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Semigroup Algebras and Maximal Orders
Eric Jespers and Jan Okniński

Abstract. We describe contracted semigroup algebras of Malcev nilpotent semigroups that are prime Noethe-
rian maximal orders.

Maximal orders in simple Artinian rings of quotients have attracted considerable inter-
est. In particular, it has been shown that various algebraic ring constructions yield examples
of Noetherian maximal orders. In [2], Brown described when a group algebra K[G] of a
polycyclic-by-finite group G is a prime maximal order. It is always the case if G is torsion-
free. In this paper we investigate when a contracted semigroup algebra is a Noetherian
prime maximal order. For standard terminology and notation on semigroups and semi-
group algebras we refer to [4], [16].

For notation and terminology on (maximal) orders we refer to [15]. However, we recall
some of this in the semigroup context (see for example [6] and [17]). A cancellative monoid
S which has a left and right group of fractions G is called an order. Such a monoid S is called
a maximal order if there does not exist a submonoid S ′ of G properly containing S and such
that aS ′b ⊆ S for some a, b ∈ G. For subsets A,B of G we denote by (A :l B) = {g ∈ G |
gB ⊆ A} and by (A :r B) = {g ∈ G | Bg ⊆ A}. Note that S is a maximal order if and only
if (I :l I) = (I :r I) = S for every fractional ideal I of S. The latter means that SIS ⊆ I and
cI, Id ⊆ S for some c, d ∈ S. If S is a maximal order, then note that (S :l I) = (S :r I) for
any fractional ideal I; we simply denote this fractional ideal by (S : I) or by I−1. Recall that
I is said to be divisorial if I = I∗, where I∗ =

(
S : (S : I)

)
. The divisorial product I ∗ J of

two divisorial ideals I and J is defined as (I J)∗.
A cancellative monoid S is said to be a Krull order if and only if S is a maximal order

satisfying the ascending chain condition on integral divisorial ideals, that is fractional ideals
contained in S.

Chouinard [3] showed that commutative monoid algebras K[S] are Krull domains if
and only S is a Krull order. Later, Wauters [17] characterised monoids S that are Krull
orders in case every element n of S is normal, that is Sn = nS. Hence, because of a result of
Brown [2] on group algebras of polycylic-by-finite groups, using standard arguments, one
can extend Chouinard’s result as follows. The group of invertible elements of a monoid is
denoted by U(S). If S is a subsemigroup of a group G, then gr(S) denotes the subgroup of
G generated by S.

Theorem 1 Let S be a cancellative monoid of normal elements, G its group of fractions and
K a field. If G is torsion-free polycyclic-by-finite, then the following conditions are equivalent:

Received by the editors March 25, 1998.
Work supported in part by NSERC of Canada, grant number OGP0036631. The second author would like to

thank Memorial University of Newfoundland for the warm hospitality while being a visiting scientist during the
academic year 1997-1998.

AMS subject classification: Primary: 16S36, 16H05; secondary: 20M25.
c©Canadian Mathematical Society 1999.

298

https://doi.org/10.4153/CMB-1999-036-2 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1999-036-2


Semigroup Algebras and Maximal Orders 299

1. K[S] is a Krull domain.
2. S is a Krull order.
3. S/U(S) is an abelian Krull order.

Moreover, an abelian monoid A with trivial unit group is a Krull order if and only if A =
gr(A) ∩ F+, where F+ is the positive cone of a free abelian monoid F.

We note that, in the situation described in the theorem above, K[S] is a Noetherian
maximal order if and only if S is a finitely generated Krull order.

It remains an unsolved problem to characterize when an arbitrary semigroup algebra is
a prime Noetherian maximal order. Since any semigroup algebra can be considered as a
contracted semigroup algebra, we investigate the question in this more general framework.
This way we handle a much wider class of prime algebras. Apart from the semigroups listed
in Theorem 1, an answer to the question has only been obtained for some special classes
of semigroups, such as for example binomial semigroups [5], [9], or for more restrictive
orders, such as principal ideal rings [8].

In this paper we solve the problem for semigroup algebras of finitely generated semi-
groups that are nilpotent in the sense of Malcev (see for example [7] for the definition).
First we deal with cancellative nilpotent monoids that have a finitely generated group of
fractions. Note that for such monoids S it is known that K[S] is right Noetherian if and
only if S satisfies the ascending chain condition on right ideals. Furthermore, such monoids
have been fully characterized in [10], and it follows that K[S] is right Noetherian if and only
if it is left Noetherian. We simply say that K[S] is Noetherian in this case.

Theorem 2 Let K be a field and S a submonoid of a finitely generated torsion-free nilpotent
group G. Then,

1. K[S] is a maximal order if and only if S is a maximal order.
2. If, moreover, S satisfies the ascending chain condition on right ideals and S is a maximal

order, then all elements of S are normal.

Proof It is well known that the group algebra of a finitely generated torsion-free nilpotent
group is a Noetherian maximal order (see for example [2]). Since G is an ordered group,
the first assertion then follows using standard techniques.

For the second statement, assume S is a maximal order satisfying the ascending chain
condition on right ideals. Without loss of generality we may assume that G is the group of
fractions of S. As mentioned above, since S satisfies the ascending chain condition on right
ideals, K[S] is left and right Noetherian. In particular, it follows from the characterization
in [10] that S and G are finitely generated and S contains a subgroup F such that F is normal
in G and G/F is abelian-by-finite. The n-th centre of G is denoted by Zn(G).

If U(S) is trivial, then G is nilpotent and abelian-by-finite. Since it is also torsion-free,
we obtain that (see for example [13]) G is abelian. Hence the result is clear.

So in the remainder of the proof we assume that U(S) is not trivial. We claim that then
also U(S) ∩ Z1(G) is not trivial. Let n be the minimal positive integer such that there exists
1 6= u ∈ U(S) ∩ Zn(G). Then, from [10] we know that for every a ∈ S there exists
m = m(a) ≥ 1 so that auma−1 ∈ U(S), and thus auma−1u−m ∈ U(S) ∩ Zn−1(G). So
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auma−1u−m = 1. Hence, since G is torsion-free and nilpotent, a and u commute. Because
a is arbitrary it follows that u ∈ U(S) ∩ Z1(G), as desired.

We now show that the group G/
(
U(S) ∩ Z1(G)

)
is torsion-free. For this let g =

g
(
U(S) ∩ Z1(G)

)
∈ G = G/

(
U(S) ∩ Z1(G)

)
so that gn = 1 for some n ≥ 1. As G/Z1(G) is

torsion-free, it follows that g ∈ Z1(G). Let I = S ∪ gS ∪ · · · ∪ gn−1S. Then I is a fractional
ideal of S and gI ⊆ I. Because of the maximal order assumption, this yields g ∈ S. Hence,
as gn ∈ U(S), we get that g ∈ U(S) ∩ Z1(G). So g = 1, as desired.

Let S be the natural image of S in G. It is readily verified that for any fractional ideal I in
S the following property holds

(I :l I) = (I : I) = (I :r I),

where the former and the latter are defined in G and I is the inverse image of I in S. Since
S is a maximal order it follows that S also is a maximal order in its torsion-free nilpotent
group of fractions G.

Next we claim that for any s, t ∈ S, sts−1t−1 ∈ U(S). We prove this by induction on the
Hirsch number h(G) of G. If h(G) = 1, this is obvious, as in this case G is cyclic. Since
h(G) < h(G), the induction hypothesis applied to S ⊆ G implies that sts−1t−1 ∈ U(S).
Hence sts−1t−1 ∈ U(S).

From the previous we obtain that sts−1 ∈ S for any s, t ∈ S. Hence S ⊆ s−1Ss. The
maximal order assumption therefore implies S = s−1Ss and thus Ss = sS for any s ∈ S.
This proves the result.

Corollary 3 Let S and T be maximal orders in a torsion-free nilpotent group G. If there exist
x, y ∈ G such that xTy ⊆ S, then S = T.

Proof Because of Theorem 2, gS = Sg for any g ∈ G. Hence xTy ⊆ S implies T ⊆ hS,
where h = x−1 y−1. It follows that ST = TS ⊆ hS and thus ST is a fractional S-ideal.
Hence, since T ⊆ (ST : ST) and S is a maximal order, it follows that T ⊆ S. The reverse
inclusion follows by symmetry. So the result follows.

Now we handle arbitrary contracted semigroup algebras of nilpotent semigroups that
are prime Noetherian maximal orders. For this we first recall a recent result on Morita con-
texts. For simplicity we formulate the result for the situations needed for our applications.

Proposition 4 (Marubayashi, Zhang and Yang [14])

1. If R is a prime maximal order and e = e2 ∈ R, then also eRe is a prime maximal order.
2. Let M =

[
R V

W S

]
be a Morita context with R and S prime Goldie rings with the same

classical ring of quotients Q, and V,W ⊆ Q. Then M is a prime maximal order (in its left
and right ring of quotients) if and only if the following conditions are satisfied:

(a) R and S are prime maximal orders;

(b) V and W are nonzero;

(c) (R :l W ) = (S :r W ) = V and (R :r V ) =W = (S :l V ).
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For a subsemigroup T of a completely 0-simple semigroup M =M(G, n, n; P); we write
Ti j = {(g, i, j) | g ∈ G, (g, i, j) ∈ M}. Clearly, each Ti j is closed under left multiplication
by Tii and closed under right multiplication by T j j . If M is (Malcev) nilpotent, then we
know [7] that, up to isomorphism, P is the identity matrix I = ∆. We simply denote T
as [Ti j]. Recall that T is said to be uniform in M if each Ti j is nonzero and the group of
fractions of each Tii is a maximal subgroup of M.

By ei j we denote the elementary matrix in a matrix ring Mn(R) with 1 in the (i, j)-entry
and zeroes elsewhere.

Theorem 5 Let S be a finitely generated nilpotent semigroup and K a field. The contracted
semigroup algebra K0[S] is a prime maximal order if and only if K0[S] = K0[T], where
T = [Ti j ] (with Ti j = eiiS1e j j \{0}) is a uniform subsemigroup in T̂ =M

(
gr(T11), n, n;∆

)
such that

(M1) T11 = T22 = · · · = Tnn is a monoid;
(M2) gr(T11) is a torsion-free nilpotent group;
(M3) T11 is a maximal order;
(M4) each Ti j is a divisorial T11-ideal;
(M5) Ti j ∗ T jk = Tik.

Moreover, for K0[S] to be a right Noetherian prime maximal order, one has to add the condi-
tions:

(N1) T11 satisfies the ascending chain condition on right ideals;
(N2) each Ti j is a finitely generated right T11 module.

Proof Suppose R = K0[S] is a prime maximal order in its classical ring of quotients Q =
Mn(D), where D is a division algebra. Without loss of generality we may assume that S has
a zero element. From [7] and [12, Lemma 1.6] we know that the elements of s (together
with the zero element) of minimal nonzero rank form an ideal I that is uniform in Î =
M(G, n, n;∆), the completely 0-simple closure of I in the multiplicative semigroup Mn(D).
Here G is the group of fractions of the diagonal components of I. Furthermore

K0[I] ⊆ R ⊆ K0[Î] = Mn

(
K[G]

)
⊆ Mn(D),

and Mn(D) is also the classical ring of quotients of K0[Î]. Also Mn(K[G]) is a localization
of R. So this algebra is also a prime ring, and thus the group G is finitely generated torsion-
free nilpotent. We define Ii j = {(g, i, j) | g ∈ G0, (g, i, j) ∈ I}. So I =

⋃
i, j Ii j . Since K0[S]

is a maximal order and ei jK0[I] ⊆ K0[I], we get that ei j ∈ R. Hence,

R =
∑

i

eiiRe j j .

Since S is a nilpotent semigroup, it follows from the proof of Theorem 3.5 in [7] that the
elements s of S are represented as monomial matrices in Mn(K[G]) with entries in G0; that
is, at most one nonzero entry occurs in each row and column of s. It follows that

Ti jT jk ⊆ Tik,
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where Ti j = eiiS1e j j \ {0}. So each Tii is a submonoid of G and T =
⋃

1≤i, j≤n Ti j ∪ {0} is

a uniform subsemigroup of Î. Furthermore,

R = ⊕i jK0[Ti j ] = K0[T],

where the contracted semigroup algebra notation K0[A] is also used to denote the K-
subspace of K[G] spanned by a subset A of G. From Proposition 4 we get that each K0[Tii]
is a maximal order, and by Corollary 3, Tii = T11 for all i.

Proposition 4 also implies that, for any distinct 1 ≤ i, j ≤ n,

(eii + e j j)K0[T](eii + e j j) =

[
K0[Tii] K0[Ti j ]
K0[T ji] K0[T j j ]

]

is a prime maximal order and K0[T ji] = (K0[T11] : K0[Ti j]) = K0[(T11 : Ti j)]. Hence
each Ti j is a divisorial T11-ideal and T ji = T−1

i j .
Furthermore,

K0[Ti j ]K0[T jk] ⊆ K0[Tik]

and thus, because each K0[Ti j] is divisorial,

K0[Ti j] ∗ K0[T jk] ⊆ K0[Tik].

Hence, also
K0[Tik] ∗ K0[T jk]−1 = K0[Tik] ∗ K0[Tk j] ⊆ K0[Ti j].

Consequently K0[Tik] ⊆ K0[Ti j ] ∗ K0[T jk] and it follows that

K0[Ti j] ∗ K0[T jk] = K0[Tik]

and thus
Ti j ∗ T jk = Tik.

This proves the necessity of the conditions (M1)–(M5). Conditions (N1)–(N2) are easily
shown to be equivalent with K0[T] =

[
K0[Ti j ]

]
being right Noetherian (see for example

Lemma 2.1 in [18]).
The sufficiency of conditions (M1)–(M5) follows easily, by induction on n, from Propo-

sition 4 and Theorem 2.

Note that one can now easily deduce a characterization of semigroup algebras of nilpo-
tent semigroups that are prime Noetherian Dedekind rings, hence obtaining one of the
main results in [12]. Indeed, since the rings are of dimension 0 or 1, one obtains eas-
ily that the group G has to be cyclic and thus K0[I11] is a principal ideal domain. So
K0[Ii j]K0[Ii j]−1 = K0[I11]. Hence one verifies that K0[S] is isomorphic with a full matrix
ring over a semigroup algebra K0[T], where T is either N or Z or trivial. Note that arbitrary
semigroup algebras that are left and right principal ideal rings have been classified in [8].

The above result shows that our maximal orders are generalised matrix rings R = [Ri j ]
with R11 = · · · = Rnn and each Ri j a divisorial Rii-ideal. Furthermore Ri j ∗ R jk = Rik.
We could call such rings divisorially graded rings. The following example shows that in
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general these semigroup algebras are not full matrix rings. Indeed, let R = K[S] =
K[xz, xw, yz, yw] ⊆ K[x, y, z,w], a polynomial ring in four commuting variables. It is
shown in [1] that K[S] is a Noetherian maximal order that has P = (xz, xw) as a height one
prime ideal. It is easily seen that x−1 y ∈ P−1 = (R : P) ⊆ {xa ybzcwd | a ≥ −1, b, c, d ≥
0}. Hence, yz, yw ∈ x−1 yP ⊆ P−1P, and thus M ⊆ P−1P, where M is the ideal of K[S]
consisting of the elements with zero constant term.

We claim that P−1P = M, and thus K[S]/P−1P ∼= K. For this it is sufficient to show that
1 /∈ P−1P. Suppose the contrary, then, since P−1 ⊆ {xa ybzcwd | a ≥ −1, b, c, d ≥ 0}, we
get 1 ∈ x−1 yαzβwδP for some α, β, δ ≥ 0. Now note that, x−1 yαzβwδ(xz) = yαzβ+1wδ ∈
K[S] implies that yαzβ+1wδ ∈ 〈yz, yw〉. Since the latter is a free semigroup, we obtain
β + δ + 1 = α. Consequently x−1 yαzβwδ = (x−1 y)yβ yδzβwδ = (x−1 y)(yz)β(yw)δ ∈
x−1 yK[S]. So,

1 ∈ x−1 yαzβwδP ⊆ x−1 yP ⊆ yzK[S] + ywK[S],

which is a contradiction.
Let T =

[
S P

P−1 S

]
, a uniform semigroup in M

(
gr(x, y, z,w), 2, 2;∆

)
. From the theorem

we know that

K0[T] =

[
K[S] K[P]

K[P−1] K[S]

]

is a prime Noetherian maximal order. However it is not a full matrix ring, since

I =

[
K[S] K[P]

K[P−1] K[M]

]

is an ideal of K[S] and K[S]/I ∼= K is not a 2× 2-matrix ring. Note that K0[T] = K0[T ′],
with

T ′ =

[
S P

P−1 P−1P

]
∪ {∆}.

So T ′ only contains one of the elementary diagonal idempotents.
If in the theorem, all eii belong to S, then S = T. However, the previous example

shows that this is not necessarily the case. We now show that S contains at least one of the
idempotents eii . For a group G we denote by Mn(G) the semigroup of monomial matrices
over G; that is, the submonoid of the multiplicative semigroup Mn(K[G]) that consists of
all matrices having at most one nonzero entry in each row and column, and, moreover,
each nonzero entry belongs to G. It follows from the proof of the previous theorem that if
K0[S] is a prime Noetherian maximal order and S is nilpotent, then S ⊆Mn(G) and Mn(G)
is naturally embedded in Mn(K[G]). For s ∈ S, we denote by rank(s) the rank of s; that is,
the number of nonzero rows in s.

Proposition 6 Let S be a subsemigroup of Mn(G) (with G a group) and assume e11, e22,
. . . , enn ∈ K0[S] ⊆ Mn(K[G]) and Mn(G) is naturally embedded in Mn(K[G]). Then S
contains at least one idempotent eii .

Proof Clearly we may assume 0 ∈ S. We prove this by induction on n. If n = 1, then
K0[S] ⊆ K[G]. So 1 = e11 ∈ K0[S] and thus 1 ∈ S. By induction we may now assume that
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every nonzero diagonal idempotent e of Mn(G) of rank less than n is not in S (otherwise
replace S be eSe).

Suppose s ∈ S is of rank n. Let

1 6= e =
r∑

i=1

λi si , λi ∈ K, si ∈ S,

for a nonzero diagonal idempotent e ∈ Mn(K[G]). Then es =
∑r

i=1 λi si s and {s1s, . . . , srs}
is linearly independent. So, if es ∈ S, then r = 1 and we must have e = λ1s1. Since e2 = e,
it follows that e = s1 ∈ S. As S does not contain idempotents of rank less than n, we obtain
1 = e ∈ S, which is a contradiction. So we may assume that, for every s ∈ S of rank n and
every nonzero diagonal idempotent e 6= 1, we have es /∈ S. We call this the (NS) condition.

Write e11 =
∑
λi si . Clearly, (si)11 = 1 for some i, say i = 1. So e11 = e11sk

1 = sk
1e11 and

thus e11 =
∑
λi si sk

1 =
∑
λi sk

1si for every k ≥ 1. Let k be such that sk
1 is diagonal. So, from

the previous equalities, it follows that all si ∈ eSe, where e is the diagonal idempotent with
the same pattern of nonzero entries as sk

1. Now
∑
λi si =

∑
λi si skm

1 , for any m ≥ 1, implies
that sk

1 = e (as sk
1 permutes the support of e11). Since S does not contain idempotents of

rank less than n, we obtain sk = e = 1.
Let j < n be maximal such that S has matrices of rank j. Suppose j 6= 0. Denote by M j

all the matrices in Mn(G) of rank at most j. It is easily verified [11] that each M j is an ideal
in Mn(G) and M j/M j−1

∼=M
(
G j ,
(n

j

)
,
(n

j

)
;∆
)
, where G j is a group extension of G j by the

symmetric group S j . It follows that

K0

[
Mn(G)

]
∼= K0[Mn/Mn−1]⊕ · · · ⊕ K0[M2/M1]⊕ K0[M1].

Hence we obtain a natural homomorphism

ϕ : K0

[
Mn(G)

]
→ K0[M j/M j−1] ∼= M(n

j)
(
K[G j ]

)
.

We claim that ker(ϕ)∩K0[S] = K0[M j−1]∩K0[S]; whence ϕ(K0[S]) ∼= K0[S/(S∩M j−1)].
For this let a = a1 + a2 ∈ ker(ϕ) ∩ K0[S], where supp(a1) ⊆ (Mn \Mn−1) and supp(a2) ⊆
M j . The fact that ϕ(a) = 0 means that fka ∈ K0[M j−1] for every k = 1, 2, . . . ,

(n
j

)
, where

f1, . . . , f(n
j) are the nonzero idempotents of M j \M j−1. If a2 6= 0, then

fka =
∑

i

αi fkxi +
∑

l

βl fk yl,

where a1 =
∑
αixi , a2 =

∑
βl yl withαi , βl ∈ K and xi ∈ (Mn\Mn−1), yl ∈ M j . Each fk yl

is either yl or it is in M j−1. Because of condition (NS), yl 6= fkxi for any l, k, i. Therefore it
follows that fka1 ∈ K0[M j−1] and fka2 ∈ K0[M j−1] (for every k). Since rank( fkxi) = j, it
follows that fka1 = 0 for every k. In particular, K0[M j]a1 = 0 and consequently eiia1 = 0
for every 1 ≤ i ≤ n. Since 1 = e11 + · · · + enn, we get a1 = 0, which proves the claim.

So, replacing S by ϕ(S), we may assume that all nonzero matrices in S have rank n or
rank 1. Now, e11 =

∑r
i=1 λi si with 1 ∈ {s1, . . . , sr}. We claim that all elements si are of rank

n. Indeed, otherwise (considering Mn(K[G]) as a K-vector space with basis M(G, n, n;∆))
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we see that there exists an element, say sn, of rank one in the support of e11 with the only
nonzero entry also a matrix entry of an element, say s1, with rank(s1) = n; (note that
sn 6= e11 as e11 6∈ S). However then sn = es1 for some nonzero diagonal idempotent e 6= 1,
in contradiction with condition (NS).

Now looking at the first row of e11, since all si have rank n, we get

∑
i,(si )11=1

λi = 1,
∑

i,(si )11=g 6=1

λi = 0,
∑

i,(si )1t=g

λi = 0,

for g ∈ G, t = 2, . . . , n. So
∑r

i=1 λi = 1. A similar argument applied to the second row of
e11 yields

∑r
i=1 λi = 0, which is a contradiction. This completes the proof of the result.

Remark Let S be a semigroup as in the statement of Theorem 5. The construction of
the semigroup S and its algebra can now be explained by the following process. From
Proposition 6 we obtain that S contains one of the diagonal idempotents of rank 1, say enn.
Hence, by the Pierce decomposition,

K0[S] = K0[ennS ∪ Senn] + (1− enn)K0[S](1− enn).

Clearly Senn ∪ ennS are matrices of rank 1 and

(1− enn)K0[S](1 − enn) ∼= K0

[
(1− enn)S ′(1− enn)

]
,

where S ′ is the semigroup {s ∈ S | enns = ennsenn = senn}. The contracted semigroup
algebra K0[(1 − enn)S ′(1 − enn)] again is a prime maximal order, but the semigroup is
embedded in Mn−1(G). So now this ring (and the respective semigroup) is decomposed
similarly.
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[7] E. Jespers and J. Okniński, Nilpotent semigroups and semigroup algebras. J. Algebra (3) 169(1994), 984–1011.
[8] , Semigroup algebras that are principal ideal rings. J. Algebra 183(1996), 837–863.
[9] , Binomial semigroups. J. Algebra (1) 202(1998), 250–275.
[10] , Noetherian semigroup algebras. J. Algebra, to appear.
[11] , On a class of Noetherian algebras. Proc. Roy. Soc. Edinburgh Sect. A, to appear.
[12] E. Jespers and P. Wauters, Principal ideal semigroup rings. Comm. Algebra 23(1995), 5057–5076.
[13] M. I. Kargapolov and Ju. I. Merzljakov, Fundamentals of the Theory of Groups. Springer-Verlag, New York,

1979.
[14] H. Marubayashi, Y. Zhang and P. Yang, On the rings of the Morita context which are some well-known orders.

Comm. Algebra (5) 26(1998), 1429–1444.
[15] J. C. McConnell and J. C. Robson, Noncommutative Noetherian Rings. Wiley Interscience, New York, 1987.
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