
POINT-LIKE, SIMPLICIAL MAPPINGS 
OF A 3-SPHERE 

ROSS F I N N E Y 

1. I n t r o d u c t i o n . A decomposition of a topological space X is a part i t ion
ing of X into non-empty, disjoint sets called elements of the decomposition. An 
element of a decomposition is non-degenerate if it contains more than one 
point. Associated with each decomposition D of X is a topological space D*, 
called the hyperspace of the decomposition. A classical problem on decom
positions of topological spaces is to find conditions under which D* is homeo-
morphic to X. Often decompositions arise from mappings: if g is a mapping 
of a space X onto a space F, then D = {g~1(y) \y 6 Y\ is a decomposition 
of X. Moreover, if X is compact and if F is a Hausdorff space, then D* is 
homeomorphic to Y and we may solve the problem by finding conditions 
under which F is homeomorphic to X. (By mapping we shall always mean 
continuous junction, and by space we shall always mean Ti-space.) 

In 1925, R. L. Moore showed tha t if X is a 2-sphere, then F i s homeomorphic 
to X if and only if for each point y in F the inverse image g~1(y) is a con
t inuum which does not separate X (3). 

In 1938, J. H. Roberts and N. E. Stennrod showed t ha t if X is a compact , 
connected 2-manifold, then F i s homeomorphic to X if and only if F contains 
more than one point and the 1-dimensional Betti number (mod 2) of each 
of the sets g~1(y)1 where y is a point of F, is zero (4). 

In 1936, G. T . Whyburn posed a question embodying a generalization of 
Moore 's theorem (5), asking whether F is homeomorphic to X whenever X 
is a 3-sphere and g is point-like. A subset A of an w-sphere Sn is point-like if 
the space (Sn — A) is homeomorphic to Euclidean w-space En. A mapping g 
of an ^-sphere onto a space F is point-like if the set g~l{y) is point-like for 
each point y in F Whyburn ' s question concerns a possible generalization of 
Moore's theorem because the point-like subsets of the 2-sphere are exactly 
those subsets which are continua t ha t do not separate the sphere. 

In 1957, R. H. Bing published an example of a point-like mapping of S3 

on to a space topologically different from Ss (1). 
In 1958, O. G. Harrold, Jr . published sufficient conditions for a monotone 

image of a 3-sphere to be a 3-sphere. The conditions require t ha t the closure 
of the set of points in the image-space which have non-degenerate inverse-
images be totally disconnected, bu t are stronger and more interesting (2). 
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592 ROSS FINNEY 

Going in a different direction from Harrold ' s result, we prove the following 

theorem. 

T H E O R E M . Let M be a triangulated 3-sphere and let T be a triangulated topo
logical space. If there exists a point-like, simplicial mapping of M onto T, then 
T is homeomorphic to M. 

Here a tr iangulated 3-sphere is a finite, simplicial complex whose geometric 
realization is homeomorphic to a 3-sphere. Throughou t this paper, complex 
will mean finite, simplicial complex and a single symbol will denote both a 
complex and its associated topological space. 

2. T h e proof i n o u t l i n e . Let / be the given point-like simplicial mapping 
of M onto T, and let G = {/-1(X) \t G T}. We see t h a t the union of the non-
degenerate elements of G is a subcomplex K of M. In fact, K is the union 
of all faces of all 3-simplices on which / fails to be one-to-one. If K is empty , 
then f is the required homeomorphism. We suppose henceforth t h a t K is 
non-empty. Since / is one-to-one on a t least one 3-simplex of M, the frontier 
of K is non-empty. We can find a 3-simplex a in K which has the propert ies : 

(1) a has a 2-face in Fr(K) ; 
(2) if g is a non-degenerate element of G, then Cl(g — a) is empty or still 

point-like; and 
(3) CI (K — a) is a subcomplex of M with fewer simplices than K. 
Using a we define a new decomposition Gi of M as follows: gi is an element 

of G\ if either gi is a point of {M — C\(K — a)) or g1 is one of those sets 
Cl(g — a) which is non-empty, g being an element of G. T h e elements of G\ 
are point-like, the hyperspace Gi* is homeomorphic to C7* and hence to Tr 

and the union of the non-degenerate elements of G\ is a proper subcomplex 
K1 of K. 

In Z i there will be a simplex ai with properties analogous to those s ta ted 
for a-. Jus t as we used a to construct Gh we use <T\ to construct a decomposition 
C72 of M into point-like sets. As before, G2* is homeomorphic to Gi* and hence 
to T, and the union K2 of the non-degenerate elements of G2 is a proper 
subcomplex of K\. 

We continue to construct new decompositions (although a and <j\ mus t be 
3-simplices, eventual ly 2-simplices may be used) until a t last we construct a 
subcomplex Kn of K which can be reduced no further. While Gn is still a 
decomposition of M into point-like sets, and while Gw* is still homeomorphic 
to T, the decomposition Gn now has only finitely m a n y non-degenerate ele
ments . A decomposition of the 3-sphere into point-like sets, which has only 
a finite number of non-degenerate elements, has a hyperspace homeomorphic 
to the 3-sphere. Hence Gw* is homeomorphic to M as well as to T, and the 
theorem is proved. 

T h e technique of constructing a new decomposition by deleting a simplex 
is an unpublished technique of E. E. Moise. T h e technique is formalized for 
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our purposes as the construction of Di* from D* in Lemma 4.5. Once Lemma 
4.5 has been proved, the burden of proof rests on showing that the construction 
may be applied repeatedly to G and K until Gn is reached. 

3. Preliminary lemmas. If A is a subset of a topological space X, then 
D(A) is the subset of X that is the union of those elements of the decomposition 
D which meet A. If D(A) is closed whenever A is closed, D is upper semi-
continuous. Thus each element d of an upper semi-continuous decomposition 
D of a TVspace is closed, for if x is a point in d, then D(x) = d is closed. 

The usefulness of upper semi-continuous decompositions is illustrated by 
the following assertions. If D is an upper semi-continuous decomposition of a 
metric space X into compact sets, then the convergence of points in D* 
corresponds to the convergence of the elements of D, as subsets in X (Lemma 
3.4). If D is upper semi-continuous and if X is normal, then D* is a Plausdorff 
space (Lemma 3.2). In particular, if D is an upper semi-continuous decom
position of a compact Hausdorff space, then D* is a (compact) Hausdorff 
space. 

The lemmas are presented without proof. 

LEMMA 3.1. Let X be a compact topological space, and let g be a one-to-one 
mapping of X onto a topological space Y. If Y is a Hausdorff space, then g is 
a homeomorphism. 

LEMMA 3.2. Let X be a topological space, and let D be an upper semi-con
tinuous decomposition of X. If X is normal, then D* is a Hausdorff space. 

LEMMA 3.3. If D is a decomposition of a compact topological space, then D* 
is compact. 

LEMMA 3.4. Let D be an upper semi-continuous decomposition of a metric 
space X into compact sets. Let {si} be a sequence of points of D*. If A and B 
are compact subsets of X, then let 

z(A, B) = inf m(a, &), 
aeA 
beB 

where m is the given metric on X. Let s be a point of D*. The sequence {st} con
verges to s if and only if 

\im z(p-i(st),p-i(s)) = 0. 

LEMMA 3.5. Let X be a compact topological space, let Y be a Hausdorff space, 
let g be a mapping of X onto Y, and let D = {g~1{y) | y G F). Then D* is 
homeomorphic to Y under the correspondence p(d) +->f(d)y where d is an element 
of D and p is the projection mapping of X onto D*. Also, D is an upper semi-
continuous decomposition of X. 

4. The structure of K. Suppose that L is a subcomplex of K and that 
each non-degenerate element of G meets L in either the empty set or in a 
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non-degenerate, point-like subset of M. Let D be the decomposition of M 
t h a t consists of (1) each of the points of (M — L) , and (2) those of the sets 
(g C\ L) which are non-empty. We note t ha t L is the union of the non-
degenerate elements of D, and t h a t D is an upper semi-continuous decom
position of M. 

When we reduce K according to the scheme mentioned before, the union 
Kt of the non-degenerate elements a t the it\\ stage will have properties 
identical with those now hypothesized for L. W h a t we deduce now about 
the s t ructure of L will be used to reduce Kt to obtain Ki+\. Lemma 4.5 is a 
s t a t ement of the feasibility of the inductive s tep : if the subcomplex L of K 
contains a certain kind of simplex, then L and the decomposition D associated 
with L may be reduced to give a decomposition D\ of M into point-like sets 
of which the non-degenerate elements form a proper subcomplex H of L and 
of which the hyperspace P i * is homeomorphic to D*. In the section following 
this one we show how to use Lemma 4.5 to prove the theorem. Proofs of some 
of the simpler lemmas will be omit ted. 

Whenever an is an ^-simplex, In t an will denote the topological interior of 
<rn, and Bdy an will denote (an - In t an). 

D E F I N I T I O N . If L is a complex, then the 2-frontier Fr 2 (L) of L is the collection 
of those 2-simplices of L each of which lies in exactly one 3-simplex of L. 

L E M M A 4.1 . If a2 is a 2-simplex of L, and if f{<?2) is a 2-simplex, then a2 lies 
in a 3-simplex of L. 

Proof. Let o-i3 and o-2
3 be the two 3-simplices of M t h a t contain a-2, and let 

x be a point of Int(o-2). Since x lies in L, the s e t / - 1 ( / ( x ) ) is a non-degenerate 
element of G. If f(<r2) is a 2-simplex, then [/_1/(x) P\ a2] = x. If neither oV 
nor a2s lies in L, then either [f~1(f(x)) C\ L] = x, or [f_ 1(/(x)) (~\ L] is not 
connected, and hence not point-like. Nei ther a l ternat ive is possible. Hence 
a t least one of the two 3-simplices o-i3, o-2

3 lies in L. 

L E M M A 4.2. If o-3 is a 3-simplex of L one face of which is mapped by f onto 
a 2-simplex r2 of T, then /(o-3) = r2 and o-3 has two 2-faces which are mapped 
by f onto r2. 

L E M M A 4.3. If a2 is a 2-simplex of L, and if f(cr2) = r2 is a 2-simplex of T, 
then every element of D which meets Int(cr2) is a polygonal arc. If o-3 is a 3-
simplex of L which f maps onto r2, then In t (c 3 ) is decomposed into line-segments 
each of which 

(1) is parallel to whichever edge of o-3 it is that is mapped onto a vertex of r2, 
and 

(2) joins together the 2-faces of cr3 that f maps onto r2. 

L E M M A 4.4. Let a2 be a 2-simplex of L which f maps onto a 2-simplex. Suppose 
that f maps n 3-simplices of L onto f (a2); n > 0. The 3-simplices may be indexed 
to form a sequence {(r^)n

i=i such that (af P \ oi+ i) is a 2-simplex which is mapped 
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onto f{(r2). The set of the 2-simplices of L that are mapped onto f(a2) can be 
indexed to form a sequence {o-j2}7^ such that, for 1 < i < n, at

2 = (at
z r\ oi+i), 

o"o2 6 0"i3, <Jy? € crw
3, and that both <r0

2 and an
2 lie in F r 2 (L) . 

Proof. Let x be a point of Int(o-2), and let {sz}!=i be the sequence formed 
by indexing the segments of the arc a = (f~f(x) P\ L) in one of their two 
possible linear orderings. Let af be the 3-simplex tha t contains the segment 
sf. The sequence {ai3}n

i=1 includes each 3-simplex tha t is mapped by / onto 
f(a2), because each 3-simplex w h i c h / maps onto f (a2) contributes a segment 
to a (see Lemma 4.3). The ordering is independent of the choice of x. For 
if xf is another point of Int(o-2), then one of the two linear orderings {s/^Li 
of the segments of the arc (/"H/O^)) ^ L) has the property t ha t s/ belongs 
to o-j3, and n' = n. Since v? and a\+i have a common point t ha t lies in the 
interior of a 2-face of each, namely (st C\ si+i), they must have a 2-face in 
common. Let af be this face. S i n c e / maps a point of Int(Vz-

2) into the interior 
of f((T2), f((Ti2) = /(o-2). Let a0

2, an
2 be the face of o-i3, an

3 t h a t is mapped onto 
/(o-2) bu t does not lie in o-2

3, <JI-\. (Here we assume n > 2; if n = 1, the proof 
of the lemma is trivial.) The sequence {ai2}n

i==o contains all of the 2-simplices 
of L t h a t are mapped onto/(o-2) ; for by Lemma 4.1, each 2-simplex of L t h a t 
is mapped onto/(or2) lies in a 3-simplex of L which is mapped onto/(cr2) , and 
the sequence {aiS}n

i=i contains all such 3-simplices. 

Let p be the other 3-simplex of M of which o-0
2 is a face, and let y be a 

point of Int(o-0
2). If p belongs to L, then / (p) = / (o- 2 ) , by Lemma 4.2. If 

/ (p) = /(o-2), then y lies in the interior of the arc (/_ 1/(^) /°\ L) . But y is an 
end-point of the arc. Hence p does not lie in L, and o-0

2 lies in Fr 2 (L) . A similar 
a rgument shows t ha t an

2 lies in Fr 2 (L) . 

D E F I N I T I O N . A simplex a of L has property R if it lies in Fr(Z,), if it is a 
proper face of exactly one simplex r of L, and further, if a and r satisfy one of 
the following two sets of conditions: 

(1) a is a 2-simplex, r is a 3-simplex, and f{o) = fir) ; 
(2) a is a 1-simplex, r is a 2-simplex, andf(a) = / ( r ) . 

LEMMA 4.5. Let a be a simplex of L which has property R, and let r be that 
simplex of L of which a is a proper face. Let E = Int(o-) \J I n t ( r ) , and let H be 
the complex (L — E). Let D\ be the collection of subsets of M that consists of 
(1) each of the points of {M — H) and (2) each of the sets (d — E), where d is 
an element of D which lies in L. The collection D\ is an upper semi-continuous 
decomposition of M into point-like sets. The union L\ of the non-degenerate 
elements of D\ is a subcomplex of H. Moreover, D^ is homeomorphic to D*. 

Proof. We shall furnish first a detailed proof of a special case of the lemma : 
o- is a 2-simplex a2, r is a 3-simplex r3, and f{a2) = / ( r 3 ) is a 2-simplex. We 
shall then suggest analogous proofs for the other cases. 

We know from Lemmas 4.3 and 4.4 t ha t E = Int(o-2) \J In t ( r 3 ) is decom
posed in D into parallel line-segments each of which is a half-open end line-
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segment of a polygonal arc of D. It follows that every set in Di is either an 
element of D, a point, or a polygonal arc. Hence Di is a decomposition of M 
into point-like sets. That D\ is an upper semi-continuous decomposition 
follows from the fact that DX(A) = C\{A - H)\J (D(A C\ H) C\ H) for each 
closed subset A of M. 

Let p be the other 3-simplex of M of which a2 is a face. Since a2 has property 
i?, the simplex p does not lie in L. Let z>i, z/2, and Vz be the vertices of a2. Let fl0 

be the remaining vertex of r3, and let v± be the remaining vertex of p. Let 
V2 = (^2^3). We may suppose with no loss of generality that the line-seg
ments into which Int(cr3) is decomposed in D are parallel to (vQVi). Thus V2 

is decomposed in D into the individual points of V2. Let C — Int(p), and let 
Ci = Int(p U r3). Note, for later reference, that C = (Ci - £ ) . (See Fig. 1.) 
Let £ be the projection mapping of M onto D*, and let £1 be the projection 
mapping of M onto Z>i*. 

4-

C = lNT(f) C= INT^UT") 
FIGURE 1 

To show that Z>i* is homeomorphic to Z>* we shall first construct a homeo-
morphism h of (D* - p(C)) onto (ZV - £i(G)) which maps Bdy(/>(C1(C))) 
ontoBdy(£i(Cl(Ci))). We then show that £i(Cl(Ci)) is a 3-cell. Since p(Cl(C)) 
is also a 3-cell, the homeomorphism h\Bdy(p(Cl(C)) can be extended to a 
homeomorphism A' of p(Cl(C)) onto £i(Cl(Ci)). The mapping 

(A on £>* - £ ( 0 , 
* \A' on ^(Cl (O) 

will then be the required homeomorphism of D* onto Di*. 
Let D\(M - C) = {d\de D; dC(M - C)}. 
The collection D \ (M — C) is an upper semi-continuous decomposition of 

(M — C). Certainly D\(M — C) is a decomposition of (M — C), because each 
point of C is an element of D. Let / ^ b e a closed subset of (M — C). The set 
F is also closed in M. Hence D(F) is closed in M. Since D(F) and C have no 
point in common, D(F) is closed in {M — C). For the same reason, D(F) is 
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the union of those elements of D\(M — C) which meet F. Therefore, D\(M— C) 
is an upper semi-continuous decomposition. 

The space (D* — p(C)), with the relative topology, is the hyperspace of 
D\(M - C). The mapping TT = p\(M - C) throws (M - C) onto D\(M - C). 
Let S be a subset of D\ (M - C). If TC-^S) is open in (M - C), thenar"1 (5)^(7) 
is open in M. Since (T'^S) U C ) = ^ ( S U p l O ) , the set (SUp(Q) is 
open in Z>*, and 5 is open in the relative topology of (D* — p(C)). Now let 
5 be an open subset of (D* — p(C)). Then the set (S U p(C)) is open in D*t 

and the set p-^S U £(C)) is open in Af. Moreover, p~i(S U p(C)) = (p'^S) 
U C). Therefore, ^ ( S ) is open in (M - C). Since TT" 1 ^) = ^ ( S ) , the set 
T^ÇS) is open in (M — C). Thus the relative topology for (D* — p(C)) is 
exactly the topology induced on D\(M — C) by w, and 7r is the projection 
mapping of D\(M - C) onto (D* - p(Q). 

In a similar manner it can be proved that 

D^M - Ci) = {dx | dx Ç Z>lf d! C (M - d)} 

is an upper semi-continuous decomposition of {M — Ci), and that 

7T1 = # i | (i lf - Ci) 

is the projection mapping of Z>i|(ikf — Ci) onto (Di* — pi(Ci)). 
For each point x in (D* — p(C)), let A(#) = TCI{TT~1(X) — E). 
For each x in (/?* — p(C)), h(x) is a well-defined point. Let x\ and x2 be 

points of (D* — p(C)). If TT^TT""1^!) — E) is not equal to ir1(ir~1(x2) — E), 
then 

(TT-KXI) - £) ^ (^-1(^2) - £ ) , 

7 r _ 1 ( X i ) 3^ 7 T _ 1 ( ^ 2 ) , 

and #i 3^ x2. 
The function h throws (D* — p(C)) into (Z î* — pi(Ci)). For if x is a 

point of (D* - p{C))y then {TT1(X) - £ ) is an element of DX\(M - d ) . 
The function h throws (D* — p(C)) onto (Di* — pi(Ci)). Let y be a point 

of (£>i* - £i(Ci)). Then icrHy) is an element of D^M - d). Moreover, 
iTj^iy) lies in an element d of D\(M — C) such that (d — E) = irf"1^)- If 
wi^iy) does not meet Int(V2), then the element d is the set iri~~l(y) itself. If 
ici~l(y) meets Int(V2), then (irf1^) r\ Int(V2)) is a point q, because V2 is 
decomposed into individual points. Moreover, if iri~1(y) meets Int(V2), then 
d is the polygonal arc (f^ifig)) r\ L) which has an end line-segment joining 
<r2 to Int(V2) and lies parallel to (v0Vi). Thus if iri~l(y) meets Int(V2), then, 

xi"1 (y) = (f-i(f(q))nH) = (d - E). 

In either case, there is a point x in (D* — p{C)) such that d = 7r_1(x), and 
y = h(x). 

The function h is one-to-one. If x\ and x2 are points of (D* — p(C)), then 

TT-1^!) H T T " 1 ^ ) = 0, 
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and 

(TT-KXI) - E) H (w-1(x2) - E) = 0. 

The sets ( T T - 1 ^ ) — E) and ( T T - 1 ^ ) — E) are distinct elements of Di\(M—Ci)f 

and they have distinct images under in. 
The function h~l is continuous. Let {XÎ}T=I be a sequence of points con

verging to a point x in (£>i* — £i(Ci)). By Lemma 3.4, 

lim z(wrl(Xi), Trr1^)) = 0. 

The set 7ri-1(Xi) lies in an element dt of D\(M — C), and Trf"1^) lies in an 
element d of Z>|(ikf — C). For each i, 

^(Trr^xO, xrH*)) > z(̂ <, d). 
Therefore, lim 2(d*, d) = 0. Therefore, by another application of Lemma 3.4, 
thesequence \ir{dï) j ^ i converges to ir(d) in (D* — p (C)). Since ir(dt) = h~1(xi)y 

and since ir(d) = h~~1(x)1 the sequence {h~1(xi)}
c^i converges to the point 

h'^x). 
The function h is a homeomorphism. By Lemma 3.3, the space (Di* — pi(Ci)) 

is compact. By Lemma 3.1, the mapping h~l is a homeomorphism, for, by 
Lemma 3.2, (D* — p(C)) is a Hausdorff space. 

The next few paragraphs show that the set pi(Cl(Ci)) is a closed 3-cell. 
In E3, let ^o = (0, 0, 1), wi = (0, 0, 0), w2 = (0, 1, 0), w3 = (1, 0, 0), and 

w± = (0,0, —1). Let p = (w\WïWzW\), rf = (wtfWiWïWz), ai = {WÏWIWZ), and 
(72= (woW2Wz). Map Cl(Ci) onto (p \J r) with the simplicial homeomor
phism / that sends vt onto Wi. Line-segments parallel to (vtfJi) are mapped 
onto line-segments parallel to (WQWI) in the s-axis. 

Let b be the barycentre of a2j let 2 be the union of the affine 2-simplices 
(wiWzb) and (wiWib), and let T" be the affine 3-simplex (wiW2Wzb). (See Fig. 2.) 

FIGURE 2 
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Let S be a line-segment in r joining ci to a2 and parallel to the 0-axis. Let 
(S P <rt) = et (i = 1, 2), and let (S P 2) = 5. M a p 5 into itself by mapping 
ei onto eh by mapping e2 onto s, and by mapping the linear interval [e2} ei] 
linearly onto the linear interval [s, e^]. Call this mapping TS. 

M a p (p W T') onto (p' W r" ) by keeping the points of p fixed and mapping 
x onto TS(X) if x does not lie in p . Call this mapping k. 

T h e mapping pil^k'1 is a homeomorphism of the 3-cell (p' U r" ) on to 
^ i ( C l ( d ) ) . 

Now tha t we know tha t D is upper semi-continuous and tha t D* is homeo-
morphic to D*, it remains to show tha t Lx is a subcomplex of if. Let V be 
the other 3-simplex of M t h a t contains V (see page 596). We divide the 
proof into two parts , according to whether 'pz lies in L. 

(1) Suppose t ha t V does not belong to L. Then by Lemma 4.4, no other 
3-simplex of L maps onto/(o-2) , and by Lemma 4.3, if an element d of D has 
a non-empty intersection with Int(o-2) then d is a line-segment joining a2 to V2 

and lying parallel to t ha t edge of r3 which does not meet (o-2 P V ) . Thus , if 
d meets Int(o-2), then (d - E) is a point of I n t ( V ) and if (d P I n t O 2 ) ) is 
empty , then (d - E) = d. Hence Li = (H - In t (V 2 ) ) . 

(2) If V lies in L, then, by Lemma 3.3, / ( V ) = / ( V ) , and Lx = H. 
In either case, L\ is a subcomplex of H, and we have proved Lemma 4.5 

for the case a = a2, r — r3, and f(a) = / ( r ) is a 2-simplex. 
With a very few alterations, the preceding arguments establish Lemma 4.5 

for the (less complicated) cases in which a- is a 2-simplex, r is a 3-simplex, 
and f(o) = f(r) is either a 1-simplex or a vertex. Define 

p, C = In t (p) , Ci = In t (p U r ) , />, />], x, xi, etc., 

as before. Then h(x) = WI(T~1(X) — E) is a homeomorphism of (Z>* — p{C)) 
onto (Z>i* — £i (Ci) ) , the sets ^>(C1(C)) and pi(C\(Ci)) are closed 3-cells, and 
the homeomorphism h\Bdy(C\(C)) may be extended to a homeomorphism ^' 
of p (CI (C)) onto £ i (Cl (Ci)) in order to give a homeomorphism g of D* onto Z>i*. 

If a is a 1-simplex, and if r is a 2-simplex, however, the cells C and C\ mus t 
be constructed in some other way. A suitable construction is the following. 
(See Fig. 3.) 

Let vi and v2 be the vertices of a, and let v0 be the other vertex of r. Let A 
be the complex consisting of the faces of all the simplices of M of which a is 
an edge. The complex A is a 3-cell, and {A P L) lies in (Bdy(^4) VJ r ) . The 
3-simplices of A may be ordered cyclically around a to form a sequence 
o-i3, . . . , aj such t h a t o-i3 and an

z are the two 3-simplices of M of which r is 
a face. For each i (1 < i < «) let af = (or̂ 3 P oi+ i ) , and let bt be the bary-
centre of at

2. Let pi3 = (voViV2bi). For each i (1 < i < n) let p*3 = (bibi-iViV2). 
Let pw

3 = (^.-i^o^i^2). The set Z = Up*3 is a 3-cell such tha t (Z P L) = r. 
(See Fig. 4.) 

Recall t ha t E = Int(o-) \J I n t ( r ) . The argument for the preceding cases 
can now be carried out for <r and r by defining C — ( In t (Z) — E) and 
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A 
FIGURE 3 

Z 
FIGURE 4 

Ci = Int(Z), and by using the fact that, since / ( r ) is a 1-simplex, r is decom
posed into line-segments parallel, say, to (wi ) . (Compare this last definition 
of C and of C\ with the definition on page 596.) 

5. Applying Lemma 4.5. Since we have assumed K to be non-empty, 
the following lemma shows that Fr2 (iT) is non-empty. 

LEMMA 5.1. The mapping f is one-to-one on some ^-simplex of M. 
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Proof. The space T cannot consist of a single point, because then / would 
not be point-like. Nor can T consist entirely of 1-simplices, for then some 
pair of points would separate T and their inverses would separate M. Hence 
T contains a 2-simplex r. If Cl(/~1(Int(r))) = C is a 2-simplex, t hen / is one-to-
one on each of the two 3-simplices of M of which C is a face. If C is not a 
2-simplex, then / maps at least one other 2-simplex of M onto r, and by 
applying Lemma 4.4, with L = K, we find that C contains a 2-simplex a in 
Fr(iT). Then / is one-to-one on the other 3-simplex of M that contains o\ 

Remark. Lemma 5.1 generalizes to n dimensions using the Vietoris mapping 
theorem. 

LEMMA 5.2. The construction of Lemma 4.5 may be applied to G and K. 

Proof. The decomposition G and the complex K satisfy the hypotheses of 
the preceding section for D and L, respectively. Also, Fr2(iT) is non-empty, 
and each 2-simplex of Fr2(K) has property R. Let <r be a 2-simplex of Fr2 (iT), 
let r be the 3-simplex of K that contains a, and let p be the other 3-simplex 
of M that contains a. Since a belongs to Fr2(iT), the simplex p does not lie 
in K. Hence f(p) is a 3-simplex and f(a) is a 2-simplex. The simplices o- and r 
satisfy the requirements in the definition of property R. 

Let Gi be the decomposition obtained from the first i > 0 applications of 
the construction of Lemma 4.5, and let Kf be the union of the non-degenerate 
elements of Gt. 

LEMMA 5.3. The decomposition Gt is an upper semi-continuous decomposition 
of M into point-like sets, Kt is a proper subcomplex of Ki^.h and G* is homeo-
morphic to G*. 

COROLLARY. If Kt contains a simplex with property R, then the construction 
of Lemma 4.5 may be applied to Gt and to Kt. 

Proof. The lemma follows easily by mathematical induction and from 
Lemma 4.5, the corollary from observing that Gt and Kt satisfy the hypo
theses of Lemma 4.5 whenever Kt contains a simplex with property R. 

DEFINITION. If Kn contains no simplex with property R, then Kn is minimal. 

That a minimal complex Kn exists follows from the facts that (1) K is a 
finite complex, and (2) for each i > 0, the complex Kt is a proper subcomplex 
of Kt-L 

LEMMA h A. If Kn is minimal, then Kn is the union of a finite number of dis
joint, point-like sets. 

Proof. We first show that Kn contains no 3-simplex. 
Suppose that C is a component of Kn which contains a 3-simplex. Since 

(M — K) ^ 0 (see Lemma 5.1), the set {M — C) is non-emtpy. Hence 
Fr2(C) is non-empty. Let a2 be a 2-simplex lying in Fr2(C), and let r3 be the 
3-simplex of C that contains a2. If f(a2) is a 2-simplex, then, by Lemma 4.2, 
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/(°"2) =/('7"3)> the simplex a2 has proper ty R, and Kn is not minimal. Hence 
f(a2) is either a 1-simplex or a vertex. U f(a2) is a 1-simplex, t h e n / ( r 3 ) mus t 
be a 2-simplex, for otherwise Kn again fails to be minimal. Bu t if / ( r 3 ) is a 
2-simplex, then, by Lemma 4.4, r3 is one of a sequence of 3-simplices mapped 
onto / ( r 3 ) , one of these 3-simplices has a 2-face t h a t both maps onto / ( r 3 ) 
and lies in Fr(2£re), this 2-face has proper ty R, and Kn is not minimal. T h u s 
every 2-simplex of Fr 2(C) is mapped onto a vertex by / . 

Let B be the component of Fr 2 (C) t h a t contains a2. Since f (a2) is a vertex, 
a2 lies in some element g of Gn. Since J5 is connected, and since each simplex 
of B is mapped b y / onto a vertex, each simplex of B is mapped onto / (c r 2 ) , 
and B is a subset of g. 

Let x be a point of (M — K). Since g <Z Kn C. K, the point x does not 
lie in g. Let y be a point of In t ( r 3 ) . T h e component B separates x from y. 
Hence g separates x from y, unless y belongs to g. Because g is point-like, g 
cannot separate two points of M. Therefore, y does lie in g. Hence 

/ ( r s ) =f(g) = /(<r2), 

and Kn is not minimal. Hence Kn contains no 3-simplex. 
We show next t ha t every 2-simplex of Kn is mapped by / onto a vertex. 
Let cr2 be a 2-simplex lying in Kn. T h e simplex f(a2) cannot be a 2-simplex, 

for if it were, then by Lemma 4.1, a2 would belong to a 3-simplex of Kn. If 
f(a2) is a 1-simplex c/, then Fr(iT) contains a 1-simplex with proper ty R. T o 
see this, let y be a point of Int(tr ' ) , and let H be the set of all points of Kn 

t h a t are mapped by / onto y. Since Kn contains no 3-simplex, H is the union 
of a finite number of line-segments, one from each 2-simplex of Kn t h a t is 
mapped onto a'. T h e line-segments meet only a t their end-points, and H 
contains no 1-sphere because H, being an element of Gni is point-like. We 
shall call an end-point of a line-segment of H a "free ver tex" if it belongs to 
only t ha t one line-segment. I t is well known t h a t a finite, 1-dimensional 
complex which contains no 1-sphere has a t least two free vertices. Let a" be 
an edge of Kn which contains a free vertex of H. T h e simplex <J,! belongs to 
exactly one 2-simplex V2 of Kn, a n d / ( < / ' ) = / ( V 2 ) . Therefore, a" has proper ty 
R. Since Kn contains no such simplex, / mus t m a p each 2-simplex of Kn onto 
a vertex. 

We can now show t h a t every 1-simplex of Kn is mapped by / onto a ver
tex. If c is a 1-simplex of Knj then f(a) is either a 1-simplex or a vertex. If a 
is an edge of a 2-simplex r2 of Kn, then/(<r) = f(r2) is a vertex. If a lies in no 
2-simplex of Knj t h e n / ( c ) must still be a vertex, for if /(cr) were a 1-simplex, 
each point of Int(o-) would be an element of Gnj cont rary to the fact t h a t 
Kn contains only non-degenerate elements of Gn. 

Since every 1-simplex of Kn is mapped by / onto a ver tex of F, each com
ponent of Kn is mapped onto some vertex of F and mus t therefore be an 
element of Gn. Elements of Gn are point-like, components of Kn are disjoint, 
and Lemma 5.4 is proved. 
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Remark. After seeing that a minimal Kn contains no 3-simplex, one might 
try to show that it also contains no 2-simplex. One could then continue the 
reduction of the one-dimensional Kn to a finite set of vertices, and there 
would be no need for Lemma 5.5. However, a minimal Kn may contain a 
2-dimensional component each edge of which lies in more than one 2-simplex 
(e.g., a pleated disk). One cannot reduce such a component. Fortunately, all 
components of a minimal Kn are already point-like. 

It remains to state one more lemma before proceeding to the proof of the 
theorem. 

LEMMA 5.5. If D is a decomposition of a 3-sphere into point-like sets, and 
if D has only finitely many non-degenerate elements, then D* is homeomorphic 
to the sphere. 

Remark. This lemma is a special case of the following, which is easy to 
prove: If D is a decomposition of an ^-manifold TV into cellular sets and if 
D has only finitely many non-degenerate elements, then D* is homeomorphic 
to N. A subset of an n-manifold is cellular if there exist closed w-cells Ct 

(i = 1 ,2 , . . . ) in N such that A = C\CU and such that, for each i, the cell 
Ci+i is contained in the interior of the cell Ct. The concepts cellular and point
like are equivalent for subsets of Sn. 

6. The proof of the theorem. 

THEOREM. Let M be a triangulated 3-sphere and let T be a triangulated topo
logical space. If there exists a point-like, simplicial mapping of M onto T, then 
T is homeomorphic to M. 

Apply the construction of Lemma 4.5 to G and K until a hyperspace Gn* 
with a minimal complex Kn is obtained. The complex Kn will be the union 
of a finite number of point-like elements of Gn (Lemma 5.4) and hence Gw* 
will be homeomorphic to M (Lemma 5.5). But G* is homeomorphic to Gn* 
(Lemma 5.3) and T is homeomorphic to G* (Lemma 3.5). Thus T is homeo
morphic to M. 

Remark. A mapping g of an w-manifold N is called cellular if the set g~l{x) 
is cellular for each point x in g(N). The arguments of this paper are easily 
modified to show that if there exists a cellular, simplicial mapping of a tri
angulated compact 3-manifold M onto a triangulated topological space T, 
then T is homeomorphic to M. 

I should like to close with the following question. Can every orientation-
preserving, point-like, simplicial mapping of the 3-sphere be factored into a 
product of simplicial mappings of the sphere onto itself each of which identifies 
exactly two vertices, those bounding a 1-simplex? 
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