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Abstract

The purpose of this paper is to study the so-called canonical monoidal closed structures on concrete
categories with constant maps. First of all we give an example of a category of this kind where there
exists a non canonical monoidal closed structure. Later, we give a technique to construct a class of
suitable full subcategories of the category of 7^-spaces, such that all monoidal closed structures on
them are canonical. Finally we show that "almost all" useful categories of topological compact spaces
admit no monoidal closed structures whatsoever.

1980 Mathematics subject classification (Amer. Math. Soc.): 18 D 15, 18 B 30, 54 B 30.

Introduction

Monoidal closed structures (symmetric or not) on (E, M)-topological categories
have been recently examined by many people.

In this direction, Greve [3], [4], [5], generalizing a Booth and Tillotson's
theorem [1] has shown that in many topological categories (topological spaces,
uniform spaces, merotopic spaces, etc.) and also in suitable initially structured
categories (To-, 7\-, r2-spaces) there exists a proper class of different (non
symmetric) monoidal closed structures.

Porst and Wischnewsky [10], [11], and independently Cincura [2] have dis-
covered a general technique which allows the construction of a symmetric
monoidal closed structure on every initially structured category.

This work was partially supported by the Italian CNR.
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176 Alessandro Logar and Fabio Rossi [2 ]

All the (non trivial) examples which can be constructed with the above methods
show that the forgetful functor <% over Set is strict monoidal, hence the tensor
product of two objects X, Y is, roughly speaking, a suitable structure on
<MX X <WY and the natural isomorphisms have underlying canonical bijections.
Let us call canonical every monoidal closed structure like this.

Enlarging a recent (unpublished?) Niederle's result (compare [2], Theorem 1.11)
one can see that, for a suitable concrete category with constant maps and
surjective epimorphisms, this is a general situation; namely every monoidal closed
structure on this category is canonical (compare Theorem 1.4). A large class of
categories satisfies the above theorem; for instance all topological categories.
Hence the assumptions of constant maps and surjective epimorphisms seem to be
crucial.

In Section 2 of this paper we show however, that this impression is false; we
give in fact an example of a non trivial category of this kind, where there exists a
non canonical monoidal closed structure.

On the other hand from a well known Isbell's result [7] it comes that also on the
category of ro-spaces (and continuous maps), all monoidal closed structures are
canonical although not all epimorphisms are surjective, therefore previous Theo-
rem 1.4 does not apply.

It is now natural to wonder if there exists any other initially structured category
in which epimorphisms are in general not surjective, and where all monoidal
closed structures are canonical.

In Section 3 we give a technique to construct a class of suitable full subcate-
gories of the category of ro-spaces, which affirmatively answers to the above
question as is shown in the examples of Section 4.

Finally, an extremal situation about categories with constant maps is examined
in Section 5, where it is shown that "almost all" useful categories of topological
compact spaces admit no monoidal closed structures whatsoever.

The authors are indebted to Max Kelly and Fabio Zanolin for many helpful
conversations on the topics covered by this paper.

1. Preliminaries

The aim of this section is to recall some results about monoidal closed
structures on concrete categories with constant maps.

These results seem to be known in the particular case where the monoidal
closed structure is also symmetric (compare [2], Theorem 1.11). The proofs,
however, seem to be unpublished and therefore we will give here them for the
general case.
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[3] Monoidal closed structures 177

Let (s/, <W: J ^ - > Set) be a concrete category, that is, the functor ^ i s faithful
and transportable. We say that (s/,^) admits constant maps iff every constant
morphism °UA -» <WB underlies some j^morphism A -* B, and we denote by
Cost( * , Y) the set of constant functions X -* Y for any X, Y e Set.

The symbol 1 shall be used for a terminal object of Set.

PROPOSITION 1.1. A category jtf is a concrete (s/, W) with constant maps and with
an object I such that Oil — 1 iffI is terminal and generator in s/.

PROOF. Since CostC^, <2r/) c s/(A, I) c Set(<%A,WI) and Oil = 1, then
s/(A, I) = 1 , so / is terminal. Since Cost(^/, <UA) = °UA c s/(I, A) c
Set(<&7, <%A) = <%A, then * ( - ) = J ^ ( 7 , -) and I is generator.

Conversely, let / be terminal and generator ins/; then ( J / , J / ( / , - ) : J?^-» Set)
is a concrete category withj/(7, / ) = 1. If

k: <%A = J ^ ( 7 , v4) -> <%B = st(l, B)

is a constant map, then k can be written as a composite

*~J*(I, B)

so A; = J ^ ( 7 , h(l)\) = *(A(1)!), where !: v4 -» 7.

Let nows/ be a category with the following properties:
(a)s/is a concrete (s/,.^);
(b) (s/, $/) admits constant maps;
(c) there exists ans/-object A with card(<%A) > 2 (i.e. s/is not apreorder).

PROPOSITION 1.2. Every monoidal closed structure ( - • - , 7, r, I, a,[-, -]) on
satisfies (up to natural isomorphisms) the following:

(1) <2W = 1; 7 is terminal and generator in

(2) #[5, C] = st(B, C) for any B,
(3) <%A X <&B Q <%(AUB), where the inclusion i is natural in A and B;
(4) The inclusion i is ty-epic (i.e. (<%h)i = (<&k)i =*h = k for any h, k:

AUB -> C);
(5) Ifir: jtf(AUB, C) = s/(A, [B, C]) is the adjunction, then

[(*ir(/))(x)](j) = (*/)(*, .y)

and
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for anyf: AOB -» C, g: A -» [B, C], (x, y) e <%A X

(6) <%IX<&A = <&(IOA); <&A X<%I=

*, JC) = JC; (4Srr)(jc,*) = * ;

PROOF. S/(I, I) is a commutative monoid, so card(^7) < 1. If 4W = 0 then
4, B)) < 1 for any A, B e J / because J / (^4, B) = s/(laA, B) =

I, [A, B]) and card(J/(7, [̂ 4, 5])) < 1; since^is not a preorder, WI must be a
singleton. Then, by 1.1, I is terminal and generator in s/ and <#(-) sjaf (/ ,-);
moreover ^ [B, C] s s/(I,[B, C]) = st(lUB, C) = s/(B, C) so (up to obvious
identifications), (1) and (2) follow.

The functor ^becomes then a monoidal one with natural transformation

iA B: <VA X °UB -> W(AnB)

defined by iAiB(x, y) = (xOy)l'1, x: I -* A, y: I -* B. If t is defined by the
following diagram

*(')

PB

it is easy to see that ti = 19AX^B, then (3) holds.

(<%h)i = (<%k)iffih(xny) = k(xDy) if and only if

for any x: I -> A,y: I ^> B. Applying Of, we obtain

(<%ir(h))(x)y= (#7r(A:))(jt)>>,foranyjc

and soh = k and (4) holds.
If/: /*•# -» C is anamorphism, then (<2T/)(A:, -) and (#/)(- , ^) underlie the

j^morphisms^xDl)/"1 andf(lOy)r'x, for any x: I -* A,y: I -* B, respectively.
Let us consider now the function <%ir(f): %A -* ^[B,C] evaluated to an

arbitrary x: I -> A. We have

then (5) holds.
(6) is trivial.
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[5] Monoidal closed structures 179

DEFINITION 1.3. Let j / b e a concrete category. A monoidal closed structure on
j / which verifies the conditions (1), (2), (4), (5), (6) of 1.2 and, instead of (3),
the stronger:

(3') <%A X <%B = <&(AOB) for all .4, B e jtf,

is called canonical.

Of course, for every canonical monoidal closed structure on s/, the natural

isomorphisms a, r, I and the adjunction it have the obvious underlying bijections.

THEOREM 1.4. Ifs/is a category that verifies the previous conditions (a), (b), (c)
and also:

(d) for every X c <%A there exists a morphism J: B -* A such that QlB = X and
QlJ is the inclusion;

(e) <%preserves epimorphisms,
then all monoidal closed structures on s&are canonical (up to natural isomoprhisms).

REMARK 1.5. Many categories satisfy the Theorem 1.4; for instance every
topological category in Herrlich's sense (compare [6]) or, more generally, every
initially structured category in Nel-Wyler's sense (compare [9], [12]) such that the
forgetful functor preserves epimorphisms (like for example, 7\-spaces, closure
spaces, partially ordered sets, generalized topological space in Cech's sense, and
so on), (compare also [2]).

2. A counterexample

Let Sf be the category of semilattices and functions which preserve binary
suprema, and let <W: Sf-* Set be the obvious forgetful functor. We denote with
yfin the full subcategory of ̂ whose objects are the finite semilattices.

PROPOSITION 2.1. The category y[iD verifies conditions (a), (b), (c), (e) of Section
1, but there exists a non canonical monoidal closed structure on it.

PROOF, first of all we consider the category^. Observe that an object of ^ i s a
set X with a binary composition law V: X X X -* X which is idempotent,
associative and commutative; so we could see SPas a category of (S, £)-algebras
(or, equivalently, as an Eilenberg-Moore category Setr for a suitable monad T
over Set). (Compare [8].)

Let X, Y, Z be semilattices. We will call bimorphism every function / :
X X Y -» Z such that f(x, - ) : Y -> Z and / ( - , y): X -* Z are ^morphisms for
every x e X,y e Y. (<2ris omitted.)

https://doi.org/10.1017/S144678870002303X Published online by Cambridge University Press

https://doi.org/10.1017/S144678870002303X


180 Alessandro Logar and Fabio Rossi [6]

Let F(X X Y) be the free semilattice on the set X X Y, and let X ® Y be the
quotient F{X X Y)/R where R is the smallest congruence relation on F(X X Y)

such that the function ®: X X y ^ F ^ X Y)^> F(XX Y)/R is a bimorphism.
It is easy to see that ® satisfies the usual universal property with respect to all
bimorphisms. Giving the obvious semilattice structure on ^ ( 7 , Z) we obtain a
symmetric monoidal closed structure on S?.

Observe that one can find the above monoidal closed structure on if, using the
general Porst and Wischnewsky's technique as in [10], Section 4; in fact Sf is an
Eilenberg-Moore category, and %: SP-* Set is semitopological functional functor.

It is easy to see that the above structure on .S^can be restricted on yfin. Let now
X G ^ t i n be the two element semilattice {0,1} with 0 < 1, and let a = (0,0),
b = (0,1), c = (1,0), d = (1,1) the four elements of X X X. It is easy to see that
F(X X X) = {a, b, c, d, ab, ac, ad, be, bd, cd, abc, abd, acd, bed, abed} (V is
omitted), and that R is the following partition: {a}, {b, ab}, {c, ac},
{d, ad, bd, cd, abd, acd, bed, abed}, {be, abc}.

This shows that X ® X has five elements, and therefore the considered struc-
ture onSf{in (and on^") cannot be canonical.

Moreover 5flia satisfies conditions (a), (b), (c), (e) of Section 1: (a), (b), (c) are
trivial; condition (e) as follows: let / : A -* B be a non surjective morphism.
Because B is finite, there exists fe0 e B \f{A) such that if bx, b2e B and bx < b0,
b2 < b0 then bx V b2 < b0. If we call Bx = {b e B: b < b0}, B2= {b e B:
b < b0} and again X the two elements semilattice {0,1} (0 < 1), the following
two applications u, v: B ~> X

[0 i f f c e ^ , 10 Ub^B2,

\ l iffceflXBj, \l if b^B\B2,

are different ^morphisms such that uf = vf; then / cannot be an epimorphism.
This concludes the proof.

3 . Subcategories of 9~0 with canonical monoidal closed structures

Let ^ be the category of T0-spaces and continuous maps. We will use
"subcategory" to mean "full replete subcategory".

In this section we will give a technique to construct coreflective subcategories of
fTQ, where all monoidal closed structures are canonical, but where Theorem 1.4 is
not applicable because not every epimorphism is surjective.

We will use Nel's results [9] about initially structured categories.
First of all we recall the following lemma due to Isbell (compare [7], 1.1).

https://doi.org/10.1017/S144678870002303X Published online by Cambridge University Press

https://doi.org/10.1017/S144678870002303X


[7] Monoidal closed structures 181

LEMMA 3.1. Let us consider the following diagram in

j

V V
where X is a Hausdorff space, A,T e $~0, S is a subspace of T,j is the inclusion and
u, v are continuous maps. If j is a 3~$-epimorphism, and the fibers u~1(h) are all
mapped homeomorphically by v upon A, then S = T.

From this it follows:

LEMMA 3.2. Lets/ be a coreflectivesubcategory of&~0, and ( - • - , / , r, I, a, [-, -])
be a monoidal closed structure on sf.

For every Hausdorff space H in s/ and for every A e s/ we have (up to
isomorphisms)

X <%A =

where "U: s?^> Set is the evident forgetful functor.

PROOF. lfs/= { 0 } , 3.2 is obvious. Otherwise, s/is non trivial in Nel's sense
and so it is initially structured (compare [9], Theorem 1.13); moreover s/verifies
Proposition 1.2.

The inclusion i: QlX X °UA •-> <&(XaA) is a mono-source in Set (for every
X, A G s/); so we can give a topology X XT A on 11X X QtA such that / becomes
^-initial mono-source in s/. From 1.2, 4) it follows that i is an epimorphism in s?
and hence also in ^ .

Let now X XSA be the subset %X X <&A of XHA, with the induced topology.
Because X XTA is finer than X XSA, it follows that the inclusion j : X XSA •-»
XUA is a ^-epimorphism.

Let / be the morphism defined by

IDA = A

XDI =
where X X^A is the cartesian product in J/(compare [9] Theorem 1.1), and ! are
the unique morphisms. The functor <%: s/-* Set preserves limits, so from 1.2 we

https://doi.org/10.1017/S144678870002303X Published online by Cambridge University Press

https://doi.org/10.1017/S144678870002303X


182

have <W (//')

Alessandro Logar and Fabio Rossi

t h e n m t l i e following commutative diagram

181

u and vj have as underlying maps just the usual projections.
For every x e X, o\u i , u'\x) -» A is bijective and continuous, and its

OlxOl

inverse is also continuous because it is essentially the map A = IUA - > XOA.
If in particular Xis a Hausdorff space, it follows from 3.1 that X Xs A = XDA.

This concludes the proof.
Let now 38 be a non trivial class of Hausdorff spaces and let sf= h u l l ^ ^ ) be

the coreflective hull of 38 in $~0.

THEOREM 3.3. Every monoidal closed structure on s#is canonical {up to natural
isomorphisms ).

PROOF. If ( - • - , /, r, I, a,[-, -]) is a monoidal closed structure on j / t he only
thing to prove is that "UY X °UZ = <W(YnZ) for every Y, Z es/, because JS'is
initially structured.

From [9], 1.12, it follows that there exists a family {5 ,} , e / , B, e 38 such that Y
is a quotient/? ( i n ^ or equivalently ins/) of the coproduct LJ,G/5,.

In the following commutative diagram (compare 1.2, (3))

X QlZ C

V 1 G /

X l

X

(the equality follows from 3.2 because LJ,G/5, is a Hausdorff space in s/),pU\ is
again a quotient in ^because -DZ preserves colimits and so <%(pOl) is a
surjective map (compare [9], 1.4, 1.6). Therefore / is surjective and the thesis
follows.
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4. Examples

(a) Take 38 the class of all uniform ultraspaces defined on all (infinite)
cardinals. Then s/ is ^ , and so we refind that in this category all monoidal
closed structures are canonical.

(b) Take 38 = {Nx}, the one point compactification of the natural numbers
with the discrete topology. Then s/ is exactly the category of T0-sequential spaces.

(c) More generally, let a be an (infinite) regular cardinal and let J^ be the
genearlized Frechet filter on a {A e &a if and only if card(a \ A) < a). Denote
with C(a) the corresponding filter space defined on a U {oo}. If we take
38 = { C(a)}, thens? is now the category of ro-a-sequential spaces.

(d) Take 38 = {H: H is compact Hausdorff space}. Then s/is the category of
r0-compactly generated spaces.

REMARK 4.1. In all the above examples epimorphisms are not, in general,
surjective. For instance, take X the set N U {oo} (N = natural numbers) with the
following topology:

A Q * i s °Pe n i f f {A = I ' u { o o M ' cJV,tf\^'finite.

If we take the subspace X' = X\ {oo} it is easy to see that the inclusion map /:
X' *-* Xis a^-epimorphism because i'1 is an injection on open sets. Moreover X
and X' are sequential spaces, so they give an example of non surjective epimor-
phism in cases (b), (d) and clearly in (a).

A straightforward generalization gives examples also for case (c).

5. A negative result

The goal of this section is to show that in "almost all" useful categories of
compact spaces do not exist any monoidal closed structure.

We denote with - ® - : Top X Top -> Top and [-, ~]pc: Topop X Top -» Top
the separate continuity tensor product and pointwise convergence internal hom,
respectively.

Let #be a full replete subcategory of Top that contains at least an object with
cardinality greater than one and let ( -•- , /, r, I, a, [-, -]) be a monoidal closed
structure on c€.
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From 1.2 we have the natural inclusion: /: <%X X <%Y -» <%(XUY) (for every
I , 7 e ^ ; ^ : ?"-» Set the obvious forgetful functor) which is separately continu-
ous and so can be lifted to a map sXY: X ® Y —» XOY. Clearly sXY results a
natural transformation s: - ® - - » -O-: Vxif-* Top. Because #is full in Top,
it is easy to see that s defines a natural transformation TYZ: [Y, Z] -» [Y, Z]pc for
every Y, Z e #, such that the following diagram

F, Z) s Top(X,[Y,Z]pc)

Top(5,l) T t TOP(1,T)

Top(A'Dr, Z) = Top(X, [Y,Z])

is commutative for every X, Y, Z e #.
If in particular, we take in the above diagram X = I = {*}, we find from 1.2,

(6) that i / r is the identity, and so the underlying map of rYZ is the identity.
Let now *€ be any class of compact spaces which contains at least a Hausdorff

space X with the property that there exist two distinct points p, q that are joined
by a path in X (i.e. X is a space not totally pathwise disconnected).

If we think #as a full (replete) subcategory of Top, we will prove

THEOREM 5.1. There is not any monoidal closed structure on <&.

Before proving the above theorem we recall the following:

LEMMA 5.2. Let X be a compact Hausdorff not totally pathwise disconnected
space. Then [X, X]pc is not compact.

PROOF. Let Xx be the set of all functions from X to X with the usual product
topology. Xx is a Hausdorff space and so the only thing to prove is that its
subspace [X, X]pc is not closed.

Let I1 = [0,1] be the closed unit interval and let/: Ix -* Xbe a continuous map
such that/(O) = p,f(l) = q,p # q. The function g: X -» X defined by

[P Xx=P,
\q otherwise,

is not continuous because { p} is not open and X is Hausdorff. Let

w - F F ( { * x } . t f i ) n •••nw({xn},un)

(Ult..., Un open in X, W({Xj}, Ut) = {$ e Xx: $(*,.) el/,})

be an open basic neighborhood of g. Let S — {x1,.. .,xn). Take V an open
neighborhood of/? which does not contain the points o f .S \{ /?}( i f .S ' \{ />}= 0 ,
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1111 Monoidal closed structures 185

take Fany open neighborhood ofp, different from X). ^Tis completely regular, so
there exists a Urysohn function h for X\V and {p} such that hp = 0 and
h(X\V) = 1. The function/fc is continuous and fh e W; so g is in the closure of
[X,X]pcinXx.

PROOF OF 5.1. Suppose that (-•- , /, r, /, a, [-, -]) is a monoidal closed
structure on %'. Take X like in the hypothesis of 5.2. Then rxx: [X, X] -> [X, X]pc

is surjective as we have seen, and this is a contradiction.
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