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1. Introduction. A. Geddes [ l , Theorem 3.3] has shown that the partial algebraic system
which he has called a power-free group need not be cancellative. In other words, there exist
power-free groups containing at least one element a with the property that ab can equal ac
when b # c. In the present paper we propose to study the structure of such non-cancellative
power-free groups, and we shall in fact obtain a complete solution to this problem.

2. Non-cancellators. We begin by restating some results obtained in [1]. In the following,
P denotes any power-free group.

An element a of P is regular in P if the equation a~lx = a has at least one solution in P;
otherwise a is said to be irregular.

LEMMA 2.1. If a is an irregular element of P, then ab = ac implies that b = c.

LEMMA 2.2. If a is a regular element of P, then ab = ac implies that b = c unless

ab = ac = a~\

when it is possible to have c = ft"1 instead.
Both these results are immediate consequences of the main theorem concerning cancella-

tion [1, Theorem 3.1].
We call an element a of P left-cancellative if, for all elements b,cofP for which ab and ac

exist and are such that ab = ac, we have b = c; right-cancellative and cancellative are defined
similarly. We recall that an element of a power-free group is right-cancellative if and only if
it is left-cancellative. A non-cancellative power-free group is one which contains at least one
non-cancellative element.

If a is any non-cancellative element, then a non-cancellator of a is any element b # e for
which ab = aft"1. It is obvious that, if b is a non-cancellator of a, then so also is ft"1. By
Lemma 2.2, every non-cancellative element a has at least one non-cancellator b, and we have
ab = ab~l = a~l. If jc is any other non-cancellator of a, then, by Lemma 2.2, ax = a"1.
Thus ax = ab, and x must be either b or b"1. We have thus shown that every non-cancellative
element has exactly two distinct non-cancellators, and these are inverse to one another.

LEMMA2.3. Ifab = ab~l withb # e,then(i)ba = b~ia = a~1 and(\\)a~1b = a"'ft"1 = a.

Proof, (i) Since ft # e, we must have ft # ft"1, and hence, by Lemma 2.2, ab = ab'1 = a~i.
From ab = a~l we obtain (ab)a = e. Now, since ab exists, so also does ba, and ba ^ a, since
otherwise ft = e. Hence a(ba) = e, showing that ba = a"1. Similarly we may show that
ft-1a = a"1.

(ii) From part (i) we have ba = b~1a = a~1. By taking inverses we obtain

i.e. a~ib~1 = a-1ft = a, as required.
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Lemma 2.3, (ii), shows that any non-cancellator of a is also a non-cancellator of a"1.
Our next result shows that any non-cancellator must itself be cancellative.

LEMMA 2.4. Suppose that a is any non-cancellative element of P, and let a. be any non-
cancellator of a; then a. is cancellative.

Proof. Suppose that a is regular; then there is an x in P for which a" 1x = a. We first
show that x # a~l. Suppose, in fact, that x = a"1; then, by the definition of x, we have
a~1a~x = a, i.e. (aa)"1 = a. Now, since a is a non-cancellator of a, it follows that aa. = a~\
and thus we obtain (a" 1 ) " 1 = a, i.e. a = a. But act is defined, since a is a non-cancellator of a,
and hence a = a = e which is impossible, as a is non-cancellative. We must therefore have
x ^ a"1, and thus a~xx is defined.

We have aa. = aa~l = a"1, since a is a non-cancellator of a. Thus we obtain

a~xx = (aa)x = (aa"1)*.

Now a,~ xx is defined and equals a, and aa. is defined. It follows, by the partial associative law
in P, that

(aa)x = a(a.~1x) = aa,

giving x = e. But this implies that a" l e = a, i.e. that a'1 = a, which gives a = a = e, and this
is impossible. Thus our original assumption that a is regular is false. Hence a is irregular,
and, by Lemma 2.1, it must be cancellative.

We have thus shown that any non-cancellative power-free group necessarily contains at
least three cancellative elements, namely, the identity e and two non-cancellators. The next
result, which is the most crucial step in our argument, shows that in fact there must be exactly
three cancellative elements in any non-cancellative power-free group.

THEOREM 2.5. Let P be a non-cancellative power-free group. Then P contains exactly two
cancellative elements other than the identity (necessarily inverse to one another). Every other
element of P ( # e ) is non-cancellative and has as its two distinct non-cancellators these two
cancellative elements.

Proof. Since P is non-cancellative, there exists an element a in P such that a is non-
cancellative. The element a has two non-cancellators; let them be a and a"1.

By Lemma 2.3, (ii), a"1 is also non-cancellative and its non-cancellators are also a and
a~ l . From Lemma 2.4, we know that a and a"x are cancellative, and hence neither a nor a~x

can equal a or a "x . Thus, since none of these elements can equal the identity e of P, it follows
that P contains at least five distinct elements, namely e, a, a"1, a, a"1. If P contains exactly
these five elements, the proof is finished. We therefore assume that P contains more than five
elements.

Let c be any element o f f distinct from e, a, a"1, a, a"1. We shall show that c is non-
cancellative and has a and a"1 as its non-cancellators, thereby completing the proof of the
theorem.

Since c # a'1, the product ca~l exists; let us denote it by x. Suppose that x = a; then
ca"1 = a, so that we have, taking inverses, ac~l = a~l. But a"1 = aa, since a is a non-
cancellator of a, and hence ac~l = aa. giving, by Lemma 2.2, c = a or a"1, which is not so.
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Thus we must have x ^ a , and so xa exists; further it equals {ca~l)a, i.e. c.
Now, since c i= a, it follows that ca exists, and thus we have

ca = (xa)a = x{aa),

by the partial associative law in P, since ace exists and equals a'1, and also x ± a~l, since
otherwise we should have a~i = ca~l giving c = e, which is not so. Further at*. = aa~1, since
a is a non-cancellator of a, and thus, from the above, we obtain

ca = x(aa - 1 ) = (xa)a"1 = ca"1,

our use of the partial associative law being justified by the fact that x i= a and xa = c±uTx.
Accordingly we have shown that ca = ca"1; in other words, that c is non-cancellative

with a and a"1 as its non-cancellators, as required.

3. The structure theorem. In [2] a complete account of cancellative power-free groups
is given. The following lemma shows that, if we remove the two non-cancellators from a non-
cancellative power-free group P, we obtain a cancellative power-free group Q. We are then
able to apply results from the cancellative theory to Q.

LEMMA 3.1. Let P be a non-cancellative power-free group with non-cancellators a. and a ~i,
and let Q be the set consisting of all the elements ofP with the exception of a and a'1. Then, if
x and y are distinct elements of Q, their product xy is also in Q, and, in fact, under the multiplica-
tion induced by the multiplication in P, the set Q is a cancellative power-free group.

Proof. Let x and y be distinct elements of Q, and suppose that xy is not in Q; then
xy = a or a"1. Now x # e, since y is in Q and hence is not equal to a or a"1. Thus, as x is
in Q, we have x # e, a, a"1, and, accordingly,

x~1(xy) = x~1a. or x~1ct~1=x,

by Theorem 2.5. This, however, implies that >> = x, which is a contradiction, and consequently
xy must be in Q.

It follows that Q is closed under the multiplication induced by P; further, the partial
associative law holds in Q, since it holds in P, and also Q has an identity, namely the identity
e of P. Finally, if x is any element of Q, then its inverse x'1 in P is also in Q, and so every
element of Q has an inverse. We conclude that Q is a power-free group.

Suppose that Q is non-cancellative; then Q contains two non-cancellators. It is clear
that these must also be non-cancellators of P; but this is impossible, since P has only two non-
cancellators and these are not members of Q. Accordingly Q is cancellative.

We note that, if Q is the cancellative power-free group derived from a non-cancellative
power-free group P by removing its non-cancellators, then P is the only non-cancellative
power-free group from which Q can be derived by this process. In fact, the multiplication of
P is completely determined by that of Q, since, if a and a' are to be the two additional elements
of P, we must have aa' = a'a = e and <xx = xa — a!x = xa! = x " 1 for all x + e in Q.
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LEMMA 3.2. Let P be a non-cancellative power-free group, and Q the cancellative power-free
group obtained from P by removing its non-cancellators a and a"1; then all the elements of Q,
other than e, are irregular in Q, and, further, for every pair of irregular elements x and y of Q
with x 7^y, we have x(xy) = y~l.

Proof. Suppose that Q contains a regular element a # e; then there is an element b of
Q such that a~ib = a in Q, and hence in P. However, in P, since a # e, <x, a"1, we have, by
Theorem 2.5, that a~ia = a. Thus a~lb = a~la, and so, by Lemma 2.2, b = a or a~l, which
is impossible, since b is in Q. It follows that all the elements of Q, other than e, are irregular.

Let x and y be any two irregular elements of Q; then, by [2, Lemma 2.1], we must have
either x(xy) = y~l or x(xy) = x~ly in Q. Suppose that x(xy) — x~iy; then this will also
hold in P. However, in P, we have x" 1 = ax, and, accordingly, x(xy) = (ax)y. Now, by
Lemma 3.1, xy is in Q, since both x and y are in Q, and thus a #xy, i.e. a(xy) is defined. We
therefore obtain x(xy) = a(xy), and Lemma 2.2 then implies that x = a or a"1, which
contradicts the fact that x is in g . From this it follows that x(xy) # x~ *y, and so we have the
required result.

LEMMA 3.3. If Q is the power-free group derived from a non-cancellative power-free group
by removing its non-cancellators, then Q is either the power-free group of order 3 or the quaternion
power-free group.

Proof. If Q is not the power-free group of order 3, then the order of Q must be greater
than 3. By Lemma 3.2, we know that, apart from the identity, Q consists entirely of irregular
elements satisfying x(xy) = y'1 for x # y. We now apply [2, Lemma 3.3], which states that
the only cancellative power-free group with these properties is the quaternion power-free
group, to obtain the result.

The last lemma shows that there are at most two non-cancellative power-free groups,
one corresponding to each Q. We now take the two possible cancellative power-free groups
Q, and consider the result of adding to them two non-cancellators a and a"1. In the case
when Q is the power-free group of order 3, we obtain a system with the following multiplication
table:

a a
- l

a-1 e

a a

a a

a"1 a'

a a

- l

a a

a'1 a

This is in fact the non-cancellative power-free group of order 5 considered in [1, pp. 397-398].
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Corresponding to the quaternion power-free group, we obtain the following system of
order 9:

e

a

a"1

b

ft"1

c

c-1

a

a-1

e

e

a

a~

b

b~

c

c~

CL

«-

1

1

1

1

a

a

*

e

c~l

c

b

b'1

a~l

a-1

a~l

a'1

e

*

c

c~l

b'1

b

a

a

b

b

c

*

e

a"1

a

ft-

ft"1

b-1

ft"1

c"1

c

e

*

a

a-1

b

b

c

c

b'1

b

a

a~l

*

e

c"1

c"1

c

c~

b

b~

a~

a

e

*

c

c

I

I

I

I

a

a

a'1

a

ft"1

ft

c-1

c

*

e

a"1

a"1

a"1

a

ft"1

ft

c"1

c

e

*

With the exception of the partial associativity condition, the axioms of a power-free group are
obviously satisfied by this system. It has been checked that the partial associative law does in
fact hold, its verification being greatly facilitated by the fact that it is known to hold in the
quaternion power-free group.

Thus both the cancellative power-free groups Q appearing in Lemma 3.3 do indeed
correspond to non-cancellative power-free groups. Accordingly, we can state

THEOREM 3.4. There are exactly two non-cancellative power-free groups, one being of order
5, the other of order 9.

This result completes our study of the structure of non-cancellative power-free groups.
Combining the results of [2] with those of the present paper, we can classify all power-free
groups as follows:

(i) Those which can be derived from groups containing no elements of order 2 by the
omission of squares; these are the complete power-free groups, and are, of course, cancellative.

(ii) The quaternion power-free group; this is the only incomplete cancellative power-free
group.

(iii) The two non-cancellative power-free groups.

https://doi.org/10.1017/S2040618500035449 Published online by Cambridge University Press

https://doi.org/10.1017/S2040618500035449


212 R. G. WALKER

I am grateful to Dr A. Geddes for a number of suggestions which have led to an improve-
ment in the presentation of this paper.

REFERENCES
1. A. Geddes, Power-free groups, Proc. Cambridge Philos. Soc. 60 (1964), 393-408.
2. A. Geddes and R. G. Walker, The structure of cancellative power-free groups, Proc. Glasgow

Math. Assoc. 7 (1966), 199-206.

UNIVERSITY OF GLASGOW

GLASGOW, W.2

https://doi.org/10.1017/S2040618500035449 Published online by Cambridge University Press

https://doi.org/10.1017/S2040618500035449

