MRS SYMPOSIUM H

Volume 1774 • 2015 MRS Spring Meeting

Mechanics of Energy Storage and Conversion—Batteries, Thermoelectrics and Fuel Cells

EDITORS

Jiangyu Li

John Huber

Kaiyang Zeng

Haleh Ardebili

A publication of the

MRS Online Proceedings Library

Editorial Board

Editorial Board Chair:

Michelle L. Oyen, Cambridge University, United Kingdom

Editorial Board Members:

David Bahr, Purdue University, USA

Asa Barber, University of Portsmouth, United Kingdom

Frank del Rio, National Institute of Standards and Technology, USA

Marilyn L. Minus, Northeastern University, USA

Roger Narayan, North Carolina State University, USA

The MRS Online Proceedings Library (ISSN: 1946-4274) features over 100,000 peer-reviewed papers presented at MRS Meetings. The proceedings papers can be viewed by meeting or topic, and are fully searchable.

Manuscripts: Information on article submission may be found at the *MRS Online Proceedings Library* homepage at http://journals.cambridge.org/opl.

Subscriptions: Institutions and libraries which are not current customers may purchase a 12-month unlimited access package to all MRS proceedings volumes/papers that are available online. To find out how to purchase OPL please contact: online@cambridge.org, in the Americas, or library.sales@cambridge.org, in the rest of the world.

Copyright © 2015, Materials Research Society. All rights reserved. No part of this publication may be reproduced, in any form or by any means, electronic, photocopying, or otherwise, without permission in writing from Cambridge University Press. Policies, request forms and contacts are available at: http://www.cambridge.org/rights/permissions/permission.htm. Permission to copy (for users in the USA) is available from Copyright Clearance Center http://www.copyright.com, email: info@copyright.com.

MATERIALS RESEARCH SOCIETY SYMPOSIUM H VOLUME 1774

Mechanics of Energy Storage and Conversion—Batteries, Thermoelectrics and Fuel Cells

Symposium held April 6-10, 2015, San Francisco, California, U.S.A.

EDITORS

Jiangyu Li

University of Washington Seattle, Washington, U.S.A.

John Huber

University of Oxford Oxford, United Kingdom

Kaiyang Zeng

National University of Singapore Singapore

Haleh Ardebili

University of Houston Sugar Land, TX, U.S.A.

Materials Research Society Warrendale, Pennsylvania

ISSN: 1946-4274

CONTENTS

Environmo Dar	f LiFePO4 Cathodic Active Material Synthesized in Open ent Conditions Through Ionic Medium
Developmo Thermoele Kar	ent of Transport Properties Characterization Capabilities for extric Materials and Modules
Bah	on of Thermoelectric Properties of <i>P</i> -Type GaN Thin Films13 nadir Kucukgok, Babar Hussain, nanle Zhou, Ian T. Ferguson, and Na Lu
Layers Inv Ren	and Conductivity of Fuel Cell Membranes and Catalytic vestigated by AFM
Computati	rch of Better Thermoelectric Oxides via First-Principles ions
The Kineti Asg Wil	endrite Inhibition on Post-charge Anode Surface: ics Role
technology	d Simulation of methanol sensing devices using DMFC 7
Sub	onversion using electrolytic concentration gradients
Formation	Il Modeling of Internal Ionic Resistance Due to SEI Layer in Li/S Batteries