMs are actually identical at x = xi since the ROMs are very accurate.) The vertical magenta and
black dotted lines represent, respectively, the position of the actuator (with the sensors yfb and yff nearby)
and the six performance sensors zi used for synthesis. The values are normalized by ‖Tz1w‖2. The horizontal
black dotted line depicts the energy threshold ‖Tz1w‖2 respected until x6 following the minimization of the cost
functional maxi=1,...,6(‖Tc

ziw‖2).

In addition to the reduction of the local H2 norm along the plate, the local H∞ norm
‖Tz(x)w‖∞ has also decreased for both the feedforward and feedback designs (see figure 9);
this variation is directly related to the N-factor envelope Ñ by

max
x1<x<x6

ln ‖Tz(x)w‖∞ − max
x1<x<x6

ln ‖Tc
z(x)w‖∞ = max

x1<x<x6
Ñ − max

x1<x<x6
Ñc. (6.2)

More precisely, feedforward and feedback designs respectively ‘save’ 1.13 and 0.89 points
of N-factor. One might ask which is the most effective set-up for delaying transition,
between minimizing maxi(‖Tc

ziw‖2) and minimizing maxi(‖Tc
ziw‖∞), but answering this

question is beyond the scope of this study.
In addition to these results on wall-pressure fluctuation sensors coming from impulse

responses, we consider the global root-mean-square (r.m.s.) temperature field (denoted
T ′

rms) and streamwise velocity field (denoted u′
rms). For T ′

rms, whose high values are located
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Figure 9. Evolution of the local H∞ norm of the transfer Tz(x)w as a function of the plate abscissa for the
uncontrolled (black dashed lines) and (a) feedback and (b) feedforward cases. The evolution of |Tc

z(x)w(F)| for
some frequencies is also shown for the controlled cases. Vertical lines are as in figure 8(c).

around the generalized inflection point (white dashed line) in the uncontrolled case (see
figure 10a), the control reduces the amplitude of the perturbations (see figure 10(b) for
the feedback case). For the field u′

rms in the uncontrolled case (see figure 10c), high-level
regions are localized close to the wall. These levels are decreased drastically when control
is present (see figure 10(d) for the feedback case). Regarding the feedforward design
(not shown here), it further reduces the amplitude of disturbances (as in figure 8c).
By drastically reducing the amplitude of velocity disturbances in both feedforward and
feedback configurations, while the controllers were built from wall pressure fluctuation
performance sensors, one may hope to strongly delay transition to turbulence due to the
second Mack mode in a 3-D set-up. The question of the energy efficiency of the control
is left to Appendix D as the gain cannot be computed in terms of saved drag; the gain
is calculated in this study in terms of mean Chu energy flux reduction, which is not the
quantity that one seeks to reduce in realistic 3-D configurations. Stability and performance
robustness are addressed further next.

6.2. Stability robustness
In the case of the feedback design, the configuration can be unstable and it is necessary
to quantify the evolution of the stability margins following inflow condition variations or
uncertainties. The closed-loop system is stable if and only if the Nyquist plot of the loop
gain −Treal

yu K (which is stable) does not encircle the critical point (−1, 0). As discussed
already in § 4.2, the Nyquist plot of −TyuK therefore allows us to quantify the available
stability margins related to the distance to the critical point by visualizing the maximum
amount of error |Δ| admissible before instability sets in. The gain and phase margins
(denoted GM and PM) respectively represent the minimum amount of gain and phase
variations required to lose stability. In our case, the gain and phase margins respectively
stand for an estimation error in the instability’s growth rate and convection speed that can
lead to an instability of the feedback loop (Sipp & Schmid 2016). Inlet velocity variation is
considered here to be the most problematic variation (compared to other primitive variable
variations) as it involves multiple changes: (i) variation in time delays due to change in
convection velocity; (ii) modification of the Reynolds number Rex, implying that for a
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Figure 10. Contours of (a,b) T ′
rms and (c,d) u′

rms, for the (a,c) uncontrolled and (b,d) feedback cases. The
white solid lines and dashed lines represent the boundary layer thickness δ and the generalized inflection point
position yg, respectively.

given abscissa on the domain, the dominant frequencies are higher (resp. lower) after
an increase (resp. decrease) of Rex; (iii) variation of the Mach number M∞, implying a
modification of the neutral curves and by extension a modification of the growth rates. For
a variation of the upstream velocity at the entry of the domain U∞ of ±5 %, which induces
M∞ ∈ [4.275, 4.725], the new transfer functions Tyu±5 % are compared with the reference
one Tyu in figures 11(a) and 11(b). The greatest variations for the module appear to be
around F = 0.423; we notice that a 5 % increase of the upstream velocity implies a greater
maximum value for the module at a slightly lower frequency, whereas a 5 % decrease in
velocity implies a smaller maximum value for the module at a slightly higher frequency
(see figure 11a). The variation of ±5 % of the inlet velocity leads to the modification of the
delays, represented by the slope of the phase versus frequency plot (see figure 11b): for the
5 % increase of the upstream velocity, the absolute value of the slope is less and the delay is
therefore shorter (with a relative variation for the delay of 3.4 % compared to the reference
case), whereas the opposite is obtained in the case −5 % (with relative variation 3.9 % for
the delay). Figures 11(c) and 11(d) show the Nyquist plots of the loop gains −TyuKfb and
−Tyu±5 %Kfb. The variations of the upstream velocity slightly alter the stability margins
compared to those obtained in the reference case: the phase margin stays infinite, while
the gain margin GM (black dashed lines) and the modulus margin ‖S‖−1∞ (black dotted
lines) fluctuate respectively by a maximum of 3.6 % and 5.1 %, while remaining far from
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Figure 11. Evolution of the module (a) and phase (b) of Tyu after a variation of ±5 % of the inlet velocity.
Global view (c) and zoom near the critical point (−1, 0) (d) of the Nyquist plot of the loop gain −TyuKfb
(solid blue line) and −Tyu±5 % Kfb (dashed and dotted red lines). The black dotted line represents the modulus
margin ‖S‖−1∞ (the minimal distance to instability). The black dashed line represents the gain difference before
instability and is linked to the gain margin GM.

the critical point. Given the small impact of the inflow velocity variations of ±5 % on all
margins, the feedback design may be stable for even greater velocity variation. Therefore,
unlike previous feedback studies using LQG synthesis (Barbagallo et al. 2012; Tol et al.
2019), the robustness to stability for a feedback design obtained with a robust synthesis
method is not a problem. Next, we examine performance robustness, which is a different
issue.

6.3. Performance robustness
Robustness to performance is evaluated by checking that the control laws remain
efficient in terms of expected power reduction of the different performance sensors zi
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of the evolution of PSDy (b), PSDu (c) and maxy u′

rms (d) for the controlled systems with ideal and noisy
estimation sensors. The details for (d) are the same as in figure 8(c).

despite new noise sources or differences between on-design and off-design operating
conditions.

6.3.1. Noisy sensors
Noisy estimation sensors are modelled by adding white Gaussian noise on both yfb and
yff (see figure 12a). Both estimation sensors are corrupted by the same amount of noise
(50 % of the r.m.s. value without control of yfb), which models an intrinsic defect of the
sensor, such as electronic noise, that does not depend on its position along the domain.
Nevertheless, the streamwise position of yff being quite close to that of yfb, the ideal
signal-to-noise ratio remains very similar for both configurations and varies by only a
few per cent. The PSD of the corrupted estimation sensors remains unchanged in the
frequency band of the second Mack mode but exhibits much larger values in low and
high frequencies (see figure 12b). This is because the PSD of white noise being constant,
the ideal signal-to-noise ratio is particularly low for frequencies where the ideal signal
energy is low. The signal y is given to the controller K, which generates the actuator
signal u; the control signal PSD for corrupted signals y becomes stronger on the previously
mentioned low- and high-frequency bands, compared to the PSD of u for ideal signals y
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(see figure 12c). Nevertheless, thanks to the strictly proper structure and the filter WKS
imposed in the synthesis step, |KS| has been constrained in these frequency bands. Thus
the actuator activity remains limited in these regions despite the important added noise,
and if we look at the evolution of the maximum along the wall-normal direction of u′

rms
(denoted maxy u′

rms), then we keep a performance close to the ideal case (see figure 12d).
Both feedback and feedforward configurations stay below the velocity energy threshold
until x6, and these two designs are robust to noise on the estimation sensors. If even
noisier sensors were used, then it would suffice to decrease the amplitude of the weighting
function 1/WKS to recover performance robustness (especially in low frequencies for the
feedback configuration). For the case illustrated in figure 12, a higher 1/WKS (involving a
less constrained controller) could lead to an excessive injection of energy in the vicinity of
the actuator (see Appendix E).

6.3.2. Off-design operating conditions
Performance robustness to off-design operating conditions is assessed by considering the
evolution of the local H2 norm of Tz(x)w after a variation of free-stream density ρ∞ and
velocity U∞ of ±5 %, for both feedback and feedforward cases. The density variation
may correspond in practice to a change in altitude, whereas the velocity variation may
correspond to a change in cruise speed. When ρ∞ is modified, the temperature and velocity
inlet values are kept constant, which means that M∞ and hydrodynamic delays related
to the convective behaviour are maintained (see the green dashed line figure 13a) while
only Rex is modified (which implies a change in the dominant frequencies at a given
abscissa, as seen in figure 13b). A modification of U∞, on the other hand, has a much
more dramatic effect since it implies variations of time delays (see the purple dashed line
figure 13a), which will ultimately impact the only important residual delay, which is the
one between the actuator and the estimation sensors. It will also impact the values of
Rex and M∞, which modify the base-flow profiles. Changing the base flow impacts the
stability characteristics of the boundary layer, and, in turn, the dominant frequencies along
the plate, as seen in figure 13(b).

With density variations of ±5 % (see figure 13c), despite degraded off-design
performance, both feedback and feedforward controllers manage to reduce the local H2
norm compared to the case without control over a fairly large distance on the flat plate.
However, while the feedforward design minimized the local H2 norm more than the
feedback one for the nominal case (solid lines), it seems that this is no longer necessarily
the case in off-design situations (dotted and dashed lines). The variation in performance
between the nominal and off-design cases in the feedback configuration appears less
pronounced than in the feedforward set-up, which is allowed by the sensitivity function S.
Although this transfer function, because of the delay due to the actuator/estimation sensor
distance, limits the achievable performance on the nominal case for a feedback setup (see
Appendix B), it allows us to desensitize the system to modelling errors or to variations
in system characteristics over a certain bandwidth. Even if both designs exceed the H2
norm threshold at some point, they have some robustness to performance with respect
to density variations by staying below the uncontrolled system H2 norm all along the
domain.

The real strength and superiority of the feedback design over the feedforward one lies
in its ability to maintain correct performance during velocity variations (see figure 13d).
While the feedback set-up manages to maintain some performance in off-design conditions
by staying below the local H2 norm of the uncontrolled system over a fairly long distance
along the plate, the feedforward design fails to maintain the performance requirement by
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Figure 13. Comparison of uncontrolled pressure wavepackets generated by an impulse of w (a) and their PSD
(b) at x6 after a variation in ρ∞ and U∞ of −5 %. Evolution of the local H2 norm of Tz(x)w after a variation
in ρ∞ (c) and U∞ (d) of ±5 % (dotted and dashed lines). The nominal cases are in solid lines. See caption of
figure 8(c).

amplifying the local H2 norm. This increase in the feedforward set-up may then lead
to a faster transition to turbulence, which is the opposite of the desired objective. The
velocity variations, regardless of changes in Reynolds and Mach numbers, are indeed
particularly problematic as they modify the residual delay τyu, which directly impacts (5.1)
and (5.2), and therefore may cause the controllers to activate out of phase. Thus in the
case of noise-amplifier flows, we underline the importance of assessing the robustness to
performance with respect to velocity variations, as in Fabbiane et al. (2015). One could
be tempted to robustify the feedforward set-up by using an adaptive controller structure
(Fabbiane et al. 2014), but this type of approach is robust only at long times (subject
to convergence of the method), and the problem of robustness following abrupt velocity
variations would remain. Therefore, as soon as variations or uncertainties on the inflow
velocity are present, the best trade-off between performance and robustness is a feedback
configuration.

7. Conclusions

A robust reactive control method has been developed in order to control the linear growth
of the second Mack mode in a 2-D boundary layer over a flat plate at Mach 4.5. The control
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tools (for identification and synthesis) being mathematically well-established in a linear
framework, they are perfectly suited for this precise scenario of transition to turbulence
where we seek to control the linear growth of small perturbations.

The choices of the types and positions of the actuator and sensors are based on
the study of the noise-amplifier behaviour of our flow, in order to trigger the optimal
growth mechanisms and ensure efficient flow control. During the identification step, some
unnecessary dead times related to the convective nature of the flow are removed, allowing a
significant reduction in the size of the ROMs, which is beneficial for both the identification
and synthesis steps. Moreover, we strive to identify only quantities that could be obtained
in an experimental set-up.

After identifying these useful transfers through data-driven methods, the synthesis of
the controllers is achieved with a structured mixed H2/H∞ synthesis. This robust synthesis
method allows us to limit the order of the controller, to impose its structure up front, and to
constrain simultaneously several transfer functions to obtain at the same time performance
and robustness. Instead of simply minimizing a global energy, the constraint minimization
problem is posed in such a way that a shaping of the spatial evolution of different local
energy measures is realized, which seems a more suitable approach to delay transition to
turbulence. Multiple performance sensors in the streamwise direction are therefore needed
in this study to cover the entire spectrum of amplified frequencies along the domain, and
to capture the non-modal transient growth effect generated by the actuator.

After implementing the control laws in the elsA solver, we find that feedforward and
feedback designs both manage not to exceed a certain energy threshold in the nominal
case. Moreover, the stability robustness for the feedback design is not a problem thanks
to the robust synthesis and the constraints imposed. Regarding performance robustness,
both feedforward and feedback designs manage to reduce the amplitude of disturbances
compared to the uncontrolled case, despite noisy estimation sensors or inflow density
variations. Nevertheless, for noise-amplifier flows, we stress the importance of assessing
robustness to performance by changing the inflow velocity. Indeed, this type of variation
may cause the controller to activate out of phase. It appears that the feedforward set-up
is completely unable to follow inflow condition variations, while the feedback set-up
keeps reasonable performance over a large velocity variation of ±5 %. Therefore, the best
trade-off between performance and robustness requires a feedback configuration (in the
case of a linear time-invariant controller). This result looks contradictory to conventional
wisdom, which favours a feedforward set-up for noise-amplifier flows. The widespread
use of a feedforward structure is likely rooted in the massive use of LQG synthesis
for the control of noise-amplifiers. Indeed, LQG synthesis comes with no guaranteed
stability margin, which hinders its practical application to a feedback set-up. Belson
et al. (2013) were among the first to recognize the superiority of a feedback design for
performance robustness in noise-amplifier flows. The authors used loop-shaping on a
simple PI controller, but much richer feedback laws may be designed in a systematic
way using the modern robust synthesis tools of the present paper. Such tools are already
commonly used for the control of oscillator flows, where feedback is mandatory to stabilize
the unstable base flow (Flinois & Morgans 2016; Leclercq et al. 2019; Shaqarin et al.
2021). We expect the methodology of the present paper, based on data-driven identification
and robust synthesis on a feedback set-up, to be relevant to other convectively unstable
flows.

We are currently extending this study to a 3-D case with the goal of delaying transition
to turbulence. This implies placing multiple estimation/performance sensors and actuators

954 A20-30

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

99
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.997


Reactive control of second Mack mode

in the transverse direction, and controlling oblique waves of the first Mack mode as well
as nonlinearities.
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Appendix A. Base-flow and growth rates validation

The ability of the spatial schemes to compute accurately base and perturbed flows is
evaluated by comparing with the results of Ma & Zhong (2003). This 2-D test case
consists of a uniform flow at M∞ = 4.5 on an adiabatic flat plate. The numerical domain
extends over 0 < Rex � 4.1 × 106 in the streamwise direction, and the wall-normal extent
of the domain is taken to be ∼24 % of the streamwise length. The free-stream conditions
and the mesh grid are similar to those in § 3. The boundary conditions also correspond
to those used previously, except that a uniform state in the wall-normal direction is
prescribed at the supersonic inlet, and the sponge area is removed to correspond to the
Ma & Zhong (2003) configuration. Good agreement is achieved for both wall-pressure
distribution (see figure 14a) and second wall-normal streamwise derivative velocity profile
∂2

y u at Rex = 1 × 106 (see figure 14b). In addition, the ability of spatial schemes to
capture correctly the perturbations q′ is evaluated. It is assessed by comparing the spatial
growth rate −α̃i = (1/|p̃(x, y = 0)|) ∂x|p̃(x, y = 0)| evaluated from the response field of
the resolvent analysis (solid line) and from Fourier transform results of Ma & Zhong
(2003) on linearized DNS (blue circles; see figure 14c) for the frequency F = 0.34. This
frequency is close to the dominant frequency at the actuator streamwise position in our
study (see figure 5b). For their linearized DNS, Ma & Zhong (2003) force waves from the
inlet boundary condition by specifying the flow as the superposition of the steady base flow
and a temporal fluctuation of flow variables. Hence, to compare their results to the global
stability approach, the forcing field f̃ for the resolvent optimization problem is constrained
to a thin strip

√
Rex ∈ [476.67, 483.3] localized far upstream of the locally unstable region;

outside this region, the forcing field is set to zero. This streamwise restriction is sufficiently
far upstream to ensure that the component-type non-normality effects no longer dominate
in the modal instability domain of F = 0.34 to compare with Ma & Zhong (2003). The
domain involved in the streamwise direction for the Chu energy optimization of the
response field is

√
Rex ∈ [476.67, 1998.1]. In the wall-normal direction, no restriction is

applied for the domains involved in the definition of ‖ · ‖2
E and ‖ · ‖2

F. Good agreement is
achieved between the evolution along x of the quantity −α̃i from our resolvent analysis
and the one from linearized DNS of Ma & Zhong (2003). The growth rate −αi from
our in-house LLST code is also plotted, and exhibits values similar to −α̃i in the LLST
instability region. As the configuration of Ma & Zhong (2003) is very similar to the one
in our study, these results validate the spatial schemes used to describe the base flow and
the 2-D perturbation field.
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Figure 14. Comparison of (a) wall-pressure distribution and (b) second wall-normal streamwise derivative
velocity profile at Rex = 1 × 106 with results from Ma & Zhong (2003). (c) Comparison of
−α̃i = (1/|p̃(x, y = 0)|) ∂x|p̃(x, y = 0)| from our resolvent analysis (blue solid line) and from the Fourier
transform of (Ma & Zhong 2003) on linearized DNS (blue circles) at F = 0.34. The growth rate −αi (red
line) computed with our in-house LLST code is also plotted. In (b) and (c), lengths are made dimensionless
using the length scale of the boundary layer thickness LBLT = √

μ∞x/ρ∞U∞.

Appendix B. Position of the estimation sensor

To obtain the quantitative position of the sensor y in our supersonic boundary layer study
for both feedforward and feedback configurations, a quick analysis is carried out. It consists
in looking at the impact of the actuator/measurement sensor distance on the maximum
achievable performance in terms of H2 norm reduction on the performance sensor z6
regardless of the desensitization to low-frequency disturbances (see § 5.2). We consider
only the performance sensor z6 because it is the one furthest downstream of the domain;
the further downstream we are, the more we have to reduce the local H2 norm in order not
to exceed a given threshold (see the explanatory diagram in figure 2c). This performance
sensor therefore plays a central role, and the position of the estimation sensor y must allow
a consequent reduction of the energy of the sensor z6. Since this analysis is done only
off-line on the ROMs, and the resulting controller is not implemented on the real complete
system, the ‖WKSKS‖∞ constraint that was useful only in case of new noise sources (as
noisy estimation sensor) is disabled.
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Figure 15. (a) Evolution of the maximum performance achievable of the ROM of the sensor z6 as a function
of the position of the measurement sensor y. The dotted line represents the actuator position; feedforward and
feedback are respectively to the left and right of this dotted line. Comparison of the gains of the controllers from
the structured synthesis and those from ideal destructive interference case (denoted ‘DI’) for (b) feedforward
and (c) feedback configurations. The grey shaded area represents the range of the dominant frequencies of the
sensor z6.

For the controller structure developed in § 5.2, the constraint minimization problem (5.3)
is therefore written as

minimize ‖Tc
z6w‖2,

subject to ‖WSS‖∞ < 1.
(B1)

Figure 15(a) shows the evolution of the maximum performance achievable of the ROM
of the performance sensor z6 as a function of the actuator/measurement sensor distance.
The H2 norm reduction represents the quantity (‖Tc

z6w‖2 − ‖Tz6w‖2)/‖Tz6w‖2. On the one
hand, the actuator/measurement sensor distance influences very strongly the maximum
performance achievable for feedback designs (to the right of the dotted line). On the
other hand, feedforward designs (to the left of the dotted line) are relatively unaffected
by this distance over a certain range, and they perform better than feedback ones, which
is consistent with the results of the incompressible literature (Belson et al. 2013; Juillet
et al. 2013; Freire et al. 2020). Controllers from the structured synthesis are compared
with those that would have created perfect destructive interferences (denoted ‘DI’) on the
whole frequency spectrum at x6 (see figures 15b,c); indeed, a perfect wave cancellation at
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x6 for each frequency is obtained for

zc
6 = 0 = (Tz6ỹ + Tz6uKS)ỹ,

KS = −Tz6ỹ/Tz6u.

}
(B2)

To get rid of the problems of stability and causality that occur when Tz6u is inverted
directly, the ratio −Tz6ỹ/Tz6u is constructed frequency-by-frequency. Hence this ideal
DI quantity just allows us to evaluate how close the controllers obtained by structured
synthesis are to the perfect cancellation (without taking into account feasibility, stability
and robustness principles). The gain of K from structured synthesis for a feedforward
estimation sensor y placed at xff = 801.2δ∗

0 (red solid line) overlaps the ideal DI one (black
solid line) in the range of the dominant frequencies of the sensor z6 (grey shaded area);
for a feedforward estimation sensor y placed at xff = 669.2δ∗

0 (red dashed line), the gain is
also very similar in the area of interest to the ideal DI gain. For a feedback configuration,
the closer an estimation sensor is to the actuator, the more similar the controller resulting
from the structured synthesis is to the DI case in the range of the dominant frequencies
of the sensor z6, which allows for large reduction of the H2 norm. For a feedback sensor
placed at xfb = 997.3δ∗

0 (blue dashed line), the resulting controller does not allow us to
create perfect destructive interference, which explains the low performance obtained for
this position. The rapid drop in performance in the feedback cases is largely due to the
delay in Tyu (Belson et al. 2013), which is the time it takes for the wave generated by
the actuator to arrive at the estimation sensor. For a transfer function Tyu with a time
delay τyu, it is not possible to cancel out disturbances in a time scale shorter than τyu as
a control at a time t has no effect until t + τyu (Glad & Ljung 2000); the controllable
bandwidth fc is limited by fc � 1/τyu (Glad & Ljung 2000; Skogestad & Postlethwaite
2005). In other words, the actuator/measurement sensor distance U∞τyu must be less than
∼U∞/fc. As a result, the frequency spectrum of the performance sensor z6 containing a
significant amount of energy up to F ≈ 0.282, this requires an actuator/sensor distance of
less than 2πδ∗

0/F ∼ 20δ∗
0 in this case. Then, to obtain significant performance in terms

of amplitude reduction, it is decided to place the sensor yfb for the feedback configuration
at a distance 18.5δ∗

0 from the streamwise position of the actuator (xfb = 885.7δ∗
0). For the

feedforward design, the sensor yff is placed at distance 66δ∗
0 from the streamwise position

of the actuator (xff = 801.2δ∗
0) in such a way as to ensure that it is possible to disregard

Tyu in the synthesis while having an optimal performance.

Appendix C. Evolution of performance as a function of the number of sensors zi used
in the synthesis

For the two sensor positions xfb and xff determined previously, the following minimization
problem is solved:

minimize max
zi∈zused

(‖Tc
ziw‖2),

subject to ‖WSS‖∞ < 1 and ‖WKSKS‖∞ < 1,
(C1)

with the controller structure developed in § 5.2. Not all of the six performance sensors
are necessarily used for the minimization problem, and the evolution of performance as
a function of the number of sensors zi (and by extension their positions) employed in
the synthesis is assessed. The set of sensors zi used in the synthesis is denoted zused. In
table 2, the different configurations tested are listed: the cases labelled ‘Fbkz’ (resp. ‘Ffkz’)
stand for feedback designs (resp. feedforward designs) with k performance sensors used
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Case Sensors z used for synthesis max
zi∈zused

( ‖Tc
ziw‖2

‖Tz1w‖2

)
max

x1<x<x6

(‖Tc
z(x)w‖2

‖Tz1w‖2

)
Without control — 1.96 1.96

Fb1z zused = {z6} 0.41 9.03
Fb3z zused = {z1, z4, z6} 0.67 1.98
Fb4z zused = {z1, z2, z3, z6} 0.90 1.06
Fb6z zused = {z1, z2, z3, z4, z5, z6} 0.92 0.92

Ff1z zused = {z6} 0.14 2.48
Ff6z zused = {z1, z2, z3, z4, z5, z6} 0.67 0.73

Table 2. Evolution of the performance after the controllers are implemented in elsA as a function of the
number of sensors zi used in the synthesis step. Cases labelled ‘Fbkz’ (resp. ‘Ffkz’) stand for feedback designs
(resp. feedforward designs) with k performance sensors used in the synthesis. The results are normalized by
the local H2 norm of the uncontrolled system at the position x1.

in the synthesis; the performance sensors used for each case are also given. Assuming
that the transition to turbulence process begins shortly after the streamwise position of the
actuator, it is chosen to scale the results by the local H2 norm of the uncontrolled system
at the performance sensor z1, which is the closest performance sensor to the actuator. The
maximum local H2 norm between the position of the sensors z1 and z6 (respectively, the
most upstream and the most downstream performance sensors used in some syntheses) for
the controlled system is denoted maxx1<x<x6 ‖Tc

z(x)w‖2.
The resulting controllers are then implemented in elsA, and we focus on the evolution of

the local H2 norm of the transfers Tz(x)w at each abscissa of the plate. The evolution of the
local H2 norm of the transfers Tz(x)w for the case without control and the different feedback
cases is depicted in figure 16(a) (for feedforward cases, these results are summarized in
table 2). For the Fb1z and Ff1z cases, where the controller is designed to minimize the
energy of the performance sensor z6, this results in a strong reduction of the local H2
norm at the end of the domain; in the feedback (resp. feedforward) configuration, ‖Tc

z6w‖2
is even about 4.78 (resp. 14.) times lower than ‖Tz6w‖2. However, this significant decrease
in energy downstream of the domain was accompanied by a strong increase in the local H2
norm upstream in the domain (blue dashed line in figure 16(a) for the feedback case). The
quantity maxx1<x<x6 ‖Tc

z(x)w‖2 for both feedforward and feedback configurations appears
greater than the uncontrolled case; this increase of the local H2 norm may then lead to
a faster transition to turbulence in a 3-D set-up, which is the opposite of the desired
objective.

This increase of the local H2 norm can be explained from figure 16(b), which represents
the module of Tz6w (dashed lines) and Tz1w (dotted lines) for the uncontrolled (black
lines), Fb1z (blue lines) and Ff1z (red lines) cases. On the one hand, the amplitudes of
the dominant frequencies of the uncontrolled system for the sensor z6 (which is the only
one used in the synthesis for these cases) are significantly reduced in both feedback and
feedforward cases, which partly explains the significant reduction in the H2 norm for this
transfer. On the other hand, the amplitudes of the dominant frequencies for the sensor z1
are amplified by both feedback and feedforward designs, leading to an increase of the H2
norm for this transfer and thus an amplification upstream of the domain.

Indeed, reducing the amplitude of disturbances in one part of the frequency spectrum
can lead to increasing it in the other part, which could predominate in other abscissas of
the domain. Figure 16(c) shows the frequency spectrum of Sziw = Tc

ziw/Tziw. For a sensor
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Figure 16. (a) Evolution of the local H2 norm of the transfer Tz(x)w from upstream noise w to wall-pressure
fluctuation probes z(x). The vertical magenta and black dotted lines represent, respectively, the position of the
actuator (with the sensors yfb and yff nearby) and the performance sensors zi that can be used for synthesis.
The values are normalized by ‖Tz1w‖2. (b) Comparison of Tz6w (solid lines) and Tz1w (dashed lines) for the
uncontrolled (black lines), Fb1z (blue lines) and Ff1z (red lines) cases. (c) Comparison of Sz6w for different
control cases. Disturbance rejection is improved (resp. degraded) below (resp. above) the dotted line. The grey
shaded area represents the frequency range to be controlled from the actuator to the end of the domain.

zi, disturbance rejection is achieved at frequencies where |Sziw| < 1. We can see from
this figure that an effect similar to the waterbed effect (Skogestad & Postlethwaite 2005)
appears: for the Fb1z and Ff1z cases, the significant disturbance rejection at frequencies
around F = 0.225 is accompanied by an amplification for higher and lower frequencies.
The frequency range to be controlled being around F ∈ [0.225, 0.324] (see figure 5b),
amplifying lower frequencies is not a problem in our case as these will be found further
downstream of z6 and therefore not taken into account in the computational domain.
However, amplifying frequencies around F = 0.324 will directly impact performance on
the sensor z1, which is dominated by these frequencies. This translates into the need to use
several sensors zi in the synthesis to obtain a suitable frequency representation in different
abscissas of the domain to avoid an unwanted waterbed effect. Both Fb6z and Ff6z cases
have lower disturbance rejection at frequencies around F = 0.225, but the waterbed effect
on high frequencies is mitigated compared to Fb1z and Ff1z cases (see figure 16c). By
taking more and more performance sensors along the plate for the synthesis, we cover a
wider spectrum of amplified frequencies. The larger the frequency range to be rejected,
the more complicated it is to obtain very high attenuation on the spectrum. This is why the
quantity maxzi∈zused ‖Tc

ziw‖2 increases with the number of performance sensors used in the
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synthesis (see table 2). Nevertheless, due to the better coverage of amplified frequencies
by increasing the number of zi used in the synthesis, a more uniform performance along
the plate is obtained (see table 2 and figure 16a).

Taking three performance sensors (one near the actuator, one near the end of the domain,
and another in between) and thus covering a wider frequency spectrum, the Fb3z case
(dashed-dotted line in figure 16a) allows us to significantly reduce the local H2 norm
increase near the actuator compared to the Fb1z. However, immediately after the position
of the sensor z1 (first vertical black dotted line), yet taken into account in this synthesis,
the local H2 norm increases and a slight bump appears at x ≈ 1020δ∗

0 . It is associated with
strong non-modal effects in the vicinity of the actuator (see § 4.3). For frequencies around
F = 0.296 – those dominant in the vicinity of the actuator – the modal behaviour is found
only for x � 1136.4δ∗

0 (see figure 5d). Therefore, we need to discretize the area from the
actuator to the end of the transient non-modal region with several performance sensors, as
in the Fb4z and Fb6z cases. Because maxx1<x<x6 ‖Tc

z(x)w‖2 is lower in the Fb6z case than
in the Fb4z case due to a better coverage of the amplified frequency spectrum along the
plate, six performance sensors are therefore used in the syntheses of § 6.

Appendix D. Control efficiency

We assess the control efficiency by looking at the coefficient:

Φ =

∫
∂Ω

1
2 〈eChu − ec

Chu〉t ū · n ds∫
Ω

〈u(t) Bu · u′c〉t dΩ

. (D1)

As mean kinetic perturbation energy flux difference between the uncontrolled and
controlled simulations is sometimes used in the incompressible case (Barbagallo et al.
2012), a mean Chu energy flux difference

∫
∂Ω

1
2 〈eChu − ec

Chu〉t ū · n ds is chosen for
our compressible boundary layer to compute the gain. The term

∫
Ω

〈u(t) Bu · u′c〉t dΩ

represents the mean power spent by the user during the control effort (Barbagallo et al.
2012; Fabbiane, Bagheri & Henningson 2017). For Ω , the right boundary stops at x6,
while the left boundary is taken sufficiently upstream of the actuator position so that
the uncontrolled and controlled flux at this boundary are identical. Moreover, the line
integrals along the wall and the upstream boundary yield zero contributions, so the
gain just represents the mean Chu energy flux difference at x6. For the feedforward and
feedback designs, Φff = 555.5 and Φfb = 109.1, respectively. The feedforward design
has a better energy efficiency than the feedback one, as one would expect because the
feedforward controller reduces more the perturbation amplitude and has a lower control
signal amplitude than the feedback one. Both configurations have a largely positive
efficiency, which is due to the fact that the control takes advantage of the instability
mechanism to cancel perturbations, leading to a low control effort (Barbagallo et al. 2012).
This coefficient Φ based on mean Chu energy flux would be underestimated compared to
realistic 3-D configurations where nonlinearities and transition start to occur at the end of
Ω: delaying transition in Ω would lead to large gain, while keeping low control effort as
the actuator would be placed in a weakly nonlinear area at its streamwise position to stay
close to the linear on-design point. Nevertheless, the coefficient Φ may also be considered
as overestimated because the forcing of the actuator would not necessarily be optimal in a
realistic configuration (i.e. not centred around the generalized inflection point) and there
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Figure 17. Comparison of (a) KS, (b) PSDu and (c) maxy u′
rms for a feedback controller resulting from a

synthesis with a higher |1/WKS| (red lines) than for the one used in § 6 (blue lines). Solid lines and dashed lines
in (b) and (c) represent the cases with ideal and noisy estimation sensors, respectively. The caption for (c) is as
for figure 8(c).

would be also electro-mechanical conversion losses. Indeed, the control cost between an
ideal actuator (modelled by a volume forcing) and a realistic one (e.g. plasma actuator) may
be very different (Fabbiane et al. 2017). Finally, in 3-D configurations where transition
occurs, the gain would no longer be related to a mean Chu energy flux but would be
computed in terms of saved drag (Stroh et al. 2015; Fabbiane et al. 2017), which makes
the conclusions of a 2-D ideal numerical study difficult to exploit in terms of control
efficiency.

Appendix E. Impact of WKS on the performance with noisy estimation sensors

To illustrate the impact of the weighting function WKS on the performance, the constraint
minimization problem (5.3) is solved but with a higher |1/WKS| compared to the one use
all along in § 6. The feedback controller resulting from this synthesis (red lines) is shown
in figure 17(a) and is compared to the previous one used in § 6 (blue lines). The two
controllers have globally the same behaviour in the bandwidth of the second Mack mode,
but the new controller has higher gain in the low-frequency range. In the case where the
estimation sensors are corrupted by the same amount of white Gaussian noise as in § 6.3
(50 % of the r.m.s. value without control of yfb), it follows that the u-PSD for a corrupted
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signal y becomes more important in low frequencies for the controller resulting from the
synthesis with a higher |1/WKS| than for the previous controller (see figure 17b). For the
noisy estimation sensor case, and contrary to the controller used all along in § 6, the new
controller leads to a strong energy injection in the vicinity of the actuator (see the red
dashed line in figure 17c). As these injected low frequencies are convectively stable, they
attenuate very quickly, but the maximum along the wall-normal direction of u′

rms clearly
exceeds the energy threshold before the last performance sensor zi used in the synthesis,
which could trigger the transition to turbulence in a 3-D configuration. It should be noted
that in the case of ideal estimation sensors, the controller resulting from the synthesis
with a higher |1/WKS| minimizes slightly more the velocity fluctuations compared to
the previous feedback controller used in § 6 (see solid lines in figure 17c) because the
constraint on WKS is less important. There is therefore a trade-off between minimizing H2
norms and desensitizing the controller in the low-frequency range during the synthesis.
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