Generalized Jordan Semiderivations in Prime Rings

Vincenzo De Filippis, Abdellah Mamouni, and Lahcen Oukhtite

$$
\begin{aligned}
& \text { Abstract. Let } R \text { be a ring and let } g \text { be an endomorphism of } R \text {. The additive mapping } d: R \rightarrow R \text { is } \\
& \text { called a Jordan semiderivation of } R \text {, associated with } g \text {, if } \\
& \qquad d\left(x^{2}\right)=d(x) x+g(x) d(x)=d(x) g(x)+x d(x) \text { and } \quad d(g(x))=g(d(x))
\end{aligned}
$$

for all $x \in R$. The additive mapping $F: R \rightarrow R$ is called a generalized Jordan semiderivation of R, related to the Jordan semiderivation d and endomorphism g, if

$$
F\left(x^{2}\right)=F(x) x+g(x) d(x)=F(x) g(x)+x d(x) \quad \text { and } \quad F(g(x))=g(F(x))
$$

for all $x \in R$. In this paper we prove that if R is a prime ring of characteristic different from $2, g$ an endomorphism of R, d a Jordan semiderivation associated with g, F a generalized Jordan semiderivation associated with d and g, then F is a generalized semiderivation of R and d is a semiderivation of R. Moreover, if R is commutative, then $F=d$.

1 Introduction

Throughout this paper R will be an associative prime ring of characteristic different from 2 , and $Z(R)$ will denote the center of R. We will write $[x, y]$ for $x y-y x$. An additive mapping $d: R \rightarrow R$ is called a derivation of R, if $d(x y)=d(x) y+x d(y)$ holds for all pairs $x, y \in R$. The additive mapping d on R is called a Jordan derivation if $d\left(x^{2}\right)=d(x) x+x d(x)$, for all $x \in R$. Obviously, any derivation is a Jordan derivation; the converse is not true in general. A well-known result of Herstein states that every Jordan derivation on a prime ring of characteristic different from 2 is a derivation [4]. Later, Bresar [2] gives a generalization of Herstein's result. More precisely, he proves that every Jordan derivation on a 2 -torsion free semiprime ring is a derivation.

Moreover, the reader can find similar results in literature regarding other types of additive mappings. For instance, an additive map $F: R \rightarrow R$ is called a generalized derivation if there exists a derivation d of R such that $F(x y)=F(x) y+x d(y)$ holds for all $x, y \in R$. The additive map F is called a generalized Jordan derivation if there exists a Jordan derivation d of R such that $F\left(x^{2}\right)=F(x) x+x d(x)$ for all $x \in R$. Of course any generalized derivation is a generalized Jordan derivation. In [5] Jing and Liu prove that any generalized Jordan derivation on a prime ring of characteristic different from 2 is a generalized derivation (Theorem 2.5).

In this paper we will extend previous results to a class of additive mappings whose concept covers the ones of derivations and generalized derivations. We first recall that in [1] Bergen introduces the following definition.

[^0]Definition 1.1 Let g be an endomorphism of R. An additive mapping d of R into itself is called a semiderivation (associated with g) if, for all $x, y \in R$,

$$
d(x y)=d(x) y+g(x) d(y)=d(x) g(y)+x d(y) \quad \text { and } \quad d(g(x))=g(d(x)
$$

In [3] we introduced generalized semiderivations, defined as follows.
Definition 1.2 Let d be a semiderivation of R associated with endomorphism g. The additive map F on R is a generalized semiderivation of R if, for all $x, y \in R$,

$$
F(x y)=F(x) y+g(x) d(y)=F(x) g(y)+x d(y) \quad \text { and } \quad F(g(x))=g(F(x))
$$

Motivated by the concepts of Jordan derivations and generalized Jordan derivations, we initiate the concepts of Jordan semiderivations and generalized Jordan semiderivation as follows.

Definition 1.3 Let R be a ring, and let g be an endomorphism of R. The additive mapping $d: R \rightarrow R$ is called a Jordan semiderivation of R associated with g if, for $x \in R$,

$$
d\left(x^{2}\right)=d(x) x+g(x) d(x)=d(x) g(x)+x d(x) \quad \text { and } \quad d(g(x))=g(d(x))
$$

Definition 1.4 Let R be a ring, let g be an endomorphism of R, and let d be a Jordan semiderivation of R associated with g. The additive mapping $F: R \rightarrow R$ is called a generalized Jordan semiderivation of R associated with d and g if, for $x \in R$,

$$
F\left(x^{2}\right)=F(x) x+g(x) d(x)=F(x) g(x)+x d(x) \quad \text { and } \quad F(g(x))=g(F(x))
$$

In this paper we prove the following theorem following the line of investigation of previous cited results.

Theorem Let R be a prime ring of characteristic different from 2 , let g be an endomorphism of R, let d be a Jordan semiderivation associated with g, and let F be a generalized Jordan semiderivation associated with d and g. Then F is a generalized semiderivation of R and d is a semiderivation of R. Moreover, if R is commutative, then $F=d$.

2 Proof of Theorem

In all that follows we will assume R has characteristic different from 2 .
Remark 2.1 In order to prove our result we must show the following

$$
\begin{array}{ll}
F(x y)=F(x) y+g(x) d(y), & \forall x, y \in R \\
F(x y)=F(x) g(y)+x d(y), & \forall x, y \in R \tag{2.2}
\end{array}
$$

Notice that proofs of (2.1) and (2.2) are analogous to each other. Thus, without loss of generality, we will show only that (2.1) holds.

Remark 2.2 We notice that if g is the identity map on R, then F is a Jordan generalized derivation. In this case, by [5, Theorem 2.5], F is an ordinary generalized derivation of R, and a fortiori F is a generalized semiderivation of R.

Lemma $2.3 \quad(F(x) y+g(x) d(y)-F(x y))[x, y]=0$ for all $x, y \in R$.
Proof Let $x, y \in R$; then by the definition of F we have

$$
\begin{align*}
F\left((x+y)^{2}\right) & =F(x+y)(x+y)+g(x+y) d(x+y) \tag{2.3}\\
& =F\left(x^{2}\right)+F\left(y^{2}\right)+F(x) y+g(x) d(y)+F(y) x+g(y) d(x) .
\end{align*}
$$

On the other hand,

$$
\begin{equation*}
F\left((x+y)^{2}\right)=F\left(x^{2}\right)+F\left(y^{2}\right)+F(x y+y x) \tag{2.4}
\end{equation*}
$$

Equations (2.3) and (2.4) imply

$$
\begin{equation*}
F(x y+y x)=F(x) y+g(x) d(y)+F(y) x+g(y) d(x) \tag{2.5}
\end{equation*}
$$

If we replace y with $x y+y x$ in (2.5), we have

$$
\begin{aligned}
G(x, y) & =F(x(x y+y x)+(x y+y x) x) \\
& =F(x)(x y+y x)+g(x) d(x y+y x)+F(x y+y x) x+g(x y+y x) d(x)
\end{aligned}
$$

and using (2.5),

$$
\begin{align*}
G(x, y)= & F(x)(x y+y x)+g(x) d(x) y+g(x) g(x) d(y) \tag{2.6}\\
& +g(x) d(y) x+g(x) g(y) d(x)+F(x) y x+g(x) d(y) x \\
& +F(y) x^{2}+g(y) d(x) x+g(x y+y x) d(x)
\end{align*}
$$

Moreover, we can also write

$$
G(x, y)=F\left(x^{2} y+y x^{2}\right)+2 F(x y x)
$$

and again using (2.5),

$$
\begin{align*}
G(x, y)=F(x) x y+g(x) d(x) & y+g(x)^{2} d(y)+F(y) x^{2} \tag{2.7}\\
& +g(y) d(x) x+g(y) g(x) d(x)+2 F(x y x)
\end{align*}
$$

Comparing (2.6) with (2.7) and since $\operatorname{char}(R) \neq 2$, it follows that

$$
\begin{equation*}
F(x y x)=F(x) y x+g(x) d(y) x+g(x) g(y) d(x) . \tag{2.8}
\end{equation*}
$$

Now replace x with $x+z$ in (2.8), for any $z \in R$, so that

$$
\begin{align*}
F(x y z+z y x)=F(x) y z+g(x) & d(y) z+g(x) g(y) d(z) \tag{2.9}\\
& +F(z) y x+g(z) d(y) x+g(z) g(y) d(x)
\end{align*}
$$

In particular, for $z=x y$,

$$
H(x, y)=F((x y)(x y)+(x y)(y x)),
$$

and using (2.9) we get

$$
\begin{align*}
H(x, y)=F(x) y x y+g(x) & d(y) x y+g(x) g(y) d(x y) \tag{2.10}\\
& +F(x y) y x+g(x y) d(y) x+g(x y) g(y) d(x) .
\end{align*}
$$

On the other hand

$$
\begin{align*}
H(x, y)= & F\left((x y)^{2}\right)+F\left(x y^{2} x\right) \tag{2.11}\\
= & F(x y) x y+g(x y) d(x y)+F(x) y^{2} x+g(x) d(y) y x \\
& +g(x) g(y) d(y) x+g(x) g\left(y^{2}\right) d(x) .
\end{align*}
$$

Comparing (2.10) with (2.11), one has

$$
\begin{equation*}
(F(x) y+g(x) d(y)-F(x y))(x y-y x)=0 \tag{2.12}
\end{equation*}
$$

Lemma 2.4 Assume that R is not commutative and let $x, y \in R$ be such that $[x, y]=0$. Then $F(x y)=F(x) y+g(x) d(y)$.

Proof We start from (2.12) and replace x with $x+z$, for any $z \in R$; then
(2.13) $(F(x) y+g(x) d(y)-F(x y))[z, y]+(F(z) y+g(z) d(y)-F(z y))[x, y]=0$.

Analogously, replacing y with $y+z$ in (2.12), it follows that
(2.14) $(F(x) y+g(x) d(y)-F(x y))[x, z]+(F(x) z+g(x) d(z)-F(x z))[x, y]=0$ for any $x, y, z \in R$. Now let x, y be such that $[x, y]=0$; therefore, by (2.13) we have

$$
(F(x) y+g(x) d(y)-F(x y))[z, y]=0, \quad \forall z \in R
$$

The primeness of R implies easily that if $y \notin Z(R)$, then $F(x) y+g(x) d(y)-F(x y)=$ 0 , as required by the conclusion Lemma 2.4.

Similarly, by (2.14) and $[x, y]=0$, one has

$$
(F(x) y+g(x) d(y)-F(x y))[x, z]=0, \quad \forall z \in R
$$

and if $x \notin Z(R)$, then $F(x) y+g(x) d(y)-F(x y)=0$ follows again.
Thus, we consider the case both $x \in Z(R)$ and $y \in Z(R)$. Since R is not commutative, there exists $r \in R$ such that $r \notin Z(R)$. Hence $x+r \notin Z(R)$ and $[y, x+r]=[y, r]=$ 0 . By the previous argument, we have that

$$
F(x+r) y+g(x+r) d(y)-F((x+r) y)=0
$$

and

$$
F(r) y+g(r) d(y)-F(r y)=0
$$

implying that $F(x) y+g(x) d(y)-F(x y)=0$. Therefore, in any case

$$
[x, y]=0 \Longrightarrow F(x y)=F(x) y+g(x) d(y) .
$$

Lemma 2.5 Assume that R is a non-commutative domain. Then $F(x y)=F(x) y+$ $g(x) d(y)$ for all $x, y \in R$.

Proof By Lemma 2.3, we have that $(F(x) y+g(x) d(y)-F(x y))[x, y]=0$ for all $x, y \in R$. Since R is a domain, for all $x, y \in R$, either $F(x y)=F(x) y+g(x) d(y)$ or $[x, y]=0$. But in this last case, $F(x y)=F(x) y+g(x) d(y)$ follows from Lemma 2.4, and we are done.

Convention 2.6 In all that follows, if R is not commutative, then we always assume that R is not a domain.

Remark 2.7 Assume that d is a Jordan semiderivation of R. Then $d(x y x)=$ $d(x) y x+g(x) d(y) x+g(x) g(y) d(x)$ for all $x, y \in R$.

Proof This follows by (2.8), with $F=d$.
Lemma 2.8 Assume that R is not commutative and let $x, y \in R$ be such that $x y=0$. Then $0=F(x y)=F(x) y+g(x) d(y)$.

Proof In the case where $y x=0,[x, y]=0$, and we conclude by Lemma 2.4. Let $y x \neq 0$. Right multiplying (2.14) by y, since $x y=0$, we have

$$
(F(x) y+g(x) d(y)) x z y=0 \quad \forall z \in R
$$

and by the primeness of R we have

$$
(F(x) y+g(x) d(y)) x=0 .
$$

Replace y with $y r y$, for any $r \in R$, so that

$$
(F(x) y r y+g(x) d(y r y)) x=0
$$

and by Remark 2.7 we have

$$
(F(x) y+g(x) d(y)) r y x=0 \quad \forall r \in R
$$

Once again by the primeness of R we get $F(x) y+g(x) d(y)=0=F(x y)$.
Corollary 2.9 Assume that R is not commutative and let $x, y \in R$ be such that $x y=0$. Then $F(y x)=F(y) x+g(y) d(x)$.

Proof By Lemma 2.8, $F(x y)=F(x) y+g(x) d(y)=0$. On the other hand, by using equation (2.5),

$$
F(y x)=F(x y+y x)=F(y) x+g(y) d(x) .
$$

Remark 2.10 Assume that R is not commutative, let d be a Jordan semiderivation of R, and let $x, y \in R$ be such that $x y=0$. Then $0=d(x y)=d(y) x+g(y) d(x)$.

Proof This follows by Lemma 2.8, with $F=d$.
Lemma 2.11 Assume R is not commutative and let $x, y \in R$ be such that $x y=0$. Then $F(y x r)=F(y x) r+g(y x) d(r)$, for all $r \in R$.

Proof By using equation (2.9), for $x y=0$ and for all $r \in R$,

$$
\begin{aligned}
F(r x y+y x r)=F(y x r)=g(r) d(x) y & +g(r) g(x) d(y) \\
& +F(y) x r+g(y) d(x) r+g(y) g(x) d(r)
\end{aligned}
$$

and by Corollary 2.9

$$
F(y x r)=g(r)(d(x) y+g(x) d(y))+g(y) g(x) d(r)+F(y x) r
$$

Hence, applying Remark 2.10, $d(x) y+g(x) d(y)=0$, and we conclude that

$$
F(y x r)=g(y) g(x) d(r)+F(y x) r .
$$

Remark 2.12 Define the following subset of R :

$$
S=\{a \in R: F(a x)=F(a) x+g(a) d(x), \quad \forall x \in R\} .
$$

We remark that by Lemma 2.6 one has that $a b=0$, which implies $b a \in S$.
Here we fix an element $b \in R$, and introduce the following map $\phi_{b}: R \rightarrow R$ such that $\phi_{b}(x)=F(x b)-F(x) b-g(x) d(b)$ for all $x \in R$. We notice that the following hold:

$$
\begin{aligned}
\phi_{b+c}(x) & =\phi_{b}(x)+\phi_{c}(x) & & \forall b, c, x \in R ; \\
\phi_{b}(c) & =-\phi_{c}(b) & & \forall b, c \in R .
\end{aligned}
$$

We need a few lemmas to prove the main theorem. These results are contained in the classical paper of Herstein [4], but we prefer to state them for sake of completeness.

Lemma 2.13 Let $t \in S, t \notin Z(R)$. If $y \in R$ such that $[t, y]=0$, then $y \in S$.
Proof The proof is contained in [4, Lemma 3.8].
Lemma 2.14 Let $x \in R$ such that $x^{2}=0$. Then $x \in S$.
Proof Of course we assume $x \neq 0$, if not we are done, in particular $x \notin Z(R)$ Since $x(x r)=0$ for any $r \in R$, then by Lemma 2.11, $F(x r x)=F(x r) x+g(x r) d(x)$. Moreover by Remark 2.12 we also have $x r x \in S$. Finally, since $x \notin Z(R)$, there exists $r \in R$ such that $x r x \notin Z(R)$. Hence by $[x r x, x]=0$ and Lemma 2.13, it follows $x \in S$.

Lemma 2.15 Let $x, y \in S$; then $\phi_{b}(a)[x, y]=0$, for all $a, b \in R$.
Proof This is [4, Lemma 3.10].
We are now ready to prove our result.
Theorem Let R be a prime ring of characteristic different from 2 , let g be an endomorphism of R, let d be a Jordan semiderivation associated with g, and let F be a generalized Jordan semiderivation associated with d and g. Then F is a generalized semiderivation of R and d is a semiderivation of R. Moreover, if R is commutative, then $F=d$.

Proof Our target is to show that $\phi_{r}(s)=0$ for all $r s \in R$.
First, we consider the case where R is not commutative. In light of Lemma 2.5 we also assume R is not a domain. Let $z \in R$ be such that $z^{2}=0$. By Lemma 2.14 it follows that $z \in S$. Therefore, for any $t \in R$ such that $t^{2}=0$, Lemma 2.15 implies $\phi_{a}(b)[z, t]=0$ for all $a, b \in R$. Right multiplying by z, we get

$$
\begin{equation*}
\phi_{a}(b) z t z=0 \tag{2.15}
\end{equation*}
$$

for all $a, b \in R$ and for all square-zero elements $z, t \in R$.

Moreover, by Lemma 2.3, $\phi_{y}(x)[x, y]=0$ holds for all $x, y \in R$. This means that $\left([x, y] r \phi_{y}(x)\right)^{2}=0$, so that $[x, y] r \phi_{y}(x) \in S$, for all $x, y, r \in R$. Applying equation (2.15) yields that, for all $a, b, x, y, r, s, t, z \in R$,

$$
\phi_{a}(b)\left([x, y] r \phi_{y}(x)\right)\left([z, t] s \phi_{t}(z)\right)\left([x, y] r \phi_{y}(x)\right)=0
$$

that is,

$$
\phi_{t}(z)[x, y] r \phi_{y}(x)[z, t] R \phi_{t}(z)[x, y] r \phi_{y}(x)=(0)
$$

By the primeness of R, either $\phi_{t}(z)[x, y]=0$ or $\phi_{y}(x)[z, t]=0$. In particular, for $z=y$ one has either $0=\phi_{t}(y)[x, y]=-\phi_{y}(t)[x, y]$ or $\phi_{y}(x)[y, t]=0$. On the other hand, by (2.13), $\phi_{y}(t)[x, y]+\phi_{y}(x)[t, y]=0$, and this implies both $\phi_{y}(t)[x, y]=$ 0 and $\phi_{y}(x)[t, y]=0$. Therefore, in any case for all $x, y, t \in R, \phi_{y}(x)[t, y]=0$. Replacing t with $r x$, for any $r \in R$, we have $\phi_{y}(x) r[x, y]=0$. We recall that, if $[x, y]=0$, then $\phi_{y}(x)=0$ follows from Lemma 2.4. Thus $\phi_{y}(x) r[x, y]=0$ and the primeness of R imply $\phi_{y}(x)=0$ for all $x, y \in R$.

Finally we consider the case where R is commutative. We recall that, by Remark 2.2 , if g is the identity map on R, then we are done. Therefore here we assume again g is not the identity map on R.

Since d is a generalized Jordan semiderivation associated with d and g,(2.5) yields

$$
2 d(x y)=d(x) y+g(x) d(y)+d(y) x+g(y) d(x) \quad \text { for all } x, y \in R .
$$

Replacing y by $y z$, we get
(2.16) $2 d(x y z)=d(x) y z+g(x) d(y z)+d(y z) x+g(y z) d(x) \quad$ for all $x, y, z \in R$.

On the other hand, (2.9) yields

$$
\begin{align*}
2 d(x y z)=d(x) y z+g(x) d(y) z & +g(x) g(y) d(z) \tag{2.17}\\
& +d(x) g(y) g(z)+x d(y) g(z)+x y d(z)
\end{align*}
$$

Comparing (2.16) with (2.17) we obtain

$$
g(x) d(y) z+g(x) g(y) d(z)+x d(y) g(z)+x y d(z)=g(x) d(y z)+x d(y z)
$$

for all $x, y, z \in R$, so that

$$
(g(x)-x)(d(y z)-d(y) z-g(y) d(z))=0 \quad \text { for all } x, y, z \in R
$$

Since R is a domain and g is not the identity map on R, we conclude that $d(y z)=$ $d(y) z+g(y) d(z)$ for all $y, z \in R$.

Now, to prove that $F=d$, rewriting equation (2.5), we get

$$
2 F(x y)=F(x)(y+g(y))+(x+g(x)) d(y)
$$

and in particular

$$
\begin{align*}
2 F\left(x^{2} y\right) & =F\left(x^{2}\right)(y+g(y))+\left(x^{2}+g\left(x^{2}\right)\right) d(y) \tag{2.18}\\
& =(F(x) x+g(x) d(x))(y+g(y))+\left(x^{2}+g\left(x^{2}\right)\right) d(y)
\end{align*}
$$

Moreover, by equation (2.8),

$$
\begin{equation*}
2 F\left(x^{2} y\right)=2 F(x) y x+2 g(x) d(y) x+2 g(x) g(y) d(x) \tag{2.19}
\end{equation*}
$$

Comparing (2.18) with (2.19) it follows that

$$
\begin{equation*}
F(x) x(g(y)-y)+d(x) g(x)(y-g(y))+d(y)(x-g(x))^{2}=0 \tag{2.20}
\end{equation*}
$$

and for $x=y$,

$$
(F(x)-d(x)) x(g(x)-x)=0 \quad \forall x \in R
$$

Therefore, for any $x \in R$, either $F(x)=d(x)$ or $g(x)=x$. Assume that $g(x)=x$; moreover, since g is not the identity map, there exists $y \in R$ such that $g(y) \neq y$. Thus by (2.20) we get $(F(x)-d(x)) x=0$; that is, $F(x)=d(x)$ holds in any case.

References

[1] J. Bergen, Derivations in prime rings. Canad. Math. Bull. 26(1983), no. 3, 267-270. http://dx.doi.org/10.4153/CMB-1983-042-2
[2] M. Bresar, Jordan derivations on semiprime rings. Proc. Amer. Math. Soc. 104(1988), no. 4, 1003-1006. http://dx.doi.org/10.1090/S0002-9939-1988-0929422-1
[3] V. De Filippis, A. Mamouni, and L. Oukhtite, Semiderivations satisfying certain algebraic identities on Jordan ideals. ISRN Algebra 2013(2013), Article ID 738368.
[4] I. N. Herstein, Jordan derivations of prime rings. Proc. Amer. Math. Soc. 8(1957), 1104-1110. http://dx.doi.org/10.1090/S0002-9939-1957-0095864-2
[5] W. Jing and S. Lu, Generalized Jordan derivations on prime rings and standard operator algebras. Taiwanese J. Math. 7(2003), no. 4, 605-613.
Department of Mathematics and Computer Science, University of Messina, 98166, Messina, Italy e-mail: defilippis@unime.it
Université Moulay Ismail, Faculté des Sciences et Techniques Département de Mathématiques, BP. 509Boutalamine 52000 Errachidia, Maroc
e-mail: mamouni_1975@live.fr oukhtitel@hotmail.com

[^0]: Received by the editors July 18, 2013.
 Published electronically February 6, 2015.
 AMS subject classification: 16 W 25 .
 Keywords: semiderivation, generalized semiderivation, Jordan semiderivation, prime ring.

