NONTRIVIAL SOLUTIONS FOR A MULTIVALUED PROBLEM WITH STRONG RESONANCE

by VICENTIU D. RĂDULESCU

(Received 26 July, 1994; revised 14 November, 1994)
The Mountain-Pass Theorem of Ambrosetti and Rabinowitz (see [1]) and the Saddle Point Theorem of Rabinowitz (see [21]) are very important tools in the critical point theory of C^{1}-functionals. That is why it is natural to ask us what happens if the functional fails to be differentiable. The first who considered such a case were Aubin and Clarke (see [6]) and Chang (see [12]), who gave suitable variants of the Mountain-Pass Theorem for locally Lipschitz functionals which are defined on reflexive Banach spaces. For this aim they replaced the usual gradient with a generalized one, which was firstly defined by Clarke (see [13], [14]). As observed by Brezis (see [12, p. 114]), these abstract critical point theorems remain valid in non-reflexive Banach spaces.

We apply some of these results to solve a multivalued problem with strong resonance at infinity. We remark that it is not usual to consider nonlinearities which are strongly resonant at $+\infty$ unless they are also strongly resonant at $-\infty$. The literature is very rich in resonant problems; the first who studied such problems (in the smooth case) were Landesman and Lazer (see [18]). They found sufficient conditions for the existence of solutions for some single-valued equations with Dirichlet conditions. These problems, which arise frequently in mechanics, were thereafter intensively studied and many applications to concrete situations were given.

1. Abstract framework. Let X be a real Banach space and let $f: X \rightarrow \mathbf{R}$ be a locally Lipschitz function. For each $x, v \in X$, we define the generalized directional derivative of f at x in the direction v as

$$
f^{0}(x, v)=\underset{\substack{y \rightarrow x \\ \lambda>0}}{\lim \sup ^{\prime}} \frac{f(y+\lambda v)-f(y)}{\lambda} .
$$

The generalized gradient (the Clarke subdifferential) of f at the point x is the subset $\partial f(x)$ of X^{*} defined by

$$
\partial f(x)=\left\{x^{*} \in X^{*} ; f^{0}(x, v) \geq\left\langle x^{*}, v\right\rangle, \text { for all } v \in X\right\} .
$$

We also define the lower semi-continuous function

$$
\lambda(x)=\min \left\{\left\|x^{*}\right\| ; x^{*} \in \partial f(x)\right\} .
$$

For further properties of these notions we refer to [12], [13], [14].
We say that a point $x \in X$ is a critical point of f provided that $0 \in \partial f(x)$, that is $f^{0}(x, v) \geq 0$ for every $v \in X$. If c is a real number, we say that f satisfies the Palais-Smale condition at the level c (in short, (PS) $)_{c}$) if any sequence $\left(x_{n}\right)_{n}$ in X with the properties $\lim _{n \rightarrow \infty} f\left(x_{n}\right)=c$ and $\lim _{n \rightarrow \infty} \lambda\left(x_{n}\right)=0$ is relatively compact.

We shall use in this paper the following result, which is an immediate consequence of the Mountain-Pass Theorem proved in [12].

Glasgow Math. J. 38 (1996) 53-59.

Theorem 1. Let $f: X \rightarrow \mathbf{R}$ be a locally Lipschitzian function. Suppose that $f(0)=0$ and there is some $v \in X \backslash\{0\}$ such that $f(v) \leq 0$. Moreover, assume that f satisfies the following geometric hypothesis: there exist $R>0$ and $\alpha>0$ such that $R<\|\nu\|$ and, for each $u \in X$ with $\|u\|=R$, we have $f(u) \geq \alpha$. Let \mathscr{P} be the family of all continuous paths $p:[0,1] \rightarrow X$ that join 0 to v and

$$
c=\inf _{p \in \mathscr{P}} \max _{t \in[0,1]} f(p(t)) .
$$

Then there exists a sequence $\left(x_{n}\right)$ in X such that:
(i) $\lim _{n \rightarrow \infty} f\left(x_{n}\right)=c$;
(ii) $\lim _{n \rightarrow \infty} \lambda\left(x_{n}\right)=0$.

Moreover, if f satisfies (PS) ${ }_{c}$ then c is a critical value of f.
The following saddle point type result generalizes the Rabinowitz's theorem (see [21]). Its proof is an easy exercise and is left to the reader.

Theorem 2. Let $f: X \rightarrow \mathbf{R}$ be a locally Lipschitzian function. Assume that $X=Y \oplus Z$, where Z is a finite dimensional subspace of X and for some $z_{0} \in Z$ there exists $R>\left\|z_{0}\right\|$ such that

$$
\inf _{y \in Y} f\left(y+z_{0}\right)>\max \{f(z) ; z \in Z,\|z\|=R\}
$$

Let

$$
K=\{z \in Z ;\|z\| \leq R\}
$$

and

$$
\mathscr{P}=\{p \in C(K, X) ; p(x)=x \text { if }\|x\|=R\}
$$

If c is defined as in Theorem 1 and f satisfies (PS) $)_{c}$, then c is a critical value of f.
2. Main results. Let M be a m-dimensional smooth compact Riemann manifold, possibly with smooth boundary ∂M. Particularly, M can be any open bounded smooth subset of \mathbf{R}^{m}. We shall consider the following multivalued elliptic problem

$$
\left\{\begin{array}{cc}
-\Delta_{M} u(x)-\lambda_{1} u(x) \in[f(u(x)), \bar{f}(u(x))] & \text { a.e. } x \in M \\
u=0 & \\
u \neq 0, & \text { on } \partial M
\end{array}\right.
$$

where:
(i) Δ_{M} is the Laplace-Beltrami operator on M;
(ii) λ_{1} is the first eigenvalue of $-\Delta_{M}$ in $H_{0}^{1}(M)$;
(iii) $f \in L^{x}(\mathbf{R})$;
(iv) $\underline{f}(t)=\lim _{\varepsilon>0} \operatorname{essinf}\{f(s) ;|t-s|<\varepsilon\}, \bar{f}(t)=\lim _{\varepsilon \searrow 0} \operatorname{esssup}\{f(s) ;|t-s|<\varepsilon\}$.

As proved in [12], the functions \underline{f} and \bar{f} are measurable on \mathbf{R} and, if

$$
F(t)=\int_{0}^{t} f(s) d s
$$

then the Clarke subdifferential of F is given by

$$
\dot{\partial} F(t)=[\underline{f}(t), \bar{f}(t)] \quad \text { a.e. } t \in \mathbf{R} .
$$

Let $\left(g_{i j}(x)\right)_{i, j}$ define the metric on M. We consider on $H_{0}^{1}(M)$ the locally Lipschitz functional $\varphi=\varphi_{1}-\varphi_{2}$, where

$$
\varphi_{1}(u)=\frac{1}{2} \int_{M}\left(\sum_{i, j} g_{i j}(x) \frac{\partial u}{\partial x_{i}} \frac{\partial u}{\partial x_{j}}-\lambda_{1} u^{2}\right) d x \quad \text { and } \quad \varphi_{2}(u)=\int_{M} F(u) d x .
$$

By a solution of the problem (P) we shall mean any critical point of the energetic functional φ. Denote

$$
f(\pm \infty)=\text { ess } \lim _{t \rightarrow \pm x} f(t) \text { and } F(\pm \infty)=\lim _{t \rightarrow \pm \infty} F(t) .
$$

Our basic hypothesis on f will be

$$
\begin{equation*}
f(+\infty)=F(+\infty)=0, \tag{f1}
\end{equation*}
$$

which makes the problem (P) a Landesman-Lazer type one, with strong resonance at $+\infty$.

The following formulates a sufficient condition for the existence of solutions of our problem.

Theorem A. Assume that f satisfies (f1) and either

$$
\begin{equation*}
F(-\infty)=-\infty \tag{F1}
\end{equation*}
$$

or $-\infty<F(-\infty) \leq 0$ and there exists $\eta>0$ such that
F is non-negative on $(0, \eta)$ or $(-\eta, 0)$.
Then the problem (P) has at least one solution.
For positive values of $F(-x)$ it is necessary to impose additional restrictions on f. Our variant for this case is the following theorem.

Theorem B. Assume (f1) and $0<F(-x)<+\infty$. Then the problem (P) has at least one solution provided the following conditions are satisfied:

$$
f(-\infty)=0
$$

and

$$
F(t) \leq \frac{\lambda_{2}-\lambda_{1}}{2} t^{2} \quad \text { for each } t \in \mathbf{R} .
$$

For the proof of Theorem A we shall make use of the following non-smooth variants
of Lemmas 6 and 7 in [15] (see also [3] for Lemma 1) which can be obtained in the same manner.

Lemma 1. Assume $f \in L^{\infty}(\mathbf{R})$ and there exist $F(\pm \infty) \in \overline{\mathbf{R}}$. Moreover, suppose that
(i) $f(+\infty)=0$ if $F(+\infty)$ is finite;
and
(ii) $f(-\infty)=0$ if $F(-\infty)$ is finite.

Then

$$
\mathbf{R} \backslash\{a . \operatorname{meas}(M) ; a=-F(\pm \infty)\} \subset\left\{c \in \mathbf{R} ; \varphi \text { satisfies }(\mathrm{PS})_{c}\right\} .
$$

Lemma 2. Assume f satisfies (f1). Then φ satisfies (PS$)_{c}$, whenever $c \neq 0$ and $c<-F(-\infty) . \operatorname{meas}(M)$.

Here meas (M) denotes the Riemannian measure of M.
Proof of Theorem A. We shall develop some of the ideas used in [26]. There are two distinct situations.

Case 1. $F(-\infty)$ is finite, that is $-\infty<F(-\infty) \leq 0$. In this case, φ is bounded from below since

$$
\varphi(u)=\frac{1}{2} \int_{M}\left(\sum_{i, j} g_{i j}(x) \frac{\partial u}{\partial x_{i}} \frac{\partial u}{\partial x_{j}}-\lambda_{1} u^{2}\right) d x-\int_{M} F(u) d x
$$

and, by our hypothesis on $F(-\infty)$,

$$
\sup _{u \in H_{0}^{2}(M)} \int_{M} F(u) d x<+\infty .
$$

Therefore,

$$
-\infty<a:=\inf _{u \in H_{0}^{1}(M)} \varphi(u) \leq 0=\varphi(0)
$$

Choose c small enough in order to have $F\left(c e_{1}\right)<0$ (note that c may be taken positive if $F>0$ in $(0, \eta)$ and negative if $F<0$ in $(-\eta, 0)$). Here $e_{1}>0$ denotes the first eigenfunction of $-\Delta_{M}$ in $H_{0}^{1}(M)$. Hence $\varphi\left(c e_{1}\right)<0$, so $a<0$. It follows now from Lemma 2 that φ satisfies (PS) $)_{a}$. The proof ends in this case by applying Theorem 1.

Case 2. $F(-\infty)=-\infty$. Then, by Lemma $1, \varphi$ satisfies (PS) ${ }_{c}$ for each $c \neq 0$. Let V be the orthogonal complement of the space spanned by e_{1} with respect to $H_{0}^{1}(M)$, that is

$$
H_{0}^{1}(M)=\operatorname{Sp}\left\{e_{1}\right\} \oplus V .
$$

For fixed $t_{0}>0$, denote

$$
V_{0}=\left\{t_{0} e_{1}+v ; v \in V\right\} \quad \text { and } \quad a_{0}=\inf _{v \in V_{0}} \varphi(v) .
$$

Note that φ is coercive on V. Indeed, if $v \in V$, then

$$
\varphi(v) \geq \frac{1}{2}\left(1-\frac{\lambda_{1}}{\lambda_{2}}\right)\|v\|_{H_{0}^{\prime}}^{2}-\int_{M} F(v) \rightarrow+\infty \quad \text { as } \quad\|v\|_{H_{0}^{\prime}} \rightarrow+\infty
$$

because the first term has a quadratic growth at infinity (t_{0} being fixed), while $\int_{M} F(v)$ is uniformly bounded (in v), in view of the behaviour of F near $\pm \infty$. Thus, a_{0} is attained, because of the coercivity of φ on V. From the boundedness of φ on $H_{0}^{1}(M)$ it follows that $-\infty<a \leq 0=\varphi(0)$ and $a \leq a_{0}$.

Again, there are two possibilities.
(i) $a<0$. In this case, by Lemma 2, φ satisfies (PS) $)_{a}$. Hence $a<0$ is a critical value of φ.
(ii) $a=0 \leq a_{0}$. Then, either $a_{0}=0$ or $a_{0}>0$. In the first case, as we have already remarked, a_{0} is attained. Thus, there is some $v \in V$ such that

$$
0=a_{0}=\varphi\left(t_{0} e_{1}+v\right)
$$

Hence, $u=t_{0} e_{1}+v \in H_{0}^{1}(M) \backslash\{0\}$ is a critical point of φ, that is a solution of (P).
If $a_{0}>0$, notice that φ satisfies (PS) $)_{b}$ for each $b \neq 0$. Since $\lim _{t \rightarrow+\infty} \varphi\left(t e_{1}\right)=0$, we may apply Theorem 2 to conclude that φ has a critical value $c \geq a_{0}>0$.

Proof of Theorem B. Assume V has the same definition as above, and let

$$
V_{+}=\left\{t e_{1}+v ; t>0, v \in V\right\} .
$$

It will be sufficient to show that the functional φ has a non-zero critical point. To do this, we shall make use of two different arguments. If $u=t e_{1}+v \in V_{+}$then

$$
\varphi(u)=\frac{1}{2} \int_{M}\left(|\nabla v|^{2}-\lambda_{1} v^{2}\right)-\int_{M} F\left(t e_{1}+v\right) .
$$

In view of the boundedness of F it follows that

$$
-\infty<a_{+}:=\inf _{u \in V_{+}} \varphi(u) \leq 0
$$

We analyse two distinct situations.
Case 1. $a_{+}=0$. To prove that φ has a critical point, we use the same arguments as in the proof of Theorem A (the second case). More precisely, for some fixed $t_{0}>0$ we define in the same way V_{0} and a_{0}. Obviously, $a_{0} \geq 0=a_{+}$, since $V_{0} \subset V_{+}$. The proof follows from now on as in Case 2 of Theorem A, by reconsidering the two distinct situations $a_{0}>0$ and $a_{0}=0$.

Case 2. $a_{+}<0$. Let $u_{n}=t_{n} e_{1}+v_{n}$ be a minimizing sequence of φ in V_{+}. We observe that the sequences $\left(u_{n}\right)_{n}$ and $\left(v_{n}\right)_{n}$ are bounded. Indeed, this is essentially a compactness condition and may be proved in a similar way to Lemma 1. It follows that there exists $w \in \bar{V}_{+}$, such that, going eventually to a subsequence,

$$
\begin{gathered}
u_{n} \rightarrow w \text { weakly in } H_{0}^{1}(M), \\
u_{n} \rightarrow w \text { strongly in } L^{2}(M), \\
u_{n} \rightarrow w \text { a.e. }
\end{gathered}
$$

Applying the Lebesgue dominated convergence theorem we obtain

$$
\lim _{n \leftarrow \infty} \varphi_{2}\left(u_{n}\right)=\varphi_{2}(u)
$$

On the other hand,

$$
\varphi(w) \leq \liminf _{n \rightarrow \infty} \varphi_{1}\left(u_{n}\right)-\lim _{n \rightarrow \infty} \varphi_{2}\left(u_{n}\right)=\liminf _{n \rightarrow \infty} \varphi\left(u_{n}\right)=a_{+} .
$$

It follows that, necessarily, $\varphi(w)=a_{+}<0$. Since the boundary of V_{+}is V and

$$
\inf _{u \in V} \varphi(u)=0,
$$

we conclude that w is a local minimum of φ on V_{+}and $w \in V_{+}$.

REFERENCES

1. A. Ambrosetti and P. H. Rabinowitz, Dual variational methods in critical point theory and applications, J. Functional Analysis 14 (1973), 349-381.
2. D. Arcoya, Periodic solutions of Hamiltonian systems with strong resonance at infinity, Differential Integral Equations 3 (1990), 909-921.
3. D. Arcoya and A. Cañada, Critical point theorems and applications to nonlinear boundary value problems, Nonlinear Anal. 14 (1990), 393-411.
4. D. Arcoya and A. Cañada, The dual variational principle and discontinuous elliptic problems with strong resonance at infinity, Nonlinear Anal. 15 (1990), 1145-1154.
5. D. Arcoya and D. G. Costa, Nontrivial solutions for a strongly resonant problem, Differential Integral Equations, to appear.
6. J. P. Aubin and F. H. Clarke, Shadow prices and duality for a class of optimal control problems, SIAM J. Control Optim. 17 (1979), 567-586.
7. T. Aubin, Nonlinear analysis on manifolds. Monge-Ampère equations (Springer, 1982).
8. P. Bartolo, V. Benci and D. Fortunato, Abstract critical point theorems and applications to some nonlinear problems with "strong" resonance at infinity, Nonlinear Anal. 7 (1983), 981-1012.
9. H. Brézis, J. M. Coron and L. Nirenberg, Free vibrations for a nonlinear wave equation and a theorem of P. Rabinowitz, Comm. Pure Appl. Math. 33 (1980), 667-684.
10. A. Capozzi, D. Lupo and S. Solimini, Double resonance in semilinear elliptic problems, Comm. Partial Differential Equations 6 (1991), 91-120.
11. M. Choulli, R. Deville and A. Rhandi, A general mountain pass principle for nondifferentiable functions, Rev. Mat. Apl. 13 (1992), 45-58.
12. K. C. Chang, Variational methods for nondifferentiable functionals and applications to partial differential equations, J. Math. Anal. Appl. 80 (1981), 102-129.
13. F. H. Clarke, Generalized gradients and applications, Trans. Amer. Math. Soc. 205 (1975), 247-262.
14. F. H. Clarke, Generalized gradients of Lipschitz functionals, Adv. in Math. 40 (1981), 52-67.
15. D. G. Costa and E. A. Silva, The Palais-Smale condition versus coercivity, Nonlinear Anal. 16 (1991), 371-381.
16. I. Ekeland, On the variational principle, J. Math. Anal. Appl. 47 (1974), 324-353.
17. P. Hess, Nonlinear perturbations of linear elliptic and parabolic problems at resonance, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 5 (1978), 527-537.
18. E. A. Landesman and A. C. Lazer, Nonlinear perturbations of linear elliptic boundary value problems at resonance, J. Math. Mech. 19 (1969/70), 609-623.
19. D. Lupo and S. Solimini, A note on a resonance problem, Proc. Roy. Soc. Edinburgh Sect. A 102 (1986), 1-7.
20. P. Mironescu and V. Rădulescu, A multiplicity theorem for locally Lipschitz periodic functionals, J. Math. Anal. Appl., to appear.
21. P. H. Rabinowitz, Some critical point theorems and applications to semi-linear elliptic partial differential equations, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 5 (1978), 215-223.
22. V. Rădulescu, Mountain pass theorems for non-differentiable functions and applications, Proc. Japan Acad. Ser. A Math. Sci. 69 (1993), 193-198.
23. M. Schechter, Nonlinear elliptic boundary value problems at strong resonance, Amer. J. Math. 112 (1990), 439-460.
24. S. Solimini, On the solvability of some elliptic partial differential equations with the linear part at resonance, J. Math. Anal. Appl. 117 (1986), 138-152.
25. K. Thews, Nontrivial solutions of elliptic equations at resonance, Proc. Roy. Soc. Edinburgh Sect. A 85 (1980), 119-129.
26. J. R. Ward, Jr., A boundary value problem with a periodic nonlinearity, Nonlinear Anal. 10 (1986), 207-213.

Department of Mathematics
University of Craiova
1100 CRaiova
Romania

