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Abstract

We study a nonlinear oscillatory system with two degrees of freedom. By using the
continuation theorem of coincidence degree theory, some sufficient conditions are obtained
to establish the existence of periodic solutions of the system.

1. Introduction

In nonlinear oscillatory systems, periodic motion is very important. But establishing
the existence of periodic solutions can be very difficult. Luckily there exist some
kinds of periodic solutions in actual physical systems. Consequently, considerable
research has been focussed on the development of approximate analytical methods and
applications for these specific models. These methods however, have the disadvantage
of being computationally intensive. For example, we refer to [ 1 ] in which the Lindsted-
Poincare method is presented, as well as methods of averaging, the method of multiples
scales etc. Generally these methods are effective for weakly nonlinear systems with a
single degree of freedom. For systems with multiple degrees of freedom, researchers
usually resort to numerical methods. These however have large errors for systems
with nonlinearities. Hence it is very important to study the existence and uniqueness
of periodic solutions for nonlinear systems.

Jun Liu [11] investigated periodic motion and stability for a class of nonlinear
oscillating systems with two degrees of freedom. This model can be expressed by two
mutual coupling second-order nonlinear differential equations, and these systems are
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usually governed by the differential equations

I x + P(t, x, x, y, y)x + Q(t, x, y)x = f(x, y) cos cot,

y + <t>(t,x,x,y,y)y + H(t,x,y)y = g(x, y) cos cot,

where P(t,x,x, y, y)x and <t>(t, x,x,y,y)y represent resistance, Q(t,x,y)x and
H{t,x,y)y represent potential, f(x,y) cos cot and g (x, y) cos cot are periodical stiff
external forces, and co is horn-frequency.

Equations (1.1) can describe many physical phenomena and are very important in
both theory and applications. This nonlinear system has been extensively applied to
engineering systems, such as machine vibrations, dynamically buckled motions of
elastic structures, the rolling motion of ships and the motion of rockets and satellites
[2]. Investigations of this system are of importance in engineering. In [1,2,5,8,9,13],
the authors obtained approximate periodic solutions by using a numerical method for
a specific system. In [11], Liu, using a Lyapunov function, studied the existence,
uniqueness and stability of a periodic solution for system (1.1) and obtained sufficient
conditions which guarantee the existence, uniqueness and asymptotic stability of a
periodic solution.

To simplify computation, in this paper we pay attention to a special and very
important oscillatory system called the damping oscillation. The damping oscillation
of two oscillators is usually governed by the following two mutual coupling second-
order nonlinear differential equations:

imlX'; + (cj + c*)x[ -c\x'2 + /,*(*„ x2) = p\{t),

\m2x'{ - c\x\ + (c* + c\)x'2 + f2*(xux2) = p*2(t),

where mt and m2 are the masses of two oscillators, xt and x2 are the displacements
leaving the equipoise of two masses m\ and m2, f* and f2* are the external exciting
forces based on the two masses m\ and m2, c\, c2 and c\ are linear coefficients of
damping, and p\ and p2 are the nonlinear elastic forces caused by springs.

A time delay effect is very important in damping oscillations and can often impact
on or change the status of a damping oscillatory system. For this physical reason, we
take into account the time delay effect in system (1.2). Hence (1.2) can be rewritten
as follows:

c\)x\(t) - c\x'2{t)

r,),jc2(/ - r2)) = p\(f).

m2x'2'(t) + (cj + cl)x'2(t) - c\x\(t)

, x2(t), x2(t - r3), x2(t - r4)) = p2(t).
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When Xi(t) = x2(t), system (1.3) reduces to the following second-order delayed
differential equation:

ax"{t) + bx'it) + /(*(*), x(t - r)) = p(t). (1.4)

When b = 0, Huang [7] discussed the Duffing equation (1.4) and proved the existence
of a 2n-periodic solution of (1.4) under the condition that | / (0, x)\ < M (M > 0 is
a constant) and other conditions on / (0 , x). In the case when b = 0,

/(*(/), x(t - T)) = m2x(t) + g(x(t - T))

(m is a nonzero integer), Ma [12] also investigated (1.4) and established the existence
of a 2n -periodic solution of this equation under the condition \g(x)\ < Mas well as
other conditions on g(x). When f(x(t), x(t - r)) = abx(t) -f(x(t- 1)), pit) — 0,
an der Heiden [6] obtained an existence theorem for a nonconstant periodic solution
of (1.4). In the case when fixit),xit - r)) = exit) + gixit - r)), Zhang [16]
investigated (1.4) and established the existence of a 2n -periodic solution of (1.4)
under the condition that \gix)\ < M* + c*\xit)\ (M* > 0 and c* > 0 are two
constants) as well as other conditions on a, b, c and c*.

Liu [10] established the existence of a 2n -periodic solution for the equation

x'it) = fix'it-T),xit-x))

under the condition that |/(JCI, X2)\ < p\ + P2\x\ \ + pz\x2\ ± fix\,x2), (here pt > 0,
p2 > 0 and PJ > 0 are three constants). Hence it is natural to consider the existence
of a 2n -periodic solution of (1.4) under the condition that

\f(xux2)\ < P\ + p2\xx\ + pz\x2\± fixux2).

Thus we will also consider the existence of a 2n -periodic solution of system (1.3)
under this condition since (1.3) is a very important damping oscillatory system. Denote

c\+c* c\ / ' p\ _
=C\, = C2, = / l , = Pi,

nt ni nttt\\ nt\ ni\
c\ ci + ci / ; P\
— = c2, = c3, — = f2, — = p2.
m2 rn2 tn2 m2

Then system (1.3) can be rewritten as follows:

it-rl),x2it-T2)) = plit),

x'2'it) -c2x\it) + c3x'2it) + f2ixx (r)tjc2(O. Jti it-T3),x2it-r4)) = i)
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where r, (i = 1,2,3,4) are nonnegative constants, c, (i = 1,2, 3) are positive
constants, /; : R* -*• R (i = 1,2) are continuous functions, and p, : R -*• R
0 = 1, 2) are continuous 27r-periodic functions.

On the existence of a periodic solution of system (1.5), fewer results are available
in the present literature. In this paper, our purpose is to establish existence results
for periodic solutions for system (1.5) using mathematical methods and techniques.
For the above delayed system (1.5), approaches related to monotonicity fail, and
the bifurcation technique cannot be applied to this system because pt(t) (i = 1, 2)
are time-dependent functions. Thus it seems quite natural and reasonable to pursue
an alternative approach. We will apply a continuation theorem [3] in coincidence
degree theory to establish the existence of periodic solutions for system (1.5). For
work concerning the existence of periodic solutions of delay differential equations
using coincidence degree theory, we refer to [4,7,12,14—16] and the references cited
therein.

To make use of the continuation theorem of coincidence degree theory, we need to
introduce some notation.

Let X, Y be real Banach spaces, let L : Dom L c X —*• Y be a Fredholm mapping
of index zero, and let P : X -*• X, Q : Y -*• Y be continuous projectors such that
Im P = Ker L, Ker Q = Im L and X = Ker L © Ker P, Y = Im L © Im Q. Denote
by Lp the restriction of L to Dom L D Ker P, denote by Kp : Im L -*• Ker P D Dom L
the inverse of Lp, and denote by J : Im Q -*• KerL an isomorphism of Im Q onto
KerL.

For convenience, we also cite the continuation theorem [3, page 40] below.

LEMMA 1.1. LetQ c X be an open bounded set and let N : X —*• Y be a continuous
operator which is L-compact on Q (that is, QN : Q -*• Y and KP(I — Q)N : Q, ^ Y
are compact). Assume

(a) for each X € (0, 1), x € 3S2 D Dom L, Lx ^ XNx;
(b) for each x € 3fi n Ker L, QNx # 0;
(c) deg(JQN, Q n Ker L, 0) ^ 0 (here deg is Brouwer degree).

Then Lx = Nx has at least one solution in fi n Dom L.

2. Existence of periodic solutions

Before stating our results, we denote the Euclidean norm by | • | in R. Now we are
in a position to state and prove our main results.

THEOREM 2.1. Assume that the following conditions hold:
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(i) There exist eight nonnegative constants a,, /},-, r,, p, andtwo positive constants
qt 0 = 1, 2) such that, for all (xux2, x3, x4) e R* and i = 1,2,

i,x2,x3,x4)\ < a,|x,| + Pi\x2\ + n\x3\ + ptM + qt + fi(xi,x2,x3,x4),

or

\fi(xi,x2, x3, x4)\ < a,|jci| + pt\x2\ + n\x3\ + PiM + qt - fi(xux2, x3, x,);

(ii) There exists a constant h > 0 such that when minfjcj, x3] > h,

1 f1* 1 f2"
Mxux2,x3,x4) > — / pi(t)dt, fi(-xux2, -x3,x4) < r— / P\(t)dt

2n Jo 2n JQ

and that when min{^2. x4] > h

1 f2" 1 f2*
Mxux2,x3,x4) > — / p2(t)dt, f2(xu-x2,xi,-x4) < — p2(t)dt;

2n Jo 2n Jo

(Hi) A\Bi > C\DX with A, > 0; or
(iv) A2B2 > C2D2 with A2 > 0, where

A2 = [l-4n2(a2+r2)-2n2(p2 + p2)-nc2],

Bi = [1 -2n(ci +2ncti +2nrx)\, B2 = [1 -4^ 2 (a , +r,) -2n2(Pi + p,) -nc2],

Cl=4n2[c2 + 2n(.a2 + r2)], C2 = [2n2(Pl + Pi) + nc2],

Dl = [c2 + 2n(p1+pl)], D2 = [2n2(p2 + p2) + 7tc2].

Then system (1.5) has at least one 2n -periodic solution.

In the remainder of this section, we give the proof of Theorem 2.1. In order to apply
Lemma 1.1, it is crucial to find the required open and bounded subset in a properly
chosen space. This can be achieved by establishing some a priori estimates, which
are, as will be seen, quite technical. In what follows, we will always let

a ll, N. V 2

\x(t)\2dt ) , V* € R.
PROOF OF THEOREM 2.1. First we prove Theorem 2.1 in the case when conditions

(i), (ii) and (iii) hold. Without loss of generality, we assume that the first inequality
in condition (i) holds. In order to apply Lemma 1.1 to system (1.5), we consider the
spaces

X = {(Xl(t), x2(t))
T eC'(R, R2) : x,{t + 2x) = x,(t), i = 1, 2} and

Y = {(jt,(O, xt(t))
T € C(R, R2) : Xi(t + 2n) = x,(t), i = 1,2}
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respectively equipped with the norms

[6]

ll(*i,*2)rHx = max |jr ,(f) |+ max |*2(OI + max | JC ' , (O |+ max \x'2(t)\
ie[0.2n] telO.la) »e(O,2jr] <S[O,2JT]

and

max |x2(r)|.\\(xt,x2)
T\\Y = max

ie|0,2;r]

With the above norms, X and Y are Banach spaces. Define the operators L and N by

Cl*;(O + C2x'2(t) - fl(X\(t), X2(t), Xt(t - T,), X2(t - T2))
c2x\(t) - c3x'2(t) - f2{xi(.t),x2(t),xI(t - T3),x2(t - r4)) + p2(t)

and

Define two project operators as follows:

P : X - • X, P

Since Ker L = R2 and

lmL = Xi(t)dt = O, i = l,2

Im L is closed and dim Ker L = dim Y/lmL = 2. Therefore L is a Fredholm
mapping of index zero.

For the above L and N, Lx = XNx reads

\x2'(t)-kc2x'i(t)+kc3x'2(t)+kMxl(t),X2(t),Xl(t-T3),X2(t-T4)) =

Suppose that {xx (t), x2(t))
T e X is a solution of system (2.1) for a certain A. e (0, 1).

Integrating (2.1) over [0, In] gives

f Mxt(t),x2(t),xl(t-Tl),x2(t-T2))dt=[ pdOdt (2.2)
Jo Jo

f2" f2"
I h{x\(t),x2(t), x\(t — Ti),x2(t — Tt))dt = I p2(t)dt. (2.3)

Jo Jo

and
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From condition (ii) in Theorem 2.1 and (2.2), it follows that there exist r 6 {0, r,}, a
point t* € [0, 2n] and a constant M > 0 such that

xi(t'-r)<M. (2.4)

If this is not true, then for all M > 0 and t e [0, 27r], we have x\(t) > M and
X\(t — X\) > M, which, in view of condition (ii) in Theorem 2.1, contradicts (2.2).
Thus (2.4) holds. Denoting /* — T = f i + Ink, where £, e [0, 2n] and k is an integer,
then

< M. (2.5)

Similarly, we can find a point £2 £ [0, 27r] and a constant N > 0 such that

> - N . (2.6)

Then from (2.5) and (2.6) we can obtain for all t e [0, 2n],

I f- / x[(s)ds<xl(Sl)+ I \x[(t)\dt < M + f \x\(t)\dt
Jti JO J0

and

Consequently

" f<max\M+[ \x\(t)\dt,N+ f \x\(t)\dt\

<M + N+f \x[(t)\dt = dl+ I \x\{t)\dt. (2.7)
Jo Jo

By condition (ii) in Theorem 2.1 and (2.3), using the same argument as for obtaining
(2.7) gives

\x2(t)\<maxlM*+f \x'2(t)\dt, N* + J \x'2(t)\dt\

<M* + N*+[ \x'2(t)\dt=d2+ f \x'2(f)\dt, (2.8)
Jo Jo

where M* and N* are two positive constants.
From the first equation of system (2.1), we obtain

f \ x ' ; ( t ) \ d t < c t I \ x \ { t ) \ d t + ! \ p , ( t ) \ d t + c 2 [ \x'2{t)\dt
Jo Jo Jo Jo

q\ + fi(x\(.t),x2(t),xt(t -Zi),x2(t -z2))]dt,
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which, together with (2.2), implies that

I \x"(t)\dt<cx I \x[(t)\dt+c2 f \x'2(t)\dt + 2n(2ll+ql)
Jo Jo Jo

+ 2n(al+rl) max |*,(r)| + 2TT(/3, + px) max |*2(0|. (2.9)
te\0,lx) re[0.2jr]

From the second equation of system (2.1), we obtain

[ \x'2'(t)\dt<c2 f \x\(t)\dt+c3 [ \x'2(t)\dt+[ \p2(t)\dt
Jo Jo Jo Jo

+ /
Jo

- T3), X2(t - T4))] dt,

which, together with (2.3), implies that

/ I*2'(OIdt <c2 [ \x[(t)\dt+c3 [ \x'2(t)\dt + 2n(2l2 + q2)
Jo Jo Jo

2n(a2 + r2) max |x,(0| + 2n($2 + p2) max \x2(t)\. (2.10)
fe[0,2jr] »e[02n]

Substituting (2.7) and (2.8) into (2.9) and (2.10) gives

f \x'2'(t)\dt<Cl f \x[(t)\dt + c2 [*' \x'2{t)\dt
Jo Jo Jo

+ 2n(2li +qt)+2n(ai + rx)d{ + 2n(Pi + px)d2

+ 2n(al+rl)[ \x\(t)\dt+ 2TT(/S1 + Pl) [ \x'2(t)\dt
Jo Jo

f2"
= [cl+2n(al+ri)] \x\(t)\dt

Jo
f2n

+ [c2 + 2n(Pi + p\)] I \xM)\dt
Jo

+ 27i(2li +qt +a{di -\-rxdx + ptd2 + p{d2) (2.11)

and

/ * \x'2'(t)\dt < [c2 + 2n(a2 + r2)} f \x[(t)\dt
Jo Jo

f2" ,+ [c3 + 2n(p2 + p2)] I \xM)\dt
Jo

+ 2n (2/2 + q2 + a2d2 + r2d2 + p2d2 + p2d2). (2.12)
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Since *,(0) = xX2n), i = 1,2, then there exist two points f, € (0, 2n) (i = 1,2)
such that *;(£,) = 0, i = 1,2. Thus for all t e [0, lit], we have x't(t) = fc x'/(s) ds,
i = 1, 2. Hence

< f
Jo

"\x?(t)dt, i = l ,2 . (2.13)
10

Substituting (2.13) into (2.11) and (2.12), we have

B\ I \x"(f)\dt < 2n[c2 + 2n(P1 + pi)] I \x2(t)\dt + M, (2.14)
Jo Jo

and

Ay f \x2'(t)\dt < 2n[c2 + 27r(a2 + r2)] f |jc','(r)|dt + M2, (2.15)
Jo Jo

where Mi and M2 are two positive constants. From (2.14) and (2.15), we obtain

r-2nI
Jo

(2.16)

from which, together with (2.15), it follows that there exist two positive constants
and d4 such that

f \x!Ht)\dt<d} and f \x'2'(t)\dt < d4. (2.17)
Jo Jo

From (2.13) and (2.17), it follows that there exist two positive constants /?3 and R4

such that \x[(t)\ < fl3 and |^ ( f ) | < R4. From (2.7), (2.8) and (2.17), it follows that
there exist two positive constants /?, and R2 such that \xt(t)\ < Ri and \x2(t)\ < R2.

Clearly, /?, (/ = 1, 2, 3, 4) are independent of k. Denote

where C > 0 is taken sufficiently large such that M > 2h. Now we take £2 =
K*i>*2)r ^ X : HOci, *2)r | |x < M). By an easy computation, we find that the inverse
Kp of Lp has the form Kp : Im L -+ Dom L C\ Ker P,

A p I — I r' , rs , . . I r2n , r' 1 /••« /• x f I ' * o r I fe •

L^J I Jo «5 j 0 A:2(M) du — ^ Jo af Jo a i Jo JC2(M) a 5 | |_-*2j

It is easy to show that QN and Kp(/ — Q)N are continuous by the Lebesgue theorem.
Moreover, QN(Q), KP(I — Q)N(Q) are relatively compact for a bounded set Q C X
by the Arzela-Ascoli theorem. Therefore Af is L-compact on Q. Condition (a) in
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Lemma 1.1 is now satisfied. When (xux2)
T € 8Q n KerL = dQ D R2, (JCI, JC2)

r is a
constant vector in R2 with \xt \ + \x2\ = M. Then

Therefore, when (JCI, x2) € 9fi n KerL, by condition (ii) in Theorem 2.1,

QN

This satisfies condition (b) in Lemma 1.1. In order to show that condition (c) in
Lemma 1.1 is satisfied, we define the homotopy 0 : Dom L x [0, 1] —• X by

4>{XUX2,IL') = n*(xux2)
T + (1 - n')

fi(xx,x2,xux2)- ± fl" pi(t)dt\
Mxux2,xux2)- ± fl" p2(t) dt J '

where xt,x2e R, n* e [0, 1].
When [£ ] e dQ n KerL, [i;] is a constant vector in R2 with I*,! + |jc2| = M.

We will show that when (xt,x2)
T 6 3Qfl KerL, <j>{xu x2, /z*) ^ ["]. In view of

the constant vector (xx,x2)
T satisfying |*i| + \x2\ = M > 2h, we have \x^\ > h

or |JC2| > h. We assume that \x\\ > h without loss of generality. When x\ > h,
condition (ii) gives

1 C2"
f\(xux2,xux2)> — I pi(t)dt,

2n Jo

thus

I
Similarly, when — x{ > h, we have

« • * , + (1 - M * ) / I ( J C I , J C 2 , * I , * 2 ) - =— / Pi(t)dt\ < 0 .
L 2n Jo J

Therefore when (*,, x2)
T € 3fi D Ker L, 0(JC,, JC2, /**) 7̂  [?]• BY topological degree

theory and by taking 7 = / : Im Q —*• Ker L, (xi, A:2) -»• (xit x2), we have

deg(CyV(jc,, x2)
T, fi D KerL, (0, 0) r )

= deg((-x, , -x2)\ n n Ker L, (0, 0) r) ^ 0.
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Hence condition (c) in Lemma 1.1 is satisfied. Therefore system (1.5) has at least one
2n -periodic solution.

Next we prove Theorem 2.1 in the case when conditions (i), (ii) and (iv) hold. We
assume that the first inequality in condition (i) ofTheorem 2.1 holds. In order to apply
Lemma 1.1 to system (1.5), we define the same Banach spaces X and Y, operators L
and N, project operators P and Q as those defined in the proof ofTheorem 2.1. For
the above L and N, Lx = XNx reads

+ kfl(xl(t),x2(t),x}(t - ti), x2(t - r2)) = kPl(t),
(Z. lo)

x2'(t) - kc2x\(t) + Xc3x'2(t)
, x2(t), x,(t - T3), x2(t - r4)) = Xp2(t).

Suppose that (xx(t),x2(t))
T e X is a solution of system (2.18) for a certain X e (0, 1).

From the proofs of (2.2), (2.3), (2.7) and (2.8) in the proof ofTheorem 2.1, we have

|JC,(OI <d,+ f \x',(t)\ dt, r = 1,2, (2.19)
Jo

/ A(xl(t),x2(t),xl(t-Tl),x2(t-T2))dt= Pl(t)dt (2.20)
Jo Jo

and

fi(x\(t), x2(t), X\(t — Ti), x2(t — x^))dt — I p2(t)dt. (2.21)
Jo

Multiplying the first equation of (2.18) by xt(t) and integrating over [0, 27i] gives

Jo

which, together with (2.20), implies that

ix;yj < f*
Jo

max \xt(t)\\c2 f |jtj(0|rfr + (o,+r,) f \xt(t)\dt
,£[0.2*1 | J

\c2 f |jtj(0|rfr + (o,+r,) f
|_ JO Jo

! (2.22)
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Substituting (2.19) into (2.22) gives

11 -11 ( d + j \*(O\dt\ |2jr(a, + r,)rf, + 27r(/3, + Pi)d2

\x'2(t)\dt + c2 f \x'2(t)\dt
Jo Jo

/" \x\{f)\dt\

JT||JC;||2) [A + 27rV2^(0, + p,)||je2||2

dx A + — [(2n-)3/2d,(a, + r,)

r,)

where A > 0 is a constant. Thus by using the inequality

—7=^ab<—+eb2, 2ab < a2 + b2, e > 0,

we obtain
2 ] ; l [ ^ ' ^ r.)

^ ] ||JC2||2

F r ™i

2 L ' ' J 2 2

here e is a chosen positive constant, which implies that

2 2, (2.23)

where B and C are two positive constants.
Multiplying the second equation of (2.18) by x2(t) and integrating over [0, 2n]

gives

-\\x'2\\
2

2 = X x2(t)[-c2x\(t) + f2(xt(t),x2(t),x,(t - x3),x2(t - r4)) - p2(t)]dt,
Jo
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from which a parallel argument to (2.23) shows that

^ ;i|2, (2.24)

where B*, C* and A* are three positive constants. In view of condition (iv) in
Theorem 2.1, we can choose e small enough such that

and

B2 > E- [(2ff)3/2rf,(a, + r,)

> Ce[C*-e + 2n(fo + Pi) + c2n] + C*eC2 + C2D2. (2.25)

From (2.23M2.25), it follows that

A2 - | [(2n)3/2d2(a2 + r2) + >/2lr"A<]

x JB2-|[(2^)3/2J1(a1+r,)

< D + {Ce[C*s + 2n(p2 + p2) + c2n] + C*eC2 + C2D2)\\x\||2, (2.26)

where D > 0 is a constant.
The rest of the proof is similar to that of Theorem 2.1 and we omit it. D

3. Example

Now an example is given to illustrate our results.

EXAMPLE 1. Consider the following nonlinear oscillatory system of two degrees
of freedom:

\x';(t) + Clx\(t) - c2x'2(t) + e * . « > + * 1 « - r i > + W * 2 < } l + sinf,

\ x2'(t) - c2x\(t) + cix'2(t) + e^'H^'-^+i^'C-^+Hn^.e) = l + sin/,

where r, (i = 1, 2, 3, 4) and c, (/ = 1, 2, 3) are seven positive constants.
Since pt(/) = 1 + sin /, p2(t) = 1 + sin t,

Mxdt),x2(t),Xl(t - t,),x2(t - r2)) =^i(')+J'.('-Ii)+3si"2^"-^+5sin2^") > 0

and

- r4)) = e^("+^'-r')+Jsin2^"-r"^sinJ^") > 0,
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then there exist a, = ft = /-, = /?, = 0, g, = 1, i = 1,2, such that condition (i)
in Theorem 2.1 is satisfied, and if we take (1 — 2^c3)(l — 2ncx) > An2c\, with
27rci < 1, then condition (iii) is satisfied. When;ci(f) > 1 and xt(t — ti) > 1,

Mxl(t),x2(.t),xl(t-Tl),x2(t-r2)) >e2 > 1,

fd-xi(t),x2(t). —Jc,(r - T,)tx2(f - r2)) < e~2+l = e~l < 1.

Whenx2(f) > I,x2(t - r4) > 1,

Mxl{t),x2(t),xi(t - r3),x2(f - T4)) > e2 > 1,

/2U.(O, -JC2(/), x,(f - r3), -x2(/ - r4)) < e~2+i = e~x < 1.

However

1 C2" 1 f2"
— Pitt)dt = —
2n Jo 2n Jo

Thus condition (ii) in Theorem 2.1 is satisfied. Therefore, by Theorem 2.1, system
(3.1) has at least one 27r-periodic solution.
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