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Generalized Jordan Semiderivations in
Prime Rings

Vincenzo De Filippis, Abdellah Mamouni, and Lahcen Oukhtite

Abstract. Let R be a ring and let g be an endomorphism of R. _e additive mapping d∶R → R is
called a Jordan semiderivation of R, associated with g, if

d(x2
) = d(x)x + g(x)d(x) = d(x)g(x) + xd(x) and d(g(x)) = g(d(x))

for all x ∈ R. _e additive mapping F∶R → R is called a generalized Jordan semiderivation of R,
related to the Jordan semiderivation d and endomorphism g, if

F(x2
) = F(x)x + g(x)d(x) = F(x)g(x) + xd(x) and F(g(x)) = g(F(x))

for all x ∈ R. In this paperwe prove that if R is a prime ring of characteristic diòerent from 2, g an en-
domorphism of R, d a Jordan semiderivation associated with g, F a generalized Jordan semideriva-
tion associated with d and g, then F is a generalized semiderivation of R and d is a semiderivation
of R. Moreover, if R is commutative, then F = d.

1 Introduction

_roughout this paper R will be an associative prime ring of characteristic diòerent
from 2, and Z(R) will denote the center of R. We will write [x , y] for xy − yx. An
additive mapping d∶R → R is called a derivation of R, if d(xy) = d(x)y + xd(y)
holds for all pairs x , y ∈ R. _e additivemapping d on R is called a Jordan derivation if
d(x2

) = d(x)x+xd(x), for all x ∈ R. Obviously, any derivation is a Jordan derivation;
the converse is not true in general. A well-known result of Herstein states that every
Jordan derivation on a prime ring of characteristic diòerent from 2 is a derivation [4].
Later, Bresar [2] gives a generalization of Herstein’s result. More precisely, he proves
that every Jordan derivation on a 2-torsion free semiprime ring is a derivation.

Moreover, the reader can ûnd similar results in literature regarding other types of
additive mappings. For instance, an additive map F∶R → R is called a generalized
derivation if there exists a derivation d of R such that F(xy) = F(x)y + xd(y) holds
for all x , y ∈ R. _e additive map F is called a generalized Jordan derivation if there
exists a Jordan derivation d of R such that F(x2

) = F(x)x + xd(x) for all x ∈ R.
Of course any generalized derivation is a generalized Jordan derivation . In [5] Jing
and Liu prove that any generalized Jordan derivation on a prime ring of characteristic
diòerent from 2 is a generalized derivation (_eorem 2.5).

In this paper we will extend previous results to a class of additivemappings whose
concept covers the ones of derivations and generalized derivations. We ûrst recall that
in [1] Bergen introduces the following deûnition.
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Deûnition 1.1 Let g be an endomorphism of R. An additive mapping d of R into
itself is called a semiderivation (associated with g) if, for all x , y ∈ R,
d(xy) = d(x)y + g(x)d(y) = d(x)g(y) + xd(y) and d(g(x)) = g(d(x).

In [3] we introduced generalized semiderivations, deûned as follows.

Deûnition 1.2 Let d be a semiderivation of R associated with endomorphism g.
_e additivemap F on R is a generalized semiderivation of R if, for all x , y ∈ R,
F(xy) = F(x)y + g(x)d(y) = F(x)g(y) + xd(y) and F(g(x)) = g(F(x)).

Motivated by the concepts of Jordan derivations and generalized Jordan deriva-
tions,we initiate the concepts of Jordan semiderivations and generalized Jordan semi-
derivation as follows.

Deûnition 1.3 Let R be a ring, and let g be an endomorphism of R. _e additive
mapping d∶R → R is called a Jordan semiderivation of R associatedwith g if, for x ∈ R,

d(x2
) = d(x)x + g(x)d(x) = d(x)g(x) + xd(x) and d(g(x)) = g(d(x)).

Deûnition 1.4 Let R be a ring, let g be an endomorphismof R, and let d be a Jordan
semiderivation of R associated with g. _e additive mapping F∶R → R is called a
generalized Jordan semiderivation of R associated with d and g if, for x ∈ R,

F(x2
) = F(x)x + g(x)d(x) = F(x)g(x) + xd(x) and F(g(x)) = g(F(x)).

In this paper we prove the following theorem following the line of investigation of
previous cited results.

_eorem Let R be a prime ring of characteristic diòerent from 2, let g be an endomor-
phismof R, let d be a Jordan semiderivation associatedwith g, and let F be a generalized
Jordan semiderivation associated with d and g. _en F is a generalized semiderivation
of R and d is a semiderivation of R. Moreover, if R is commutative, then F = d.

2 Proof of Theorem

In all that follows we will assume R has characteristic diòerent from 2.

Remark 2.1 In order to prove our result wemust show the following
F(xy) = F(x)y + g(x)d(y), ∀x , y ∈ R,(2.1)
F(xy) = F(x)g(y) + xd(y), ∀x , y ∈ R.(2.2)

Notice that proofs of (2.1) and (2.2) are analogous to each other. _us, without loss of
generality, we will show only that (2.1) holds.

Remark 2.2 We notice that if g is the identity map on R, then F is a Jordan gen-
eralized derivation. In this case, by [5, _eorem 2.5], F is an ordinary generalized
derivation of R, and a fortiori F is a generalized semiderivation of R.
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Lemma 2.3 (F(x)y + g(x)d(y) − F(xy))[x , y] = 0 for all x , y ∈ R.

Proof Let x , y ∈ R; then by the deûnition of F we have

F((x + y)2
) = F(x + y)(x + y) + g(x + y)d(x + y)

= F(x2
) + F(y2

) + F(x)y + g(x)d(y) + F(y)x + g(y)d(x).

(2.3)

On the other hand,

(2.4) F((x + y)2
) = F(x2

) + F(y2
) + F(xy + yx).

Equations (2.3) and (2.4) imply

(2.5) F(xy + yx) = F(x)y + g(x)d(y) + F(y)x + g(y)d(x).

If we replace y with xy + yx in (2.5), we have

G(x , y) = F(x(xy + yx) + (xy + yx)x)
= F(x)(xy + yx) + g(x)d(xy + yx) + F(xy + yx)x + g(xy + yx)d(x)

and using (2.5),

G(x , y) = F(x)(xy + yx) + g(x)d(x)y + g(x)g(x)d(y)
+ g(x)d(y)x + g(x)g(y)d(x) + F(x)yx + g(x)d(y)x

+ F(y)x2
+ g(y)d(x)x + g(xy + yx)d(x).

(2.6)

Moreover, we can also write

G(x , y) = F(x2 y + yx2
) + 2F(xyx),

and again using (2.5),

(2.7) G(x , y) = F(x)xy + g(x)d(x)y + g(x)2d(y) + F(y)x2

+ g(y)d(x)x + g(y)g(x)d(x) + 2F(xyx).

Comparing (2.6) with (2.7) and since char(R) /= 2, it follows that

(2.8) F(xyx) = F(x)yx + g(x)d(y)x + g(x)g(y)d(x).

Now replace x with x + z in (2.8), for any z ∈ R, so that

(2.9) F(xyz + zyx) = F(x)yz + g(x)d(y)z + g(x)g(y)d(z)
+ F(z)yx + g(z)d(y)x + g(z)g(y)d(x).

In particular, for z = xy,

H(x , y) = F((xy)(xy) + (xy)(yx)) ,

and using (2.9) we get

(2.10) H(x , y) = F(x)yxy + g(x)d(y)xy + g(x)g(y)d(xy)
+ F(xy)yx + g(xy)d(y)x + g(xy)g(y)d(x).
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On the other hand
H(x , y) = F((xy)2

) + F(xy2x)

= F(xy)xy + g(xy)d(xy) + F(x)y2x + g(x)d(y)yx

+ g(x)g(y)d(y)x + g(x)g(y2
)d(x).

(2.11)

Comparing (2.10) with (2.11), one has

(2.12) (F(x)y + g(x)d(y) − F(xy))(xy − yx) = 0.

Lemma 2.4 Assume that R isnot commutative and let x , y ∈ R be such that [x , y] = 0.
_en F(xy) = F(x)y + g(x)d(y).

Proof We start from (2.12) and replace x with x + z, for any z ∈ R; then

(2.13) (F(x)y+ g(x)d(y)−F(xy))[z, y]+(F(z)y+ g(z)d(y)−F(zy))[x , y] = 0.

Analogously, replacing y with y + z in (2.12), it follows that

(2.14) (F(x)y+ g(x)d(y)−F(xy))[x , z]+(F(x)z+ g(x)d(z)−F(xz))[x , y] = 0

for any x , y, z ∈ R. Now let x , y be such that [x , y] = 0; therefore, by (2.13) we have

(F(x)y + g(x)d(y) − F(xy))[z, y] = 0, ∀z ∈ R.

_e primeness of R implies easily that if y ∉ Z(R), then F(x)y+ g(x)d(y)−F(xy) =
0, as required by the conclusion Lemma 2.4.

Similarly, by (2.14) and [x , y] = 0, one has

(F(x)y + g(x)d(y) − F(xy))[x , z] = 0, ∀z ∈ R,

and if x ∉ Z(R), then F(x)y + g(x)d(y) − F(xy) = 0 follows again.
_us, we consider the case both x ∈ Z(R) and y ∈ Z(R). Since R is not commuta-

tive, there exists r ∈ R such that r ∉ Z(R). Hence x+ r ∉ Z(R) and [y, x+ r] = [y, r] =
0. By the previous argument, we have that

F(x + r)y + g(x + r)d(y) − F((x + r)y) = 0

and
F(r)y + g(r)d(y) − F(ry) = 0,

implying that F(x)y + g(x)d(y) − F(xy) = 0. _erefore, in any case

[x , y] = 0Ô⇒ F(xy) = F(x)y + g(x)d(y).

Lemma 2.5 Assume that R is a non-commutative domain. _en F(xy) = F(x)y +
g(x)d(y) for all x , y ∈ R.

Proof By Lemma 2.3, we have that (F(x)y + g(x)d(y) − F(xy))[x , y] = 0 for all
x , y ∈ R. Since R is a domain, for all x , y ∈ R, either F(xy) = F(x)y + g(x)d(y) or
[x , y] = 0. But in this last case, F(xy) = F(x)y + g(x)d(y) follows from Lemma 2.4,
and we are done.
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Convention 2.6 In all that follows, if R is not commutative, thenwe always assume
that R is not a domain.

Remark 2.7 Assume that d is a Jordan semiderivation of R. _en d(xyx) =

d(x)yx + g(x)d(y)x + g(x)g(y)d(x) for all x , y ∈ R.

Proof _is follows by (2.8), with F = d.

Lemma 2.8 Assume that R is not commutative and let x , y ∈ R be such that xy = 0.
_en 0 = F(xy) = F(x)y + g(x)d(y).

Proof In the case where yx = 0, [x , y] = 0, and we conclude by Lemma 2.4. Let
yx /= 0. Right multiplying (2.14) by y, since xy = 0, we have

(F(x)y + g(x)d(y))xzy = 0 ∀z ∈ R,

and by the primeness of R we have

(F(x)y + g(x)d(y))x = 0.

Replace y with yry, for any r ∈ R, so that

(F(x)yry + g(x)d(yry))x = 0,

and by Remark 2.7 we have

(F(x)y + g(x)d(y)) ryx = 0 ∀r ∈ R.

Once again by the primeness of R we get F(x)y + g(x)d(y) = 0 = F(xy).

Corollary 2.9 Assume that R is not commutative and let x , y ∈ R be such that xy = 0.
_en F(yx) = F(y)x + g(y)d(x).

Proof By Lemma 2.8, F(xy) = F(x)y+ g(x)d(y) = 0. On the other hand, by using
equation (2.5),

F(yx) = F(xy + yx) = F(y)x + g(y)d(x).

Remark 2.10 Assume that R is not commutative, let d be a Jordan semiderivation
of R, and let x , y ∈ R be such that xy = 0. _en 0 = d(xy) = d(y)x + g(y)d(x).

Proof _is follows by Lemma 2.8, with F = d.

Lemma 2.11 Assume R is not commutative and let x , y ∈ R be such that xy = 0. _en
F(yxr) = F(yx)r + g(yx)d(r), for all r ∈ R.

Proof By using equation (2.9), for xy = 0 and for all r ∈ R,

F(rxy + yxr) = F(yxr) = g(r)d(x)y + g(r)g(x)d(y)
+ F(y)xr + g(y)d(x)r + g(y)g(x)d(r),

and by Corollary 2.9

F(yxr) = g(r)(d(x)y + g(x)d(y)) + g(y)g(x)d(r) + F(yx)r.
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Hence, applying Remark 2.10, d(x)y + g(x)d(y) = 0, and we conclude that

F(yxr) = g(y)g(x)d(r) + F(yx)r.

Remark 2.12 Deûne the following subset of R:

S = {a ∈ R ∶ F(ax) = F(a)x + g(a)d(x), ∀x ∈ R}.

We remark that by Lemma 2.6 one has that ab = 0, which implies ba ∈ S.
Here we ûx an element b ∈ R, and introduce the following map ϕb ∶R → R such

that ϕb(x) = F(xb) − F(x)b − g(x)d(b) for all x ∈ R. We notice that the following
hold:

ϕb+c(x) = ϕb(x) + ϕc(x) ∀b, c, x ∈ R;
ϕb(c) = −ϕc(b) ∀b, c ∈ R.

We need a few lemmas to prove themain theorem. _ese results are contained in
the classical paper ofHerstein [4], butwe prefer to state them for sake of completeness.

Lemma 2.13 Let t ∈ S, t ∉ Z(R). If y ∈ R such that [t, y] = 0, then y ∈ S.

Proof _e proof is contained in [4, Lemma 3.8].

Lemma 2.14 Let x ∈ R such that x2
= 0. _en x ∈ S.

Proof Of course we assume x /= 0, if not we are done, in particular x ∉ Z(R) Since
x(xr) = 0 for any r ∈ R, then by Lemma 2.11, F(xrx) = F(xr)x + g(xr)d(x). More-
over by Remark 2.12 we also have xrx ∈ S. Finally, since x ∉ Z(R), there exists r ∈ R
such that xrx ∉ Z(R). Hence by [xrx , x] = 0 and Lemma 2.13, it follows x ∈ S.

Lemma 2.15 Let x , y ∈ S; then ϕb(a)[x , y] = 0, for all a, b ∈ R.

Proof _is is [4, Lemma 3.10].

We are now ready to prove our result.

_eorem Let R be a prime ring of characteristic diòerent from 2, let g be an endomor-
phismof R, let d be a Jordan semiderivation associatedwith g, and let F be a generalized
Jordan semiderivation associated with d and g. _en F is a generalized semiderivation
of R and d is a semiderivation of R. Moreover, if R is commutative, then F = d.

Proof Our target is to show that ϕr(s) = 0 for all r s ∈ R.
First, we consider the case where R is not commutative. In light of Lemma 2.5

we also assume R is not a domain. Let z ∈ R be such that z2
= 0. By Lemma 2.14

it follows that z ∈ S. _erefore, for any t ∈ R such that t2 = 0, Lemma 2.15 implies
ϕa(b)[z, t] = 0 for all a, b ∈ R. Right multiplying by z, we get

(2.15) ϕa(b)ztz = 0

for all a, b ∈ R and for all square-zero elements z, t ∈ R.

https://doi.org/10.4153/CMB-2014-066-9 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2014-066-9


Generalized Jordan Semiderivations in Prime Rings 269

Moreover, by Lemma 2.3, ϕy(x)[x , y] = 0 holds for all x , y ∈ R. _is means that
([x , y]rϕy(x))2

= 0, so that [x , y]rϕy(x) ∈ S, for all x , y, r ∈ R. Applying equation
(2.15) yields that, for all a, b, x , y, r, s, t, z ∈ R,

ϕa(b)([x , y]rϕy(x))([z, t]sϕt(z))([x , y]rϕy(x)) = 0;

that is,
ϕt(z)[x , y]rϕy(x)[z, t]Rϕt(z)[x , y]rϕy(x) = (0).

By the primeness of R, either ϕt(z)[x , y] = 0 or ϕy(x)[z, t] = 0. In particular, for
z = y one has either 0 = ϕt(y)[x , y] = −ϕy(t)[x , y] or ϕy(x)[y, t] = 0. On the other
hand, by (2.13), ϕy(t)[x , y] + ϕy(x)[t, y] = 0, and this implies both ϕy(t)[x , y] =
0 and ϕy(x)[t, y] = 0. _erefore, in any case for all x , y, t ∈ R, ϕy(x)[t, y] = 0.
Replacing t with rx, for any r ∈ R, we have ϕy(x)r[x , y] = 0. We recall that, if
[x , y] = 0, then ϕy(x) = 0 follows from Lemma 2.4. _us ϕy(x)r[x , y] = 0 and the
primeness of R imply ϕy(x) = 0 for all x , y ∈ R.
Finally we consider the case where R is commutative. We recall that, by Remark

2.2, if g is the identity map on R, then we are done. _erefore here we assume again
g is not the identity map on R.

Since d is a generalized Jordan semiderivation associatedwith d and g, (2.5) yields

2d(xy) = d(x)y + g(x)d(y) + d(y)x + g(y)d(x) for all x , y ∈ R.

Replacing y by yz, we get

(2.16) 2d(xyz) = d(x)yz + g(x)d(yz) + d(yz)x + g(yz)d(x) for all x , y, z ∈ R.

On the other hand, (2.9) yields

(2.17) 2d(xyz) = d(x)yz + g(x)d(y)z + g(x)g(y)d(z)
+ d(x)g(y)g(z) + xd(y)g(z) + xyd(z).

Comparing (2.16) with (2.17) we obtain

g(x)d(y)z + g(x)g(y)d(z) + xd(y)g(z) + xyd(z) = g(x)d(yz) + xd(yz)

for all x , y, z ∈ R, so that

(g(x) − x)(d(yz) − d(y)z − g(y)d(z)) = 0 for all x , y, z ∈ R.

Since R is a domain and g is not the identity map on R, we conclude that d(yz) =

d(y)z + g(y)d(z) for all y, z ∈ R.
Now, to prove that F = d, rewriting equation (2.5), we get

2F(xy) = F(x)( y + g(y)) + (x + g(x))d(y),

and in particular

2F(x2 y) = F(x2
)( y + g(y)) + (x2

+ g(x2
))d(y)

= (F(x)x + g(x)d(x))( y + g(y)) + (x2
+ g(x2

))d(y).

(2.18)

Moreover, by equation (2.8),

(2.19) 2F(x2 y) = 2F(x)yx + 2g(x)d(y)x + 2g(x)g(y)d(x).
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Comparing (2.18) with (2.19) it follows that

(2.20) F(x)x( g(y) − y) + d(x)g(x)( y − g(y)) + d(y)(x − g(x))
2
= 0,

and for x = y,

(F(x) − d(x))x( g(x) − x) = 0 ∀x ∈ R.
_erefore, for any x ∈ R, either F(x) = d(x) or g(x) = x. Assume that g(x) = x;
moreover, since g is not the identity map, there exists y ∈ R such that g(y) /= y. _us
by (2.20) we get (F(x) − d(x))x = 0; that is, F(x) = d(x) holds in any case.
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