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THE MEAN WAITING TIME TO A REPETITION

GUNNAR BLOM*, University of Lund

Abstract

Let Xl, X 2 , ••• be a stationary sequence of random variables and
E b E 2 , ••• , EN mutually exclusive events defined on k consecutive
X's such that the probabilities of the events have the sum unity. In
the sequence E j t , Eh, ... generated by the X's, the mean waiting time
from an event, say E it , to a repetition of that event is equal to N
(under a mild condition of ergodicity). Applications are given.

STATIONARITY; BERNOULLI TRIALS; MARKOV CHAIN; UPCROSSINGS

AND DOWNCROSSINGS

1. Introduction

Johnson (1968) considered independent trials with m mutually exclusive outcomes
E b E 2 , ••• , Em, where P(Ej ) = Pj. Let S be the result of k consecutive trials and T the
waiting time, that is, the number of additional trials required to repeat the pattern S,
where T = k, k + 1, .... Johnson showed that, averaging over all possible patterns of
length k, the mean waiting time is m k + k - 1, and hence does not depend on the
probabilities Pj.

Johnson's result depends crucially on the fact that overlaps are not allowed. For
example, in the binary sequence 1 0 1 0 1 0 0 1 0 1, repetition of the first 1 0 1 occurs
after T = 7 trials.

In the present note we change the definition of T so that overlaps are allowed; hence
in the above example T = 2. Also, the problem is given a somewhat more general
formulation.

2. Main result

Let X b X 2 , ••• be a stationary sequence of random variables and E b E 2 , ••• ,EN
mutually exclusive events defined as follows on k consecutive X's: The event E, occurs
if (Xb • •• , X k ) E A j , where {A b ••• , AN} is a partition of Ri, Set

j=1,··· ,N.

The P's sum to unity.
The sequence X b X 2 , ••• generates a sequence E j t , Eh , ... of events. In what follows,

we shall suppose that the following condition is fulfilled:
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In the sequence E j t , Eh , ... , each possible event E j , j = 1, ... , N, occurs at least once,
with probability 1.

Consider the waiting time T from an event in a certain position, say Ej t , to the first
repetition of this event. For each given E, = Ej, the conditional mean of T is given by
M, = l/P(~); cf. Breiman (1968), p. 123. Averaging over all possible Ej, we im
mediately obtain the overall mean

N

E(T) = I ~P(~)=N.
i=l

Hence the mean waiting time is equal to the number N of events Ej •

3. Examples

We give several examples, to show the wide applicability of the result.

Example 1. Patterns in Bernoulli trials. Consider a sequence of Bernoulli trials
1 0 1 0 1 0 0 1 0 1 ... , where the probability of 1 and 0 is p and q = 1 - p, respectively.
Take k = 3 and consider all possible N = 8 patterns 000, 001,· .. , 111. The mean
waiting time from the pattern in the three first positions to a repetition of this pattern is
8. (If overlaps are not allowed, the mean distance is 10, as shown by Johnson.)

Example 2. Small prison. A prison receives N types of prisoners, one prisoner each
morning. The probability is pj that the prisoner is of type j. The prison is small; there is
only one one-person cell for each type of prisoner. Therefore, as soon as a prisoner of
type j arrives, the prisoner in cell j is made free. The mean time of imprisonment is N
days.

Example 3. Poisson distribution. Consider a sequence of independent Poisson vari
ables with the same mean. The mean waiting time, until the value assumed by the first
variable is repeated, is infinite.

Example 4. Markov chain. Consider an N -state ergodic Markov chain that has
reached equilibrium. Let E I, ... ,EN be the states of the chain. Consider a certain
time-point. The mean waiting time to a repetition of the state assumed at this
time-point is equal to the number of states N, averaging over all possible states.

Example 5. Upcrossings and downcrossings. Consider a stationary sequence of
continuous random variables XI, X 2 , •••• We are interested in studying whether k = 2
successive values lie above or below a certain level a, according to the following
classification into N = 4 events:

e; Xl<a,X2>a (upcrossing)
E 2 : Xl> a, X 2 < a (downcrossing)
E 3 : X, > a, X 2 > a (both values at high level)
E 4 : X, < a, X 2 < a (both values at low level).

For example, if a = 0 and the values are

0·51 -0·23 -0·34 0·05 0·16 -0·60,

the sequence of events is E 2 E 4 E, E 3 E 2 • The mean waiting time from one event to a
repetition is 4.
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