THE OSCULATING SPACES OF A CERTAIN CURVE IN [n]

by W. L. EDGE
(Received 27th February 1973)

1

The curve in question is the non-singular intersection Γ of the $n-1$ quadric primals

$$
\begin{equation*}
\sum_{j=0}^{n} a_{j}^{k} x_{j}^{2}=0, \quad k=0,1,2, \ldots, n-2 \tag{1.1}
\end{equation*}
$$

where it is presumed that no two of the $n+1$ numbers a_{j} are equal. Define

$$
f(\phi) \equiv\left(\phi-a_{0}\right)\left(\phi-a_{1}\right) \ldots\left(\phi-a_{n}\right) ;
$$

then it will be seen that the osculating prime of Γ at $x=\xi$ is

$$
\begin{equation*}
\Sigma\left\{f^{\prime}\left(a_{j}\right)\right\}^{n-2} \xi_{j}^{2 n-3} x_{j}=0 \tag{1.2}
\end{equation*}
$$

Indeed, equations will be given for all the osculating spaces [s], such a space being determined by $n-s$ linearly independent linear equations. But (1.2) is mentioned at the outset because equations for the osculating plane in [3] and for the osculating solid in [4] are already known. The equation of the osculating plane of an elliptic quartic curve in [3] is given by Salmon (3, p. 380); the coefficients $f^{\prime}(a) \xi^{3}$ appear there on taking $a^{\prime}=b^{\prime}=c^{\prime}=d^{\prime}=1$. The equation of the osculating solid of a special canonical curve in [4] is given by Edge ($2, \mathrm{p} .278$), whose more prolix equation is seen, for $n=4$, to be equivalent to (1.2) here on substituting, from what is there labelled (2.2), in the equation written as $\Sigma\left(p+a_{j} q\right)^{2} \xi_{j} x_{j}=0$. It was the belated perception of this that suggested (1.2), and there is no difficulty in an a posteriori verification. This relies on two circumstances.
(1) If $\sigma_{k}=\Sigma a_{j}^{k} / f^{\prime}\left(a_{j}\right)$ then

$$
\begin{equation*}
\sigma_{0}=\sigma_{1}=\ldots=\sigma_{n-1}=0 \tag{1.3}
\end{equation*}
$$

This is proved by using the partial fractions for $\phi^{k} / f(\phi)$.
(2) The equations (1.1) may be regarded as $n-1$ linear equations for the $n+1$ " unknowns" x_{j}^{2}; they are, no two a_{j} being equal, linearly independent and so have $n+1-(n-1)=2$ linearly independent solutions. Clearly, in virtue of (1.3), two such solutions are

$$
x_{j}^{2}=1 / f^{\prime}\left(a_{j}\right) \quad \text { and } \quad x_{j}^{2}=a_{j} / f^{\prime}\left(a_{j}\right)
$$

Hence, whatever number θ may be, other than the $n+1$ critical values $-a_{j}$, the $n+1$ equations

$$
\begin{equation*}
\xi_{j}^{2} f^{\prime}\left(a_{j}\right)=\theta+a_{j} \tag{1.4}
\end{equation*}
$$

give, by the alternative signing of $n+1$ square roots, a batch of 2^{n} points on Γ. One such batch has $\theta=\infty$. If, differentiation being imminent, one scruples to treat this batch as on a par with others there is the alternative use of

$$
\xi_{j}^{2} f^{\prime}\left(a_{j}\right)=1+a_{j} \phi
$$

when the batch corresponds to $\phi=0$.
2
Equation (1.2) is established if it can be shown that, for $p=0,1, \ldots, n-1$,

$$
\Sigma\left\{f^{\prime}\left(a_{j}\right)\right\}^{n-2} \xi_{j}^{2 n-3} d^{p} \xi_{j}=0
$$

this means that, for all these n values of p,

$$
\begin{equation*}
\Sigma\left(\theta+a_{j}\right)^{n-2} \xi_{j} d^{p} \xi_{j}=0 \tag{2.1}
\end{equation*}
$$

For $p=0$ this is so, by (1.1). Otherwise one repeatedly differentiates

$$
\xi_{j} \sqrt{ } f^{\prime}\left(a_{j}\right)=\left(\theta+a_{j}\right)^{\frac{1}{2}}
$$

this determines, for each j, one of the two analytic branches of $\left(\theta+a_{j}\right)^{\frac{1}{2}}$ according to the square root chosen and, having made the choice, one adheres thereto in the subsequent differentiations. Then, on this understanding,

$$
d^{p} \xi_{j} \sqrt{ } f^{\prime}\left(a_{j}\right)=A_{p}\left(\theta+a_{j}\right)^{\frac{1}{2}-p}(d \theta)^{p}
$$

with A_{p} a non-zero constant, so that

$$
\left(\theta+a_{j}\right)^{n-2} \xi_{j} d^{p} \xi_{j} \cdot f^{\prime}\left(a_{j}\right)=A_{p}\left(\theta+a_{j}\right)^{n-p-1}(d \theta)^{p}
$$

and, so long as $p \leqq n-1$, (2.1) holds because of (1.3). This establishes the validity of (1.2), at least for finite values of θ. But one can also differentiate the square roots of the two sides of $\left(1.4^{\prime}\right)$ and so arrive at

$$
d^{p} \xi_{j} \sqrt{ } f^{\prime}\left(a_{j}\right)=A_{p} a_{j}^{p}\left(1+a_{j} \phi\right)^{\frac{1}{2}-p}(d \phi)^{p}
$$

and

$$
\left(1+a_{j} \phi\right)^{n-2} \xi_{j} d^{p} \xi . f^{\prime}\left(a_{j}\right)=A_{p} a_{j}^{p}\left(1+a_{j} \phi\right)^{n-p-1}(d \phi)
$$

from which the desired conclusion follows. Henceforward we may refrain from glossing the text by references to (1.4').

3
The same reasoning, however, applies to the equation

$$
\begin{equation*}
\Sigma\left\{f^{\prime}\left(a_{j}\right)\right\}^{r-2} \xi_{j}^{2 r-3} d^{p} \xi_{j}=0 \tag{3.1}
\end{equation*}
$$

or

$$
\Sigma\left(\theta+a_{j}\right)^{r-2} \breve{\zeta}_{j} d^{p} \xi_{j}=0
$$

for any r such that $0<r \leqq n$. Since this last relation is an identity in θ for $p=0,1, \ldots, r-1$ the points

$$
\xi, d \xi, d^{2} \xi, \ldots, d^{s} \xi
$$

all satisfy those s equations (3.1) for which $r=n, n-1, \ldots, s+1$. These

THE OSCULATING SPACES OF A CERTAIN CURVE IN [n] 41

therefore, with x_{j} replacing $d^{p} \xi_{j}$, are the $n-s$ equations determining the osculating $[s]$ of Γ at ξ. That they do determine the $[s]$ is consequent on their linear independence; that they are linearly independent follows once (4.3) below, and the proceedings relating to it, have been noted.

4

One can now calculate R_{s}, the s th rank of Γ, i.e. the number of spaces $[s]$ that osculate Γ and meet a given $[n-s-1]$. If this $[n-s-1]$ is determined by the $s+1$ linear equations

$$
\begin{equation*}
\alpha_{i, 0} x_{0}+\alpha_{i, 1} x_{1}+\ldots+\alpha_{i, n} x_{n}=0 \quad(i=n-s+1, \ldots, n+1) \tag{4.1}
\end{equation*}
$$

it is met by those $[s]$ which osculate Γ at points whose coordinates ξ cause a certain $(n+1)$-rowed determinant Δ to be zero: column $j+1$ of Δ consists of

$$
\begin{equation*}
\left\{f^{\prime}\left(a_{j}\right)\right\}^{n-2} \xi_{j}^{2 n-3},\left\{f^{\prime}\left(a_{j}\right)\right\}^{n-3} \xi_{j}^{2 n-5}, \ldots,\left\{f^{\prime}\left(a_{j}\right)\right\}^{s-1} \xi_{j}^{2 s-1} \tag{4.2}
\end{equation*}
$$

followed by $\alpha_{n-s+1, j} \ldots \alpha_{n+1, j}$. The $n-s$ numbers (4.2) all have the factor $\left\{f^{\prime}\left(a_{j}\right)\right\}^{s-1} \tilde{\xi}_{j}^{2 s-1} ;$ the residual factors are, in virtue of (1.4),

$$
\begin{equation*}
\left(\theta+a_{j}\right)^{n-s-1},\left(\theta+a_{j}\right)^{n-s-2}, \ldots, \theta+a_{j}, 1 . \tag{4.3}
\end{equation*}
$$

If these are now multiplied in order by

$$
1,\binom{n-s-1}{1}(-\theta),\binom{n-s-1}{2}(-\theta)^{2}, \ldots,\binom{n-s-1}{n-s-2}(-\theta)^{n-s-2},(-\theta)^{n-s-1}
$$

and the products added, the sum is

$$
\left(\theta+a_{j}-\theta\right)^{n-s-1}=a_{j}^{n-s-1}
$$

One next performs a similar operation that does not involve the leading member in (4.2); omit the leader in (4.3) and multiply the others in order by

$$
1,\binom{n-s-2}{1}(-\theta),\binom{n-s-2}{2}(-\theta)^{2}, \ldots,\binom{n-s-2}{n-s-3}(-\theta)^{n-s-3},(-\theta)^{n-s-2}
$$

and add the products; the sum is a_{j}^{n-s-2}. And so on. The whole procedure transforms Δ, without changing its value, into a determinant having, so long as $i \leqq n-s$, in row i and column $j+1$ the element

$$
a_{j}^{n-s-i}\left\{f^{\prime}\left(a_{j}\right)\right\}^{s-1} \xi_{j}^{2 s-1}
$$

The remaining $s+1$ rows are still filled, as originally, by the coefficients of (4.1). It now appears, by Laplace expansion on these $\mathrm{s}+1$ rows, that the degree of Δ in the coordinates ξ_{j} is $(n-s)(2 s-1)$.

5
When ξ is replaced by $x, \Delta=0$ becomes the equation of a primal whose $2^{n-1}(n-s)(2 s-1)$ intersections with Γ are those points at which the osculating [s] intersects the $[n-s-1]$ given by (4.1). And so

$$
R_{s}=2^{n-1}(n-s)(2 s-1)
$$

In particular: the class of Γ, or the number of its osculating primes passing through an arbitrary point is

$$
R_{n-1}=2^{n-1}(2 n-3)
$$

a classical result for $n=3$ (there are 12 osculating planes of an elliptic quartic through an arbitrary point in [3]) and obtained for $n=4$ in (2). Also: the order of the primal generated by the osculating [n-2]'s of Γ is

$$
R_{n-2}=2^{n}(2 n-5)
$$

of course classical for $n=3$ (the tangents of an elliptic quartic generate a scroll of order 8). For $n=4$ it follows that the osculating planes of the canonical model of Humbert's plane sextic generate a threefold of order 48. There will be, for each n, a single equation for R_{n-2}, presumably obtainable by some process of elimination.

6

There is a more sophisticated procedure for determining the ranks R_{s}, and perhaps it should be described. In order to apply it one must know the genus π of Γ and a certain formula for the number of points, in the sets of a linear series g on Γ, of multiplicity exceeding the freedom r of g; and indeed a precise rule for calculating the number of times a multiple point of specified singularity has to be counted.

As for the genus of Γ it is known $(5, p .83)$ that the canonical series of grade $2 \pi-2$ is cut, on the complete non-singular intersection of genus π of $n-1$ primals in [n], by primals of order $n_{1}+n_{2}+\ldots+n_{n-1}-(n+1)$, where the n_{i} are the orders of the primals through the curve. Since, for Γ, each n_{i} is 2 the canonical series is cut by primals of order $n-3$ and so

$$
\begin{gathered}
2 \pi-2=2^{n-1}(n-3) \\
\pi=1+2^{n-2}(n-3)
\end{gathered}
$$

as stated by Baker (1, p. 185).
Take now any $[n-s-1]$; the primes through it cut on Γ a linear series g of grade 2^{n-1} and freedom s. If a prime contains an osculating [s] of Γ, then the contact with Γ counts $s+1$ times in the corresponding set of g. The standard formula (4, p. 85) for the number of points of multiplicity $s+1$ in a linear series of grade 2^{n-1} and freedom s on a curve of genus π is
for Γ this is

$$
\begin{array}{r}
(s+1)\left\{2^{n-1}+(\pi-1) s\right\} \\
2^{n-2}(s+1)\{2+(n-3) s\} \tag{6.1}
\end{array}
$$

7

This, however, is not R_{s} because, whatever [$n-s-1$] is chosen, there are certain points W on Γ where osculating spaces of dimension less than s have $(s+1)$-point intersection; these spaces can be joined to points in $[n-s-1]$

THE OSCULATING SPACES OF A CERTAIN CURVE IN [n] 43

by spaces of dimension less than n. One has to know two things: how many points W there are, and how much each contributes to the number (6.1).

Identification of these W is easy; they are the intersections of Γ with the $n+1$ bounding primes $x=0$ of the simplex of reference. Once this has been proved it follows that there are $2^{n-1}(n+1)$ of them, so that if each contributes m to (6.1)

$$
\begin{equation*}
R_{s}=2^{n-2}[(s+1)\{2+(n-3) s\}-2 m(n+1)] . \tag{7.1}
\end{equation*}
$$

First, then, to note the special attributes of the points W.
Γ is its own harmonic inverse in each vertex X and opposite bounding prime $x=0$ of the simplex of reference: if P is on Γ, then $X P$ is a chord of Γ since it contains the image P^{\prime} of P in the inversion. So the tangent of Γ at any point W contains a vertex X. But the osculating plane ω at W is the limiting position of the plane joining this tangent to a neighbouring point P of Γ; since this plane contains both X and P it contains $P^{\prime} ; \omega$ has 4-point intersection with Γ at W. Similar reasoning shows the osculating solid to have 6 -point intersection, and so on, the osculating [s] having $2 s$-point intersection.

Now let B be an $[n-s-1]$. The join $[n-s]$ of B to any W lies in ∞^{s-1} primes; of these, some, to be accounted for in a moment, are special, but the "general" prime among these ∞^{s-1} has only a single intersection with Γ at W. However, the ∞^{s-2} primes containing B and the tangent of Γ at W all have 2 -point intersection, the ∞^{s-3} primes containing B and the osculating plane of Γ at W all have 4-point intersection, and so on, until one has the single prime, spanned by B and the osculating $[s-1]$ of Γ at W, having ($2 s-2$)-point intersection. Then the rule, due to Corrado Segre (4, p. 86; for a textbook reference see 6, p. 131) prescribes that, in such circumstances, W contributes

$$
m=1+2+4+\ldots+2(s-1)-\frac{1}{2} s(s+1)=\frac{1}{2}(s-1)(s-2)
$$

to the number (6.1). When $\frac{1}{2}(s-1)(s-2)$ is substituted for m in (7.1) one finds, as obtained by more elementary methods earlier,

$$
R_{s}=2^{n-1}(n-s)(2 s-1)
$$

REFERENCES

(1) H. F. Baker, Principles of Geometry, Vol. 4 (Cambridge, 1925 and 1940).
(2) W. L. Edge, The osculating solid of a certain curve in [4], Proc. Edinburgh Math. Soc. (2) 17 (1971), 277-280.
(3) G. Salmon, A Treatise on the Analytic Geometry of Three Dimensions (Dublin, 1914).
(4) C. Segre, Introduzione alla geometria sopra un ente algebrico semplicemente infinito, Annali di Matematica (2) 22 (1894), 41-142; Opere I (Rome, 1957), 198-304.
(5) F. Severi, Su alcune questioni di postulazione, Rend. Circ. Mat. Palermo, 17 (1903), 73-103.
(6) F. Severi, Trattato di geometria algebrica (Bologna, 1926).

Mathematical Institute
20 Chambers Street
Edinburgh EH1 1HZ

