A Matrix Problem Concerning Projections

By Hans Schneider
(Received 1sth February 1953).

The following problem is a slight generalisation of one posed and partly solved by H. Nagler. ${ }^{1}$ We shall use A^{*} for the conjugate transpose of a matrix A. A projection is an idempotent matrix, its latent roots consist of units and zeros.

Problem. Let A be an $n \times m$ matrix with complex elements. Find an $m \times n$ matrix B such that $(I-A B)^{*}(I-A B)$ is a projection of rank k.

Let the rank of A be r. The rank of $A B$ is less than or equal to r. It is easily proved that the rank of $M=I-A B$ cannot be less than $n-r$. But the rank of $M^{*} M$ equals that of M, and hence

$$
\begin{equation*}
k \geqslant n-r \tag{1}
\end{equation*}
$$

is a necessary condition for the existence of a matrix B with the required property.

We shall next show that (1) is also a sufficient condition. It is enough to find a matrix B such that $I-A B$ is a Hermitian projection of rank k.

The $n \times n$ matrix $A A^{*}$ is Hermitian of rank r. Hence there exist n Hermitian projections of rank 1 satisfying

$$
\begin{align*}
\sum_{1}^{n} E_{i} & =I \tag{2}\\
E_{i} E_{j} & =0 \text { when } i \neq j, \tag{3}\\
\sum_{1}^{n} \rho_{i} E_{i} & =A A^{*} \tag{4}
\end{align*}
$$

where the ρ_{i} are the (non-negative) latent roots of $A A^{*}$, supposed arranged so that $\rho_{i} \neq 0$ for $i=1, \ldots, r$, and $\rho_{i}=0$ for $i=r+1, \ldots, n$.

Let

$$
C=\sum_{1}^{n-k} \sigma_{i} E_{i}
$$

$$
\sigma_{i}=1 / \rho_{i} \text { for } i=1, \ldots, n-k \leqslant r
$$

We note that $\quad A A^{*} C=\sum_{1}^{n-k} E_{i}$,

[^0]whence it follows that
$$
I-A A^{*} C=\sum_{n-k+1}^{n} E_{i}
$$
is a Hermitian projection of rank k. Thus $B=A^{*} C$ is a matrix having the desired property.

Let x_{1}, \ldots, x_{n} form an orthonormal set of latent column vectors of $A A^{*}$, where x_{i} is associated with the latent root ρ_{i}. It may be remarked that a set of Hermitian projections of rank 1 satisfying (2), (3) and (4) is given by $E_{i}=x_{i} x_{i}^{*}$ for $i=1, \ldots, n$.

Suppose now that $k=n-r$. When $m \leqslant n$ and the rank of A is m, then we assert that our method yields $B=\left(A^{*} A\right)^{-1} A^{*}$, while if $n \leqslant m$ and the rank of A is n, then $B=A^{*}\left(A A^{*}\right)^{-1}$. The proof of this is left to the reader. In general, it is clear from the method of construction that the solution we have found is not unique.

An $m \times n$ matrix D for which $I-D A$ is a Hermitian projection of rank k can be found in a similar manner, provided that $k \geqq m-r$.

The Queen's University, Belfast.

[^0]: ${ }^{1}$ H. Nagler, "On a certain matrix pruduct with specified latent roots," Proc. Edinburgh Math. Soc. (2), 10 (1953), 21-24.

