Additive Riemann-Hilbert Problem in Line Bundles Over $\mathbb{C P P}^{1}$

Roman J. Dwilewicz

Abstract

In this note we consider $\bar{\partial}$-problem in line bundles over complex projective space (C.P ${ }^{1}$ and prove that the equation can be solved for $(0,1)$ forms with compact support. As a consequence, any Cauchy-Riemann function on a compact real hypersurface in such line bundles is a jump of two holomorphic functions defined on the sides of the hypersurface. In particular, the results can be applied to $\mathrm{C}^{1 / 2}{ }^{2}$ since by removing a point from it we get a line bundle over $\mathbb{C P}^{1}$.

1 Introduction and Definitions

Let $(\mathbb{C P})^{1}$ be the one-dimensional complex projective space. It is well known (e.g., [GH, $\mathrm{Gu}]$) that all line bundles over $\left(\mathbb{C P}^{1}\right.$ are $E_{k}, k=0, \pm 1,2, \ldots$, where the transition functions are $z_{2}=z_{1}^{-1}$ and $w_{2}=z_{1}^{k} w_{1}$. We use the standard notation: \mathcal{O}, the sheaf of germs of holomorphic functions, $H^{1}\left(E_{k}, \mathcal{O}\right)$, the first cohomology group of E_{k} with coefficients in \mathcal{O}, and $H_{c}^{1}\left(E_{k}, \mathcal{O}\right)$, the cohomology group with compact support.

The main results of this note are the following:
Theorem A (Theorem 4.1) In any $E_{k}, k= \pm 0,1,2, \ldots$, the equation $\bar{\partial} u=\omega$ can be solved for any closed $(0,1)$ form ω with compact support. Additionally, if $k=1,2, \ldots$, the solution can be chosen to have compact support; if $k=0,1,2, \ldots$, the solution exists even if the support of ω is not compact.

Theorem B (Theorem 3.1)
(a) $H_{c}^{1}\left(E_{k}, \mathcal{O}\right)=H^{1}\left(E_{k}, \mathcal{O}\right)=0$ for $k=1,2, \ldots$;
(b) $H_{c}^{1}\left(E_{0}, \mathcal{O}\right) \neq 0$ and $H^{1}\left(E_{0}, \mathcal{O}\right)=0$;
(c) $H_{c}^{1}\left(E_{k}, \mathcal{O}\right) \neq 0$ and $H^{1}\left(E_{k}, \mathcal{O}\right) \neq 0$ for $k=-1,-2, \ldots$

A smooth function defined on a real hypersurface in E_{k} is Cauchy-Riemann (CR) if it satisfies the tangential CR equations. As a consequence of Theorem A we have
Corollary (Corollary 4.3) Let $M=\partial U$ be the boundary (connected) of a relatively compact domain $U, U=U^{+} \Subset E=E_{k}, k=0, \pm 1, \pm 2, \ldots$. Then any smooth $C R$ function f on M can be represented as

$$
\begin{equation*}
f=u^{+}-u^{-}, \tag{1}
\end{equation*}
$$

where u^{+}(resp. u^{-}) is a holomorphic function in U^{+}(resp. $U^{-}=E_{k} \backslash \bar{U}^{+}$) smooth on the closure \bar{U}^{+}(resp. \bar{U}^{-}).

Received by the editors February 25, 2004.
Partially supported by the University of Missouri Research Board grant (2003) and the Polish Committee for Scientific Research Grant KBN 2 P03A 04415

AMS subject classification: Primary: 32F20; secondary: 14F05, 32C16.
Keywords: $\bar{\partial}$-problem, cohomology groups, line bundles.
(C)Canadian Mathematical Society 2006.

In particular, the Corollary can be applied to $\mathbb{C P}^{\left(P^{2}\right.}$, since by removing a point from it we get a line bundle over $\mathbb{C P}^{1}{ }^{1}$. In the $\mathbb{C P}^{2}{ }^{2}$ a stronger result can be obtained, namely that one of the functions u^{+}or u^{-}in (1) is constant under some weak hypothesis on M (global minimality); see [DM, S1, S2].

The $\bar{\partial}$-equation is intimately related to the first cohomology groups and also to the Hartogs and Hartogs-Bochner phenomena (see, for instance, [L]). Because of that we need the following definitions.

Let X be a connected complex manifold. By a domain U we always mean an open, connected, relatively compact set with smooth connected boundary. By smooth we mean C^{∞}, however the differentiability class in the results of this note can be relaxed significantly.

Definition 1.1 The Hartogs phenomenon (\mathcal{H} in short) holds in a complex manifold X if for any compact set K such that $X \backslash K$ is connected, any holomorphic function defined on $X \backslash K$ can be holomorphically extended to X.

Definition 1.2 The Hartogs-Bochner phenomenon for a domain $U \Subset X,(\mathcal{H B}-U$ in short), holds if any smooth CR function on ∂U can be holomorphically extended to U and smoothly up to the boundary.

Definition 1.3 The Hartogs-Bochner phenomenon ($\mathcal{H B}$ in short) holds in a complex manifold X if $\mathcal{H} \mathcal{B}-U$ holds for any domain $U \Subset X$.

2 Cohomology Groups and the Hartogs-Bochner Phenomenon

Let X be a complex manifold. We introduce the q-th cohomology group with compact support. Let \mathcal{F} be a sheaf of abelian groups over X, and let $\mathcal{U}=\left\{U_{i}\right\}_{i \in I}$ be a locally finite covering of X by relatively compact open sets U_{i} that are homeomorphic to a ball. In what follows, we always consider such coverings. We define the q-th compact cochain group of \mathcal{F} with respect to \mathfrak{U}, denoted by $C_{c}^{q}(\mathcal{U}, \mathcal{F})$, as a collection

$$
\Gamma\left(U_{i_{0}} \cap \cdots \cap U_{i_{q}}, \mathcal{F}\right) \ni\left\{\xi_{i_{0}, \ldots, i_{q}}\right\}, \quad \xi_{i_{0}, \ldots, i_{q}} \not \equiv 0 \text { for finitely many } i_{0}, \ldots, i_{q} \in I
$$

We say that the q-cochain $\left\{\xi_{i_{0}, \ldots, i_{q}}\right\}$ as above has compact support. Obviously we have the standard coboundary operators:

$$
\delta: C_{c}^{q}(\mathcal{U}, \mathcal{F}) \rightarrow C_{c}^{q+1}(\mathcal{U}, \mathcal{F})
$$

Consequently we can define the group of compact q-cocycles and q-coboundaries

$$
\begin{aligned}
\mathcal{Z}_{c}^{q}(\mathcal{U}, \mathcal{F}) & :=\operatorname{Ker}\left[C_{c}^{q}(\mathcal{U}, \mathcal{F}) \rightarrow C_{c}^{q+1}(\mathcal{U}, \mathcal{F})\right] \\
\mathcal{B}_{c}^{q}(\mathcal{U}, \mathcal{F}) & :=\operatorname{Im}\left[C_{c}^{q-1}(\mathcal{U}, \mathcal{F}) \rightarrow C_{c}^{q}(\mathcal{U}, \mathcal{F})\right]
\end{aligned}
$$

and the q-th cohomology group with respect to the covering \mathcal{U}, namely

$$
H_{c}^{q}(\mathcal{U}, \mathcal{F}):=Z_{c}^{q}(\mathcal{U}, \mathcal{F}) / B_{c}^{q}(\mathcal{U}, \mathcal{F})
$$

The inductive limit

$$
H_{c}^{q}(X, \mathcal{F})=\lim _{\vec{u}} H_{c}^{q}(\mathcal{U}, \mathcal{F})
$$

is called the q-th compact cohomology group of X with coefficients in \mathcal{F}. Later on we will work with $H_{c}^{1}(X, \mathcal{O})$ or $H^{1}(X, \mathcal{O})$, where \mathcal{O} is the sheaf of germs of holomorphic functions.

Proposition 2.1 Let X be a complex manifold.

(a) $H_{c}^{1}(X, \mathcal{O})=0$ if and only if for any smooth closed $(0,1)$ form ω on X with compact support there exists a compactly supported solution u of $\bar{\partial} u=\omega$.
(b) The compact cohomology group $H_{c}^{1}(X, \mathcal{O})$ is naturally mapped into the standard cohomology group $H^{1}(X, \mathcal{O})$. If \mathcal{H} holds for X and moreover X has one end, then the mapping is injective.
(c) Let X be a noncompact complex manifold. If $H_{c}^{1}(X, \mathcal{O})=0$, then $\mathcal{H B}$ holds in X.
(d) Let X be a noncompact complex manifold with one end. We suppose that \mathcal{H} holds for X and that the $\bar{\partial}$-problem has always a solution. Then $H_{c}^{1}(X, \mathcal{O})=0$ and $\mathcal{H B}$ holds in X.

Example 2.2 The opposite implication in Proposition 2.1(c) is not true. Let $X=$ $\mathbb{C}^{2} \backslash\{0\}$. Then $\mathcal{H} \mathcal{B}$ holds in X but $H_{c}^{1}(X, \mathcal{O}) \neq 0$.

Problem It would be interesting to prove or disprove whether there is equivalence between $\mathcal{H B}$ and vanishing of the first cohomology group with compact support, excluding some obvious cases (as in Example 2.2).

Proof of Proposition 2.1 (a) Assume that $H_{c}^{1}(X, \mathcal{O})=0$. We take a closed $(0,1)$ form ω on X with compact support. We choose a covering $\left\{U_{i}\right\}_{i \in I}$ of X (the covering is as described above). In each U_{i} we can solve the equation $\bar{\partial} u=\left.\omega\right|_{U_{i}}$ and denote the solution by η_{i}. Moreover we choose $\eta_{i} \equiv 0$ if $U_{i} \cap \operatorname{supp} \omega=\varnothing$. We set

$$
\xi_{i j}=\eta_{j}-\eta_{i} \quad \text { on } U_{i} \cap U_{j}, \quad i, j \in I
$$

Obviously $\xi_{i j}$ are holomorphic functions and $\xi_{i j} \equiv 0$ except for a finite number of indices. Since $H_{c}^{1}(X, \mathcal{O})=0$, there exists a 0 -cochain $\left\{\xi_{i}\right\}_{i \in I}$ with compact support of holomorphic functions such that $\xi_{i j}=\xi_{j}-\xi_{i}$. So we have $\eta_{j}-\eta_{i}=\xi_{j}-\xi_{i}$ or $\eta_{j}-\xi_{j}=\eta_{i}-\xi_{i}$ on $U_{i} \cap U_{j}$. Consequently, we can define a global function u

$$
u=u_{j}=\eta_{j}-\xi_{j} \quad \text { on } \quad U_{j}, \quad j \in I .
$$

Also we have $\bar{\partial} u=\bar{\partial} u_{j}=\bar{\partial} \eta_{j}=\omega$ on U_{j}. Moreover, the support of u is compact since $u_{j} \equiv 0$ except for a finite number of j 's.

Now we prove the opposite implication. We assume that the equation $\bar{\partial} u=\omega$ can be solved as in (a) and we take a 1-cocycle $\left\{\xi_{i j}\right\}_{i, j \in I}$ with compact support of
holomorphic functions. Let $\left\{\psi_{i}\right\}_{i \in I}$ be a partition of unity by smooth functions. We define

$$
\eta_{i}=\sum_{l \in I} \psi_{l} \xi_{l i}
$$

We note that $\psi_{l} \xi_{l i}$ is a well-defined smooth function on U_{i} and $\left\{\eta_{i}\right\}_{i \in I}$ has compact support. The summation makes sense because the covering is locally finite. We have

$$
\eta_{j}-\eta_{i}=\sum_{l \in I}\left(\psi_{l} \xi_{l j}-\psi_{l} \xi_{l i}\right)=\sum_{l \in I} \psi_{l}\left(\xi_{l j}-\xi_{l i}\right)=\sum_{l \in I} \psi_{l} \xi_{i j}=\xi_{i j} .
$$

Since $\bar{\partial} \eta_{j}-\bar{\partial} \eta_{i}=\bar{\partial} \xi_{i j}=0$ on $U_{i j}$, we have a globally defined $(0,1)$ form $\omega=\bar{\partial} \eta_{j}$ on M with compact support. By our assumption, the equation $\bar{\partial} u=\omega$ can be solved with compactly supported u. Now we take

$$
\left\{\xi_{i}\right\}_{i \in I}, \quad \xi_{i}=\eta_{i}-u, \quad i \in I
$$

which also has compact support. Moreover, $\bar{\partial} \xi_{i}=\bar{\partial} \eta_{i}-\bar{\partial} u=0$, and obviously $\xi_{j}-\xi_{i}=\xi_{i j}$. Part (a) is proved.
(b) We take an element $\xi \in H_{c}^{1}(X, \mathcal{O})$ which is represented by a 1 -cocycle $\left\{\xi_{i j}\right\}$ with compact support. Obviously it determines an element in $H^{1}(X, \mathcal{O})$. Such mapping does not depend on the representing element chosen.

To prove that the mapping is injective, it is enough to prove that only the zero element of $H_{c}^{1}(X, \mathcal{O})$ is mapped at the zero element of $H^{1}(X, \mathcal{O})$. Assume that there exists $\xi \in H_{c}^{1}(X, \mathcal{O}), \xi \neq 0$, which is mapped at zero in $H^{1}(X, \mathcal{O})$. Let $\left\{\xi_{i j}\right\}$ be a compactly supported cocycle which represents ξ and which determines the zero element in $H^{1}(X, \mathcal{O})$. This means that there exists a 0 -cochain $\left\{\eta_{i}\right\}_{i \in I}$ of holomorphic functions such that

$$
\xi_{i j}=\eta_{j}-\eta_{i}, \quad i, j \in I
$$

Since $\xi_{i j} \equiv 0$ except for a finite number of indices, we have that $\eta_{i}=\eta_{j}$ for almost all $i, j \in I$. It means that we have a function f defined on $X \backslash K$, where K is a compact set. Since X has one end, there is only one unbounded component of $X \backslash K$. This and the assumption that \mathcal{H} holds in X gives that the function f can be holomorphically extended to a function F on X. Now replacing $\left\{\eta_{i}\right\}$ by $\left\{\eta_{i}-F\right\}$ we obtain that $\left\{\xi_{i j}\right\}$ determines the zero element in $H_{c}^{1}(X, \mathcal{O})$, which contradicts $\xi \neq 0$. Part (b) is proved.
(c) This part is very well known in the literature (see, for instance, $[\mathrm{AH}]$). Let f be a CR function defined on the boundary ∂U of a domain U. We can extend f smoothly to \tilde{f} on X in such a way that $\bar{\partial} \tilde{f}$ vanishes to infinite order on ∂U. We consider the $(0,1)$ form

$$
\omega= \begin{cases}\bar{\partial} \tilde{f} & \text { on } \bar{U} \\ 0 & \text { on } X \backslash \bar{U}\end{cases}
$$

The form ω is smooth. By our assumption, there is a smooth, compactly supported function u such that $\bar{\partial} u=\omega$. The function u is holomorphic on $X \backslash \bar{U}$, and since u has compact support, it must be zero on $X \backslash \bar{U}$ because it is connected. The function
$F=\tilde{f}-u$ is holomorphic on U and $\left.F\right|_{\partial U}=\left.f\right|_{\partial U}$. This means that the HartogsBochner phenomenon holds. Part (c) is proved.
(d) Let ω be a $\bar{\partial}$-closed $(0,1)$ form with compact support on X. By the assumption, there exists a solution u of $\bar{\partial} u=\omega$, and obviously u is holomorphic on $X \backslash \operatorname{supp} \omega$. Since X has one end, there is only one unbounded component of $X \backslash \operatorname{supp} \omega$. Because the Hartogs phenomenon holds, there exists a holomorphic extension u_{0} of $\left.u\right|_{X \backslash \operatorname{supp} \omega} \omega$ to X. So we have that $\bar{\partial}\left(u-u_{0}\right)=\bar{\partial} u=\omega$ and supp $\left(u-u_{0}\right)$ is compact. Consequently $H_{c}^{1}(X, \mathcal{O})=0$ and, from (c), $\mathcal{H} \mathcal{B}$ holds in X. This proves part (d) and completes the proof of the proposition.

3 Some Cohomology Groups of E_{k}

Now a few words about line bundles over $\mathbb{C P}^{1}$. Any line bundle E over $\left(\mathbb{C P}^{1}\right.$ can be identified with an element of $H^{1}\left(\mathbb{C P}^{1}, \mathcal{O}^{*}\right) \simeq \mathbb{Z}($ see $[\mathrm{GH}, \mathrm{Gu}])$. In practice, this means that we can choose the atlas $\left(U_{1},\left(z_{1}, w_{1}\right)\right),\left(U_{2},\left(z_{2}, w_{2}\right)\right)$ of E such that

$$
\begin{align*}
& U_{1} \simeq \mathbb{C} \times \mathbb{C},\left(z_{1}, w_{1}\right), \quad z_{2}=\frac{1}{z_{1}}, \quad w_{2}=z_{1}^{k} w_{1} . \tag{2}\\
& U_{2} \simeq \mathbb{C} \times \mathbb{C},\left(z_{2}, w_{2}\right),
\end{align*}
$$

We denote by E_{k} the line bundle over $\mathbb{C P}^{1}{ }^{1}$ which is determined by the transition function $\xi_{21}\left(z_{1}\right)=z_{1}^{k}, k= \pm 0,1,2, \ldots$, i.e., an element of $H^{1}\left(\left\{U_{1}, U_{2}\right\}, \mathcal{O}^{*}\right)$.

Theorem 3.1 Let $E_{k}, k= \pm 0,1,2, \ldots$, be a line bundle over $\mathbb{C P P}^{1}$. Then
(a) $H_{c}^{1}\left(E_{k}, \mathcal{O}\right)=H^{1}\left(E_{k}, \mathcal{O}\right)=0$ for $k=1,2, \ldots$;
(b) $H_{c}^{1}\left(E_{0}, \mathcal{O}\right) \neq 0$ and $H^{1}\left(E_{0}, \mathcal{O}\right)=0$;
(c) $H_{c}^{1}\left(E_{k}, \mathcal{O}\right) \neq 0$ and $H^{1}\left(E_{k}, \mathcal{O}\right) \neq 0$ for $k=-1,-2, \ldots$

Corollary 3.2 Let ω be a $\bar{\partial}$-closed $(0,1)$ form on E_{k}. Then
(a) The equation $\bar{\partial} u=\omega$ has a solution in E_{k} for $k \geq 1$. Moreover, if $\operatorname{supp} \omega$ is compact, then u can be chosen with compact support. Consequently, $\mathcal{H B}$ holds in E_{k}.
(b) The equation $\bar{\partial} u=\omega$ has a solution in E_{0}, but $\mathcal{H C B}$ does not hold in E_{0}.

Proof of Theorem 3.1 First we prove that $H^{1}\left(E_{k}, \mathcal{O}\right)=0$ for $k=0,1,2, \ldots$ Since the covering $\left\{U_{1}, U_{2}\right\}$ is a Leray covering, we have the equality

$$
H^{1}\left(E_{k}, \mathcal{O}\right)=H^{1}\left(\left\{U_{1}, U_{2}\right\}, \mathcal{O}\right)
$$

so it is enough to show that the latter cohomology group is zero. To prove this, we take a holomorphic function $g_{21}\left(z_{1}, w_{1}\right)$ defined on $\mathbb{C}_{*} \times \mathbb{C}$ and write its Laurent
expansion:

$$
\begin{aligned}
g_{21}\left(z_{1}, w_{1}\right) & =\sum_{\alpha=-\infty}^{\infty} \sum_{\beta=0}^{\infty} c_{\alpha \beta} z_{1}^{\alpha} w_{1}^{\beta}=\sum_{\alpha=0}^{\infty} \sum_{\beta=0}^{\infty} c_{\alpha \beta} z_{1}^{\alpha} w_{1}^{\beta}+\sum_{\alpha=-\infty}^{-1} \sum_{\beta=0}^{\infty} c_{\alpha \beta} z_{1}^{\alpha} w_{1}^{\beta} \\
& =\sum_{\alpha=0}^{\infty} \sum_{\beta=0}^{\infty} c_{\alpha \beta} z_{1}^{\alpha} w_{1}^{\beta}+\sum_{\alpha=1}^{\infty} \sum_{\beta=0}^{\infty} c_{(-\alpha) \beta} z_{2}^{\alpha+k \beta} w_{2}^{\beta} \\
& =g_{1}(z, w)-g_{2}\left(z_{2}, w_{2}\right),
\end{aligned}
$$

where the functions g_{1}, g_{2} are holomorphic on U_{1}, U_{2}, respectively, which gives that $H^{1}\left(\left\{U_{1}, U_{2}\right\}, \mathcal{O}\right)=0$.

Next we prove that $H^{1}\left(E_{k}, \mathcal{O}\right) \neq 0$ for $k=-1,-2, \ldots$. To see this, we take as $g_{21}\left(z_{1}, w_{1}\right)$ the function

$$
g_{21}\left(z_{1}, w_{1}\right)=z_{1}^{2 k+1} w_{1}^{2}
$$

We assume that $g_{21}\left(z_{1}, w_{1}\right)=g_{1}\left(z_{1}, w_{1}\right)-g_{2}\left(z_{2}, w_{2}\right)$, i.e.,

$$
\begin{aligned}
z_{1}^{2 k+1} w_{1}^{2} & =\sum_{\alpha=0}^{\infty} \sum_{\beta=0}^{\infty} a_{\alpha \beta} z_{1}^{\alpha} w_{1}^{\beta}-\sum_{\alpha=0}^{\infty} \sum_{\beta=0}^{\infty} b_{\alpha \beta} z_{2}^{\alpha} w_{2}^{\beta} \\
& =\sum_{\alpha=0}^{\infty} \sum_{\beta=0}^{\infty} a_{\alpha \beta} z_{1}^{\alpha} w_{1}^{\beta}-\sum_{\alpha=0}^{\infty} \sum_{\beta=0}^{\infty} b_{\alpha \beta} z_{1}^{k \beta-\alpha} w_{1}^{\beta} .
\end{aligned}
$$

Consequently we have

$$
z_{1}^{2 k+1}=\sum_{\alpha=0}^{\infty} a_{\alpha 2} z_{1}^{\alpha}-\sum_{\alpha=0}^{\infty} b_{\alpha 2} z_{1}^{2 k-\alpha},
$$

and in both sums there are no powers of z_{1} of order $2 k<\alpha<0$, which gives a contradiction. The claim is proved.

Finally, let k be arbitrary and consider the cohomology groups with compact support. We take an arbitrary holomorphic function u defined in a "ring neighborhood" of the zero section of E_{k}, which in local coordinates on U_{1} and U_{2} can be written as

$$
\begin{aligned}
& u_{1}\left(z_{1}, w_{1}\right)=\sum_{\alpha=-\infty}^{+\infty} a_{1 \alpha}\left(z_{1}\right) w_{1}^{\alpha} \quad \text { on }\left\{\left(z_{1}, w_{1}\right) ; r_{1}\left(z_{1}\right)<\left|w_{1}\right|<R_{1}\left(z_{1}\right)\right\}, \\
& u_{2}\left(z_{2}, w_{2}\right)=\sum_{\alpha=-\infty}^{+\infty} a_{2, \alpha}\left(z_{2}\right) w_{2}^{\alpha} \quad \text { on }\left\{\left(z_{2}, w_{2}\right) ; r_{2}\left(z_{2}\right)<\left|w_{2}\right|<R_{2}\left(z_{2}\right)\right\}
\end{aligned}
$$

for some smooth functions $R_{1}\left(z_{1}\right)>r_{1}\left(z_{1}\right)>0$ and $R_{2}\left(z_{2}\right)>r_{2}\left(z_{2}\right)>0$. Because these two functions u_{1} and u_{2} should be the same in the common domain, therefore we have

$$
a_{2 \alpha}\left(1 / z_{1}\right)=z_{1}^{-k \alpha} a_{1 \alpha}\left(z_{1}\right), \quad \alpha= \pm 0,1,2, \ldots .
$$

We have three cases with respect to k :
If $k \geq 1$, then $a_{1 \alpha} \equiv a_{2 \alpha} \equiv 0$ for $\alpha=-1,-2, \ldots$ and

$$
u_{1}\left(z_{1}, w_{1}\right)=\sum_{\alpha=0}^{+\infty} a_{1 \alpha}\left(z_{1}\right) w_{1}^{\alpha}, \quad u_{2}\left(z_{2}, w_{2}\right)=\sum_{\alpha=0}^{+\infty} a_{2 \alpha}\left(z_{2}\right) w_{2}^{\alpha} .
$$

This means that the Hartogs phenomenon holds on $E_{k}, k \geq 1$. Combining this information with $H^{1}\left(E_{k}, \mathcal{O}\right)=0, k \geq 1$, and Proposition 2.1(b) we get that $H_{c}^{1}\left(E_{k}, \mathcal{O}\right)=0$ for $k=1,2, \ldots$.

If $k=0$, then $a_{1 \alpha}=a_{2 \alpha} \equiv$ const for $\alpha= \pm 0,1,2, \ldots$ and

$$
u_{1}\left(z_{1}, w_{1}\right)=\sum_{\alpha=-\infty}^{+\infty} a_{1 \alpha} w_{1}^{\alpha}, \quad u_{2}\left(z_{2}, w_{2}\right)=\sum_{\alpha=-\infty}^{+\infty} a_{2 \alpha} w_{2}^{\alpha} .
$$

From the form of the function u we see that the Hartogs-Bochner phenomenon does not hold in this case. Thus, applying Proposition 2.1(c) we get $H_{c}^{1}\left(E_{0}, \mathcal{O}\right) \neq 0$.

If $k \leq-1$, then $a_{1 \alpha} \equiv a_{2 \alpha} \equiv 0$ for $\alpha=1,2, \ldots$ and

$$
u_{1}\left(z_{1}, w_{1}\right)=\sum_{\alpha=-\infty}^{0} a_{1 \alpha}\left(z_{1}\right) w_{1}^{\alpha}, \quad u_{2}\left(z_{2}, w_{2}\right)=\sum_{\alpha=-\infty}^{0} a_{2 \alpha}\left(z_{2}\right) w_{2}^{\alpha} .
$$

Again it is obvious that the Hartogs-Bochner phenomenon does not hold in this case. Consequently, we have that $H_{c}^{1}\left(E_{k}, \mathcal{O}\right) \neq 0$ for $k \leq-1$.

4 The $\bar{\partial}$-Equation in Line Bundles Over $\mathbb{C P P}^{1}$

In this section we deal with the line bundles E_{k} over $\mathbb{C P P}^{1}$ for $k=-1,-2, \ldots$, unless otherwise stated. The main theorem of this section is:

Theorem 4.1 Let ω be a smooth $\left(C^{\infty}\right), \bar{\partial}$-closed $(0,1)$ form on $E=E_{k}$ with compact support. Then there is a smooth solution of the equation

$$
\bar{\partial} u=\omega
$$

and moreover the function u is determined uniquely up to a constant.
Remark 4.2 In general, the solution u in the proposition does not have compact support.

Corollary 4.3 Let M be the boundary of a domain $U, M=\partial U$ smooth, $U=U^{+} \Subset$ $E=E_{k}, k=0, \pm 1, \pm 2, \ldots$ Then any smooth $C R$ function f on M can be represented as

$$
f=u^{+}-u^{-}
$$

where u^{+}(resp. u^{-}) is a holomorphic function in U^{+}(resp. $U^{-}=E \backslash \bar{U}^{+}$) smooth on $\bar{U}^{+}\left(r e s p . \bar{U}^{-}\right)$.

Proof of Corollary 4.3 We can extend f to a C^{∞} function F in such a way that $\operatorname{supp} F$ lies in an arbitrarily small neighborhood of M and $\left.\bar{\partial} F\right|_{M}=0$ to the infinite order. We define

$$
\omega= \begin{cases}\bar{\partial} F & \text { on } U^{+} \\ 0 & \text { on } U^{-}\end{cases}
$$

The form ω is of class C^{∞} and with compact support. From Theorem 4.1 we can solve the equation $\bar{\partial} u=\omega$ in E_{k} for $k \leq-1$ and from Corollary 3.2 in E_{k} for $k \geq 0$, and u is of class C^{∞}. So we have

$$
\begin{gathered}
\bar{\partial}(F-u)=0 \text { on } U^{+} \\
\bar{\partial} u=0 \text { on } U^{-} \\
\text {i.e., } F-u \text { is holomorphic on } U^{+}, \\
u \text { is holomorphic on } U^{-}
\end{gathered}
$$

and

$$
F=(F-u)-(-u),\left.\quad F\right|_{M}=f
$$

Obviously the components of the decomposition are of class C^{∞}. The corollary is proved.

4.1 Properties of Compactly Supported $(0,1)$ Forms on E_{k}

Any $(0,1)$ form on E_{k} can be written

$$
\omega= \begin{cases}\omega\left(z_{1}, w_{1}\right)=a_{1}\left(z_{1}, w_{1}\right) d \bar{z}_{1}+b_{1}\left(z_{1}, w_{1}\right) d \bar{w}_{1} \quad \text { in } U_{1} \\ \omega\left(z_{2}, w_{2}\right)=a_{2}\left(z_{2}, w_{2}\right) d \bar{z}_{2}+b_{2}\left(z_{2}, w_{2}\right) d \bar{w}_{2} \quad \text { in } U_{2}\end{cases}
$$

Since

$$
d \bar{z}_{2}=-\bar{z}_{1}^{-2} d \bar{z}_{1}, \quad d \bar{w}_{2}=k \bar{z}_{1}^{k-1} \bar{w}_{1} d \bar{z}_{1}+\bar{z}_{1}^{k} d \bar{w}_{1}
$$

we have

$$
\begin{aligned}
a_{1}\left(z_{1}, w_{1}\right) d \bar{z}_{1} & +b_{1}\left(z_{1}, w_{1}\right) d \bar{w}_{1} \\
& =-a_{2}\left(z_{1}^{-1}, z_{1}^{k} w_{1}\right) \bar{z}_{1}^{-2} d \bar{z}_{1}+b_{2}\left(z_{1}^{-1}, z_{1}^{k} w_{1}\right)\left[k \bar{z}_{1}^{k-1} \bar{w}_{1} d \bar{z}_{1}+\bar{z}_{1}^{k} d \bar{w}_{1}\right]
\end{aligned}
$$

which gives

$$
\begin{align*}
& a_{1}\left(z_{1}, w_{1}\right)=-\bar{z}_{1}^{-2} a_{2}\left(z_{1}^{-1}, z_{1}^{k} w_{1}\right)+k \bar{z}_{1}^{k-1} \bar{w}_{1} b_{2}\left(z_{1}^{-1}, z_{1}^{k} w_{1}\right) \tag{3}\\
& b_{1}\left(z_{1}, w_{1}\right)=\bar{z}_{1}^{k} b_{2}\left(z_{1}^{-1}, z_{1}^{k} w_{1}\right)
\end{align*}
$$

4.2 Proof of Theorem 4.1

Let ω be a $\bar{\partial}$-closed $(0,1)$ form with compact support. We define

$$
u_{1}\left(z_{1}, w_{1}\right)=\frac{1}{2 \pi i} \int_{\mathbb{C}_{\xi}} b_{1}\left(z_{1}, \xi\right) \frac{1}{\xi-w_{1}} d \xi \wedge d \bar{\xi} \quad \text { for }\left(z_{1}, w_{1}\right) \in U_{1}
$$

and

$$
u_{2}\left(z_{2}, w_{2}\right)=\frac{1}{2 \pi i} \int_{\mathbb{C}_{\xi}} b_{2}\left(z_{2}, \xi\right) \frac{1}{\xi-w_{2}} d \xi \wedge d \bar{\xi} \quad \text { for }\left(z_{2}, w_{2}\right) \in U_{2}
$$

It is clear that the functions u_{1} and u_{2} are smooth in U_{1} and U_{2} respectively. Since for fixed z_{1} the support of $w_{1} \rightarrow b_{1}\left(z_{1}, w_{1}\right)$ is compact, and the same with the second function b_{2}, therefore (see e.g., $[\mathrm{N}]$) we have

$$
\begin{equation*}
\frac{\partial u_{1}}{\partial \bar{w}_{1}}\left(z_{1}, w_{1}\right)=b_{1}\left(z_{1}, w_{1}\right) \quad \text { and } \quad \frac{\partial u_{2}}{\partial \bar{w}_{2}}\left(z_{2}, w_{2}\right)=b_{2}\left(z_{2}, w_{2}\right) \tag{4}
\end{equation*}
$$

Now, using (3) and (4), we show that the pair u_{1}, u_{2} determines a global smooth function on E_{k}.

$$
\begin{aligned}
u_{1}\left(z_{1}, w_{1}\right) & =\frac{1}{2 \pi i} \int_{\mathbb{C}_{\xi}} b_{1}\left(z_{1}, \xi\right) \frac{1}{\xi-w_{1}} d \xi \wedge d \bar{\xi} \\
& =\frac{1}{2 \pi i} \int_{\mathbb{C}_{\xi}} \bar{z}_{1}^{k} b_{2}\left(1 / z_{1}, z_{1}^{k} \xi\right) \frac{1}{\xi-w_{1}} d \xi \wedge d \bar{\xi} \\
& =\frac{1}{2 \pi i} \int_{\mathbb{C}_{\zeta}} \bar{z}_{1}^{k} b_{2}\left(1 / z_{1}, \zeta\right) \frac{1}{\frac{\zeta}{z_{1}^{k}}-w_{1}} z_{1}^{-k} \bar{z}_{1}^{-k} d \zeta \wedge d \bar{\zeta} \\
& =\frac{1}{2 \pi i} \int_{\mathbb{C}_{\zeta}} b_{2}\left(z_{2}, \zeta\right) \frac{1}{\zeta-w_{2}} d \zeta \wedge d \bar{\zeta} \\
& =u_{2}\left(z_{2}, w_{2}\right)
\end{aligned}
$$

We note that the coefficients $b_{1}=b_{1}\left(z_{1}, w_{1}\right)$ and $b_{2}=b_{2}\left(z_{2}, w_{2}\right)$ uniquely determine the a_{1} and a_{2} coefficients of ω. To see this, assume that two forms have the same b 's coefficients, so subtracting the forms we get a closed form on $E_{k}=U_{1} \cup U_{2}$

$$
c_{1}\left(z_{1}, w_{1}\right) d \bar{z}_{1}=c_{2}\left(z_{2}, w_{2}\right) d \bar{z}_{2}
$$

with

$$
\frac{\partial c_{1}}{\partial \bar{w}_{1}} \equiv 0 \quad \text { and } \quad \frac{\partial c_{2}}{\partial \bar{w}_{2}} \equiv 0
$$

which means that the functions

$$
w_{1} \rightarrow c_{1}\left(z_{1}, w_{1}\right) \quad \text { and } \quad w_{2} \rightarrow c_{2}\left(z_{2}, w_{2}\right)
$$

are holomorphic. Since the supports of these functions are compact, they are identically zero. On the other hand, the form $\bar{\partial} u$ is closed and because of (4) we get $\bar{\partial} u=\omega$. The theorem is proved.

References

[AH] A. Andreotti and C. D. Hill, E. E. Levi convexity and the Hans Lewy problem. Part I: Reduction to vanishing theorems. Ann. Scuola Norm. Sup. Pisa (3) 26(1972), 325-363.
[DM] R. Dwilewicz and J. Merker, On the Hartogs-Bochner phenomenon for $C R$ functions in $P_{2}(C$. Proc.Amer. Math. Soc. 130(2002), 1975-1980.
[GH] P. Griffiths and J. Harris, Principles of Algebraic Geometry. John Wiley, New York, 1978.
[Gu] R. C. Gunning, Lectures on Riemann surfaces. Princeton University Press, Princeton, NJ, 1966.
[L] C. Laurent-Thiébaut, Phénomène de Hartogs-Bochner dans les variétés CR. In: Topics in Complex Analysis, Banach Center Publications 31, Warszawa, 1995, pp. 233-247.
[N] R. Narasimhan, Complex Analysis in One Variable. Birkhäuser Boston, Boston, MA, 1985.
[S1] F. Sarkis, CR meromorphic extension and the nonembeddability of the Andreotti-Rossi CR structure in the projective space. Internat. J. Math. 10(1999), 897-915.
[S2] —, Hartogs-Bochner type theorem in projective space. Ark. Mat. 41(2003), 151-163.

Department of Mathematics and Statistics
University of Missouri
Rolla, MO 65409
U.S.A.
and
Institute of Mathematics
Polish Academy of Sciences
Śniadeckich 8, P.O. Box 21
00-956 Warsaw
Poland
e-mail: romand@umr.edu

