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Abstract. The `canonical embedding approach' was introduced by the second
author and, subsequently, it has been applied several times to prove the embedd-
ability of certain regular extensions by groups into semidirect products by groups. In
the present paper this technique is generalized so that it is suitable to handle regular
extensions by inverse semigroups. As an application, B. Billhardt's embedding the-
orem on regular extensions of semilattices by inverse semigroups is reproved.

0. Introduction. As a possible way to generalize McAlister's P-theorem for
orthodox semigroups, the second author initiated the study of embeddings of E-
unitary regular semigroups into semidirect product of bands by groups. In [12] a
`canonical embedding approach' was developed for this purpose and was applied to
prove the embeddability of E-unitary regular semigroups with regular bands of
idempotents. Furthermore, this approach was used in [13] and [3], and the same
ideas also appeared in [8] in connection with regular extensions of Cli�ord semi-
groups by groups. The canonical embedding approach was generalized to the case of
regular extensions of orthodox semigroups by groups in [14] and was applied to
regular extensions of regular orthogroups by groups in [15]. Although the roots
of the investigations of regular extensions by inverse semigroups go back to
L. O'Carroll [10] and C. H. Houghton [6], the newer results on regular extensions by
groups directed attention to the problem of whether similar results could be
achieved for extensions by inverse semigroups. The ®rst results of this kind are due
to B. Billhardt [1] and [2]. In particular, he raised the question of which regular
extensions of regular orthogroups by inverse semigroups are embeddable into a �-
semidirect product of a regular orthogroup by an inverse semigroup. In order to
facilitate these investigations, the goal of the present paper is to develop a canonical
embedding approach for regular extensions by inverse semigroups (Section 2). As an
application, we reprove the main result in [1] (Section 3). Note that an alternative
proof can be found in [5]. The proof presented here is an adaptation to the more
general case of a proof of McAlister's P-theorem that was used several times by the
second author in lectures to illustrate the canonical embedding approach (see
Remark 3.6).
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1. Preliminaries. In this section we recall the notions and results needed in the
paper. For any unde®ned notions and notation the reader is referred to [7].

If S is a regular semigroup then an inverse unary operation is de®ned to be a
mapping y:S! S with the property that sy 2 V�s� for every s 2 S. In particular, if S
is an inverse semigroup then the unique inverse unary operation is denoted in the
usual way by ÿ1.

A semigroup S is termed locally inverse if, for each idempotent e in S, the sub-
monoid eSe is inverse. A semigroup is called E-solid if, for any idempotents
e; f; g 2 S with eR fL g, there exists an idempotent h 2 S such that eL hR g.
Throughout the paper, we will consider only regular locally inverse and regular E-
solid semigroups, so, for short, we will omit the attribute `regular' from these
expressions.

Now we recall several notions and results on e-varieties.
A class of regular semigroups is termed an e-variety if it is closed under taking

direct products, regular subsemigroups and homomorphic images. For example, the
classes of all groups, completely regular semigroups, inverse semigroups, orthodox
semigroups, locally inverse semigroups and E-solid semigroups form e-varieties.
Note that a class of completely regular semigroups or of inverse semigroups con-
stitutes an e-variety if and only if it is a variety of unary semigroups in the usual
sense where a completely regular semigroup is considered as a unary semigroup in
which the unary operation maps each element to its inverse within the maximal
subgroup containing it, and an inverse semigroup is considered as a unary semi-
group in which the unary operation maps each element to its unique inverse.

Given a non-empty set A, we will `double' it as follows. Consider a set A0 dis-
joint from A and a bijection 0:A! A0; a 7!a0. The union A [ A0 will be denoted by
A. If S is a regular semigroup, then a mapping #:A! S is called matched if
a0# 2 V�a#� for every a 2 A. Let C be a class of regular semigroups, T a member of
C and �:A! T a matched mapping. We say that �T; �� is a bifree object in C on A if,
for any S in C and any matched mapping #:A! S, there is a unique homomorph-
ism �:T! S such that �� � #. In cases when � is obvious we omit it, and we term T
the bifree object in C on A. Note that, in any class of regular semigroups, there
exists, up to isomorphism, at most one bifree object on any non-empty set. More-
over, if a class C admits a bifree object on any non-empty set then each member of C
is a homomorphic image of a bifree object in C.

A remarkable result by Y. T. Yeh [17] says that an e-variety V has a bifree
object on a set of at least two elements, or, equivalently, on any non-empty set if and
only if V consists either of locally inverse semigroups or of E-solid semigroups.

Let V be an e-variety of locally inverse or of E-solid semigroups. One can see
that if V is non-trivial and �T; �� is a bifree object in V on A then � restricted to A or
A0 is necessarily injective. The bifree object in V on A will be denoted by BFV�A�,
and, without loss of generality, we will assume that A;A0 � BFV�A� provided V is
non-trivial.

It is clear from the de®nition of a bifree object that, in every variety of inverse
semigroups, the bifree objects coincide with the free objects. However, this is not the
case in varieties of completely regular semigroups. In a variety of completely regular
semigroups, one can see that the free object on a given set is, up to isomorphism, a
proper subsemigroup in the bifree object on the same set. If V is a variety of inverse
or of completely regular semigroups then FV�A� will stand for the free object in V on
A, and A � FV�A� will be assumed if V is non-trivial.
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By the kernel of an inverse semigroup congruence � on S we mean the sub-
semigroup fs 2 S: s� 2 ES=�g which we denote by Ker �. Obviously, we have
ES � Ker �. If S is a regular semigroup then Ker � is a regular subsemigroup of S,
and, by Lallement's lemma, we have Ker � � fs 2 S: s � e for some e 2 ESg. As
usual, the least inverse semigroup congruence on S is denoted by 
S or, simply, by 
.

If �:S! T is a homomorphism then the congruence on S induced by � Ð
called also the kernel of the homomorphism � Ð will be denoted by ker �. If S0 is a
subsemigroup in S then by �jS0 we mean the restriction � \ �S0 � S0�� of �.

Let K be a semigroup and T an inverse semigroup. If S is a semigroup and � is a
congruence on S such that S=� is isomorphic to T and the kernel of � is isomorphic
to K then we call �S; �� an extension of K by T. If, moreover, S is regular then �S; �� is
termed a regular extension of K by T. In this case, K is necessarily regular. If �S; ��
and �S0; �0� are extensions by inverse semigroups then a homomorphism �:S! S0 is
de®ned to be a homomorphism of �S; �� into �S0; �0� and is denoted by
�: �S; �� ! �S0; �0�, if � � ker ���0\�. If � � ker ���0\� then we term � a semi-injective
homomorphism. If �: �S; �� ! �S0; �0� is a semi-injective homomorphism which is
injective as a mapping S! S0 then we call it an embedding of �S; �� into �S0; �0�.

Now we recall the de®nition of a �-semidirect product of a semigroup by an
inverse semigroup, and formulate the basic properties of this construction we need
later.

Let K be a semigroup and T an inverse semigroup. Denote by EndK the endo-
morphism monoid of K (where, according to the convention in [7], an endomorph-
ism, just as any mapping, is written on the right, and so in a product of mappings
the left factor is applied ®rst). We say that T acts on K by endomorphisms on the left
if an antihomomorphism ":T! EndK; t 7!"t is given, that is, "u"t � "tu �t; u 2 T�
holds for the mapping ". For brevity, we will say only that T acts on K, and we will
denote a"t by ta �a 2 K; t 2 T�. The �-semidirect product K �� T is de®ned on the
underlying set

f�a; t� 2 K� T: ttÿ1a � ag

by the multiplication

�a; t��b; u� � ��tu��tu�ÿ1a � tb; tu� �a; b 2 K; t; u 2 T�:

A straightforward calculation shows that K �� T is a semigroup. The following
properties of a �-semidirect product will be important for us. Note that statement (i)
below was proved in the special cases where K is inverse, and where K is an E-solid
semigroup by B. Billhardt [1] and M. KurÏ il [9], respectively.

Proposition 1.1. Let K be a semigroup and T an inverse semigroup acting on K.

(i) If K is a regular [E-solid, locally inverse, orthodox, inverse] semigroup then
the �-semidirect product K �� T is also a regular [E-solid, locally inverse,
orthodox, inverse] semigroup. Furthermore, we have

EK��T � f�e; i�: e 2 EK; i 2 ET and ie � eg

and
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VK��T��a; t�� � f�b; tÿ1�: b 2 VK�tÿ1a� and tÿ1tb � bg:

(ii) The second projection �2:K �� T! T; �a; t�7!t is a homomorphism of
K �� T onto T with Ker �ker�2� � f�a; i�: a 2 K; i 2 ET and ia � ag.
Moreover, if K is regular then Ker �ker�2� is isomorphic to the strong
semilattice of the regular subsemigroups Ki � fa 2 K: ia � ag �i 2 ET� with
the surjective structure homomorphisms "jjKi

:Ki 7!Kj �i; j 2 ET; i � j�.

Proof. The proof is straightforward and it is left to the reader. &

Observe that a �-semidirect product by an inverse semigroup can be considered
as an extension in the following sense. If K is a regular semigroup and T is an inverse
semigroup acting on K then the second projection �2 � �K��T2 of K �� T induces the
congruence ker�2 on K �� T, and �K �� T; ker�2� is a regular extension of a strong
semilattice of regular subsemigroups of K by T. We will refer to this extension as a
�-semidirect product extension of K by T.

Now we recall the basic notions concerning graphs and semigroupoids needed
later.

A graph X consists of a set of objects denoted by Obj�X� and, for every pair
i; j 2 Obj�X�, a set of arrows from i to j which is denoted by X�i; j� and is called a
hom-set. The arrows a; b are called coterminal if a; b 2 X�i; j� for some i; j 2 Obj�X�
and are termed consecutive provided a 2 X�i; j� and b 2 X�j; k� for some
i; j; k 2 Obj�X�. The di�erent hom-sets are supposed to be disjoint. The set of all
arrows will be denoted by Arr�X�. If B � Arr�X� then the graph Y de®ned by

Obj�Y� � fi; j 2 Obj�X�: B \ X�i; j� is not emptyg
and

Y�i; j� � B \ X�i; j� �i; j 2 Obj�Y��

is termed the subgraph of X determined by B.
Just as we doubled a set above, we may double a graph as follows. Given a

graph X , we consider a graph X0 such that Obj�X0� � Obj�X�, Arr�X0� is disjoint
from Arr�X� and a bijection 0:X�i; j� ! X0�j; i�, a 7!a0 is ®xed for every i; j 2 Obj�X�.
De®ne the graph X by Obj�X� � Obj�X� and X�i; j� � X�i; j� [ X0�i; j�
�i; j 2 Obj�X��. Notice that the bijections 0 of the hom-sets of X onto those of X0
determine a bijection of Arr�X� onto Arr�X 0�. Therefore, if we have a graph X and
we double both X as a graph and A � Arr�X� as a set then we will assume that
A0 � Arr�X0� and the bijection 0:A! A0 is the one induced by the bijections between
the hom-sets of X and X0. So A � Arr�X� also follows.

A semigroupoid is a graph C equipped with a composition which assigns to every
pair of consecutive arrows a 2 C�i; j�, b 2 C�j; k� an arrow ab 2 C�i; k� such that the
composition is associative, that is, for any arrows a 2 C�i; j�, b 2 C�j; k� and
c 2 C�k; l�, we have �ab�c � a�bc�.

By a regular semigroupoid we mean a semigroupoid in which, for every arrow a
in C, there exists an arrow c such that aca � a. Just as with semigroups, one can see
that, in this case, for every arrow a in C, there also exists an inverse b of a in the sense
that aba � a and bab � b hold. A mapping y: Arr�C� ! Arr�C� is called an inverse
unary operation on C if it assigns an inverse of a to each arrow a. If every arrow in C
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admits a unique inverse then C is termed an inverse semigroupoid, and the unique
inverse of an arrow a is denoted by aÿ1.

2. The canonical embedding. Let V be an e-variety of locally inverse or of
E-solid semigroups and �S; �� a regular extension by an inverse semigroup. In this
section we construct a member K

�S;��
V 2 V, a �-semidirect product K

�S;��
V �� �S=�� and

a semi-injective homomorphism ��S;��V : �S; �� ! �K�S;��V �� �S=��; ker ��2�� such that
�S; �� is embeddable into a �-semidirect product of a member of V by an inverse
semigroup if and only if ��S;��V is injective.

First we de®ne a semigroupoid C � C�S; �� corresponding to an extension �S; ��
by an inverse semigroup which we call the derived semigroupoid of �S; �� since it is
closely related to the derived semigroupoid of the homomorphism �\, cf. [16].

Let �S; �� be an extension by an inverse semigroup. For brevity, denote S=� by
T. Let C be the graph with

Obj�C� � T;

and

C�a; b� � f�a; s; b� 2 T� S� T: a � s� � b and b � �s��ÿ1 � ag �a; b 2 T�:

One can equip C with the following multiplication: if �a; s; b� 2 C�a; b� and
�b; t; c� 2 C�b; c� then

�a; s; b� � �b; t; c� � �a; st; c�:

Obviously, �a; st; c� 2 C�a; c�, and this multiplication is associative. Thus C � �C; ��
forms a semigroupoid. It is straightforward to see that V��a; s; b�� � f�b; s0; a�:
s0 2 V�s�g.

Now suppose that �S; �� is a regular extension. Then we immediately obtain that
C is a regular semigroupoid. Let us choose and ®x an inverse unary operation y on S.
This determines an inverse unary operation, also denoted by y, on C by letting
�a; s; b�y � �b; sy; a� for every �a; s; b� 2 Arr�C�.

Now we use this semigroupoid C to construct the semigroup K
�S;��
V . Roughly

speaking, K
�S;��
V is the bifree object in V `on the semigroupoid C'. Let V be an e-

variety of locally inverse or of E-solid semigroups. Consider the bifree object
BFV�A� in V on A � Arr�C� and the congruence ��S;��V on it generated by

� �f�a0; ay�: a 2 Ag
[ f�ab; c�: a; b; c 2 A such that c � a � b in Cg:

Put K
�S;��
V � BFV�A�=��S;��V . Clearly, we have K

�S;��
V 2 V.

Now we de®ne an action of T on K
�S;��
V as follows. The semigroup T naturally

acts on the semigroupoid C by de®ning

t�a; s; b� � �ta; s; tb� �t 2 T; �a; s; b� 2 A�;

because one can immediately check that we have t�a � b� � ta � tb for every t 2 T and
consecutive arrows a; b 2 A, and we have t�ua� � tua for every t; u 2 T and a 2 A.
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Moreover, the de®nition of the inverse unary operation y ensures that t�ay� � �ta�y
for every t 2 T and a 2 A. On the other hand, this action induces an action of T on
the doubled graph C by setting

t�a0� � �ta�0 �t 2 T; a 2 A�:

For every t 2 T, de®ne �t:BFV�A� ! BFV�A� to be the unique extension of the
matched mapping A! BFV�A�, a 7!ta �a 2 A� to an endomorphism of BFV�A�. By
unicity of the �t's, we clearly have

�u�t � �tu �t; u 2 T�: �1�

Thus an action � of T on BFV�A� is de®ned by t 7!�t. The properties of the actions
of T on C and C mentioned above ensure that, for every t 2 T, the images of �-rela-
ted elements under �t are �-related, whence ��S;��V � ker ��t���S;��V �\� follows. This
implies that there exists a unique endomorphism "t:K

�S;��
V ! K

�S;��
V with

���S;��V �\"t � �t���S;��V �\. Unicity of the "t's ensures by (1) that "u"t � "tu for every
t; u 2 T, and so t 7!"t de®nes an action " of T on K

�S;��
V .

The semigroups K
�S;��
V and T together with the action " of T on K

�S;��
V de®ne a

�-semidirect product K
�S;��
V �� T. Now we de®ne a semi-injective homomorphism

��S;��V : �S; �� ! �K�S;��V �� T; ker ��2��. Put

s��S;��V � ÿ�s��s��ÿ1; s; s����S;��V ; s�
� �s 2 S�:

It is routine to check that ��S;��V :S! K
�S;��
V �� T is a homomorphism. For, if s; t 2 S

then

s��S;��V � t��S;��V � ÿ�s��s��ÿ1; s; s����S;��V ; s�
�ÿ�t��t��ÿ1; t; t����S;��V ; t�

�
� ÿs�t��s�t��ÿ1��s��s��ÿ1; s; s����S;��V � � s���t��t��ÿ1; t; t����S;��V �; s�t��
� ÿ�s�t��s�t��ÿ1; s; s�t��t��ÿ1���S;��V � �s�t��t��ÿ1; t; s�t����S;��V ; s�t�

�
� ÿ�s�t��s�t��ÿ1; st; s�t����S;��V ; s�t�

�
� ÿ��st����st���ÿ1; st; �st�����S;��V ; �st���
� �st���S;��V :

Moreover, we obviously have ker ���S;��V �2� � �.

Remark 2.1. (i) Notice that the de®nition of K
�S;��
V and that of the action of

T � S=� on K
�S;��
V involves an arbitrarily chosen inverse unary operation y. We will

show in Corollary 2.3 that they are, up to isomorphism, independent of the choice of y.
(ii) When S is an inverse semigroup and V is a variety of inverse semigroups

then ÿ1 is the unique inverse unary operation on S and BFV�A� � FV�A�. Therefore
the above de®nition of K

�S;��
V and the action of T on it can be interpreted also in the

following way: consider the (unary) congruence ��S;��V on FV�A� generated by
� � f�ab; c�: a; b; c 2 A such that c � a � b in Cg, put K

�S;��
V � FV�A�=��S;��V and

extend the natural action of T on the semigroupoid C to an action (by unary endo-
morphisms) of T on FV�A�; it induces an action of T on K

�S;��
V .
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We are ready to formulate the main result of this section. It proves a universal
property of ��S;��V among certain homomorphisms of the extension �S; �� into �-
semidirect product extensions of members in V by inverse semigroups. The follow-
ing homomorphisms play a crucial role here.

Let L;L be any semigroups and let U;U be inverse semigroups acting on L and
L, respectively. If �1:L! L and �2:U! U are homomorphisms such that, for
every l 2 L and u 2 U, we have �ul��1 � u�2�l�1�, then the mapping
�: �L �� U; ker ��L��U2 �� ! �L �� U; ker ��L��U2 �� de®ned by �l; u�� � �l�1; u�2� is easily
seen to be a homomorphism. If a homomorphism �: �L �� U; ker ��L��U2 �� !
�L �� U; ker ��L��U2 �� is of this form for some �1 and �2 then we term it a splitting
homomorphism of the �-semidirect products, and denote it also by ��1; �2�.

Theorem 2.2. Let S be a regular semigroup and let � be an inverse semigroup
congruence on S. Let V be an e-variety of locally inverse or of E-solid semigroups.
Suppose that L 2 V, U is an inverse semigroup acting on L and  : �S; �� !
�L �� U; ker ��L��U2 �� is a homomorphism. Then there exists a unique splitting homo-
morphism

�: �K�S;��V �� �S=��; ker ��K
�S;��
V
���S=��

2 �� ! �L �� U; ker ��L��U2 ��
such that  � ��S;��V �.

Proof. For brevity, we will write �, K and � for ��S;��V , K
�S;��
V and ��S;��V , respec-

tively. Furthermore, we denote the i-th �i � 1; 2� projection �K��Ti and �L��Ui by �i
and �i, respectively. We begin by proving the uniqueness of �. Assume that
� � ��1; �2�: �K �� T; ker�2� ! �L �� U; ker�2� is a splitting homomorphism satis-
fying  � ��. Obviously, this equality is equivalent to the equalities
 �i � ��i�i �i � 1; 2�. It follows from the de®nition of � that ��2 � �\. Hence we
immediately see that �2 is the unique homomorphism of T into U with

�\�2 �  �2: �2�

On the other hand, the equality  �1 � ��1�1 is equivalent to the fact that

��s��s��ÿ1; s; s�����1 � s �1 �3�

for every s 2 S. Hence it follows that

��a; s; b����1 � a�2�s �1� �4�
for any �a; s; b� 2 A. For, if �a; s; b� 2 A then a�s�� � b and b�s��ÿ1 � a whence we
obtain that �a; s; b� � a�s��s��ÿ1; s; s��. Applying (3) and the fact that ��1; �2� is a
splitting homomorphism, we see that

��a; s; b����1 �
ÿ�a�s��s��ÿ1; s; s������1
� ÿa��s��s��ÿ1; s; s������1
� a�2��s��s��ÿ1; s; s�����1
� a�2�s �1�:
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Put � � �\�1. Since �\ is surjective, in order to show that �1 is uniquely deter-
mined, it su�ces to verify that � is uniquely determined. However, this is not di�-
cult to check because, by de®nition, a0� � ay� �a 2 A�, and so, by (4), we see that �
is the unique extension of the matched mapping #:A! L, �a; s; b�# � a�2�s �1�,
�a; s; b�0# � b�2�sy �1� ��a; s; b� 2 A�. The fact that # is, indeed, matched can be
checked by a straightforward calculation. Let s 2 S. Since sy 2 V�s�, we have
sy �2 � �s �2�ÿ1. Moreover, �s �1; s �2� 2 L �� U whence s �2�s �2�ÿ1�s �1� � s �1
follows. Since  :S! L �� U is a homomorphism, we infer that

s �1 � �s � sy � s ��1
� s �2�s �2�ÿ1ÿs �2�s �2�ÿ1 �s �1� �s �2 �sy �1�� � s �2�s �2�ÿ1�s �1�
� s �1 � s �2�sy �1� � s �1:

Similarly, we also obtain that sy �1 � sy �1 � �s �2�ÿ1�s �1� � sy �1 which implies
s �2�sy �1� � s �2�sy �1� � s �1 � s �2�sy �1�. Therefore s �1 2 V

ÿ
s �2�sy �1�

�
. If

�a; s; b� 2 A then b � a�s��, and so b�2 � a�2 � s �2 yields by (2). This implies
a�2�s �1� 2 V

ÿ
b�2�sy �1�

�
, completing the proof that # is matched. Thus the unique-

ness of � is proved.
The existence of � will follow if we show that the only pair ��1; �2� possible by

the above argument exists and forms a splitting homomorphism. Let �2:T! U be
the unique homomorphism such that (2) is valid. Consider the matched mapping #
de®ned above. Let � be the unique extension of # to a homomorphism
BFV�A� ! L. We intend to show that � � ker �. For this purpose, it is enough to
verify that � � ker �. By de®nition, �a; s; b�0� � �b; sy; a�� � �a; s; b�y�. So the ®rst
set in the de®nition of � is clearly contained in ker �. The same property of the sec-
ond set follows in the following manner. Let �a; s; b�; �b; t; c� 2 A. Then we have
a�s�� � b and a��st�����st���ÿ1 � a. This implies by (2) that a�2 � s �2 � b�2 and
a�2 � ��st� �2���st� �2�ÿ1 � a�2. On the other hand, we have
�a; s; b� � �b; t; c� � �a; st; c� in C. Since �st� �1 � ��st� �2���st� �2�ÿ1�s �1� � s �2�t �1�,
we obtain that �a; st; c�� � a�2��st� �1� � a�2�s �1� � b�2�t �1� � �a; s; b�� � �b; t; c��.
Thus we have proved that � � ker �. This ensures the existence of a homomorphism
�1 such that �\�1 � �.

To complete the proof, it remains to show that

�tk��1 � t�2�k�1� �t 2 T; k 2 K�:

This is equivalent to �t� � ��t�2 �t 2 T� where � is the action of T on BFV�A�
introduced before the theorem and � is used to denote the action of U on L. For,
k � w� for some w 2 BFV�A�, and so �tk��1 � �t�w����1 � ��tw����1 � w�t� and
t�2�k�1� � t�2��w���1� � w��t�2 . Since �t� and ��t�2 are homomorphisms of
BFV�A�, their equality follows if their restrictions to A coincide. The latter property
can be easily checked. For every �a; s; b� 2 A, we have �a; s; b��t� � �ta; s; tb�� �
�ta��2�s �1� � t�2�a�2�s �1� � t�2�a�2�s �1�� � �a; s; b���t�2 , and a similar calculation
applies for �a; s; b�0 2 A0. The proof of the theorem is complete. &

Now we turn to proving the property of the construction K
�S;��
V �� �S=�� for-

mulated in Remark 2.1(i). Let ��S;��V , K
�S;��
V , ", ��S;��V and �̂�S;��V , K̂

�S;��
V , "̂, �̂�S;��V be two

quadruples constructed as described before Theorem 2.2 by means of two di�erent
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inverse unary operations. Then Theorem 2.2 implies the existence of splitting
homomorphisms

� � ��1; �2�: �K�S;��V �� �S=��; ker ��2�� ! �K̂�S;��V �� �S=��; ker ��̂2��

with �̂�S;��V � ��S;��V � and

�̂ � ��̂1; �̂2�: �K̂�S;��V �� �S=��; ker ��̂2�� ! �K�S;��V �� �S=��; ker ��2��

with ��S;��V � �̂�S;��V �̂ where �2 and �̂2 stand for the second projections of
K
�S;��
V �� �S=�� and K̂

�S;��
V �� �S=��, respectively. Clearly, �2 and �̂2 are identical on

S=�. Moreover, ��̂ and �̂� are splitting homomorphisms of �K�S;��V �� �S=��; ker ��2��
and �K̂�S;��V �� �S=��; ker ��̂2��, respectively, into themselves with ��S;��V ��̂ � ��S;��V and
�̂�S;��V �̂� � �̂�S;��V . Thus, by Theorem 2.2, both ��̂ and �̂� are identical which implies
that �1 and �̂1 are inverses of each other. Hence �1 is an isomorphism of K

�S;��
V onto

K̂
�S;��
V . Since � is splitting, we have "t�1 � �1"̂t for every t 2 T.

Let L, L and U be semigroups such that U acts both on L and L. We say that a
homomorphism  :L! L respects the actions of U if �ul� � u�l � for every u 2 U
and l 2 L. It is easy to see that  possesses this property if and only if
� ; ��: �L �� U; ker ��L��U2 �� ! �L �� U; ker ��L��U2 ��, where � is the identity auto-
morphism of U, is a splitting homomorphism.

With this terminology, the statement we have veri®ed is the following.

Corollary 2.3. Let ��S;��V , K
�S;��
V , ", ��S;��V and �̂�S;��V , K̂

�S;��
V , "̂, �̂�S;��V be two quad-

ruples constructed as described before Theorem 2.2 by means of di�erent inverse unary
operations. Then these constructions are equivalent in the sense that there exists an
isomorphism �1:K

�S;��
V ! K̂

�S;��
V which respects the actions " and "̂. &

This corollary makes it possible to call ��S;��V the canonical homomorphism of
�S; �� into a �-semidirect product extension of a member in V by an inverse semigroup.
If ��S;��V is injective then we say that �S; �� is canonically embeddable into a �-semi-
direct product extension of a member in V by an inverse semigroup.

One sees immediately that if  in Theorem 2.2 is injective then ��S;��V is also
injective. This establishes the following crucial property of ��S;��V .

Corollary 2.4. Let S be a regular semigroup, and let � be an inverse semigroup
congruence on S. Let V be an e-variety of locally inverse or of E-solid semigroups.
Then �S; �� is embeddable into a �-semidirect product extension of a member in V by
an inverse semigroup if and only if �S; �� is canonically embeddable, or, equivalently, if
and only if the relations s � t in S and �s��s��ÿ1; s; s�� ��S;��V �t��t��ÿ1; t; t�� in BFV�A�
imply s � t for every s; t 2 S. &

3. An application. In this section we apply the canonical embedding approach
introduced in the former section to reprove the following result by B. Billhardt [1]:

Theorem 3.1. Let S be an inverse semigroup and � an idempotent pure congruence
on S. Then the extension �S; �� can be embedded into a �-semidirect product extension
of a semilattice by S=�.
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Proof. Let S be an inverse semigroup and � an idempotent pure congruence on
S. Denote the factor semigroup S=� by T and the variety of semilattices (as a variety
of inverse semigroups) by S. Construct the derived semigroupoid C � C�S; �� of
�S; �� and the congruence � � ��S;��S on the free semilattice FS�A�; see Remark 2.1. By
Corollary 2.4, we have to prove that, for every s; t 2 S, the relations s � t in S and
�s��s��ÿ1; s; s�� � �t��t��ÿ1; t; t�� in FS�A� imply s � t.

Assume that s; t 2 S satisfy the premisses of the implication to be proved. Put
� � s� � t� and � � s��s��ÿ1 � t��t��ÿ1. Then we have ��; s; �� � ��; t; �� in FS�A�
where A � Arr�C�. Observe that C is an inverse semigroupoid, and we have
��; u; 
�ÿ1 � �
; uÿ1; �� for every arrow ��; u; 
� in C.

Recall from [11] that FS�A� can be interpreted in the usual way as the factor
semigroup of A� � �A�; 0�, the free semigroup with involution on the set A, by the
fully invariant congruence � � ��S;A�. Here A� is the free semigroup on
A � Arr�C�, and the involution 0 is the unique extension of the bijection 0:A! A0 to
an involution of A�. The fully invariant congruence � is the following relation.
Given a word w in A�, its content A�w� is de®ned to be the set of all elements of A
which appear in w with or without 0. For every pair of words u; v 2 A�, we have u � v
if and only if A�u� � A�v�.

From the de®nition of the relation �, it is routine to see that, for every pair of
words x; y 2 A�, we have �x�� � �y�� if and only if there exists a ®nite sequence
x � w0;w1; . . . ;wn � y of words in A� such that, for every i �0 � i < n�, the word
wi�1 is obtained from wi by one of the following steps:

(S0) wi � ua0v, wi�1 � uaÿ1v for some u; v 2 �A��1 and a 2 A,
(S00) wi � uaÿ1v, wi�1 � ua0v for some u; v 2 �A��1 and a 2 A,
(S1) wi � uabv, wi�1 � ucv for some u; v 2 �A��1 and a; b; c 2 A with a � b � c

in C,
(S10) wi � ucv, wi�1 � uabv for some u; v 2 �A��1 and a; b; c 2 A with a � b � c

in C,
(S2) wi�1 � wi.

Therefore, in order to prove the implication formulated above, we have to show
that if ��; s; �� � w0;w1; . . . ;wn � ��; t; �� is a sequence of words in A� such that, for
every i �0 � i < n�, the word wi�1 is obtained from wi by one of the steps (S0)±(S2),
then s � t. From now on, we ®x such a sequence ��; s; �� � w0;w1; . . . ;wn � ��; t; ��,
and intend to prove the equality s � t.

Let R be an R-class of S such that � \ R is not empty. Now we de®ne two sub-
semigroupoids in C. Let UR and VR be the subgraphs in C determined by the sets of
arrows

U � f��; u; 
� 2 Arr�C�: there exists b 2 � \ R such that bÿ1b � uuÿ1g
and

V � f��; v; 
� 2 Arr�C�: there exists u 2 S such that u � v and ��; u; 
� 2 Ug;

respectively. It is clear by de®nition that UR is a subgraph in VR. Notice that the
assumption that � \ R is non-empty ensures that UR is non-empty. For, if e 2 � \ R
then e� � � whence e is idempotent since � is idempotent pure. Thus it is the unique
idempotent in the R-class R. Therefore ��; e; �� is easily seen to be an arrow in UR.
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We will ®nd it convenient to have several properties equivalent to the de®ning
properties of UR and VR, respectively.

Lemma 3.2. (i) For any ��; u; 
� 2 T� S� T, the following properties are
equivalent:

(a) ��; u; 
� 2 Arr�UR�,
(b) � � u� � 
 and there exists b 2 � \ R such that bÿ1b � uuÿ1,
(b0) � � u� � 
, � \ R � fbg and bÿ1b � uuÿ1,
(c) 
 � �u��ÿ1 � � and there exists c 2 
 \ R such that cÿ1c � uÿ1u,
(c0) 
 � �u��ÿ1 � �, 
 \ R � fcg and cÿ1c � uÿ1u.

Moreover, if (b) or (b0) holds then c � bu satis®es properties (c) and (c0), and
conversely, if (c) or (c0) holds then b � cuÿ1 satis®es properties (b) and (b0).

(ii) For any ��; v; 
� 2 T� S� T, the following properties are equivalent:
(d) ��; v; 
� 2 Arr�VR�,
(e) there exists u 2 S such that u � v and ��; u; 
� 2 Arr�UR�.

Proof. (i) Recall (see [11] Proposition III.4.2) that, in an inverse semigroup, the
intersection of an idempotent pure congruence and R is the equality relation. This
immediately implies that properties (b) and (b0), and, similarly, properties (c) and
(c0) are equivalent.

The implication (a)) (b) is clear. We show (b')) (c) by verifying the ®rst
statement in the last sentence of (i). First notice that 
 � �u��ÿ1 � ��u���u��ÿ1 �
� � �uuÿ1�� � � � �bÿ1b�� � ��ÿ1� ��. Furthermore, if c � bu then �bu�� � � � u� � 

whence c 2 
 follows, and since ccÿ1 � �bu��bu�ÿ1 � buuÿ1bÿ1 � bbÿ1bbÿ1 � bbÿ1,
we also see that bR c, and so c 2 R. Finally, we have cÿ1c � �bu�ÿ1�bu� �
uÿ1bÿ1bu � uÿ1uuÿ1u � uÿ1u. Dually, one can check that the second statement in
the last sentence of (i) is valid, and so the implication (c')) (b) also holds. Since
(b),(c) imply ��; u; 
� 2 Arr�C�, we see that (b),(c)) (a) follows.

(ii) The implication (d)) (e) is obvious. In order to prove the reverse implication,
we have to verify that if ��; u; 
� 2 Arr�UR� and v 2 Swith u � v then ��; v; 
� 2 Arr�C�.
Since u � v, we have u � uuÿ1v and u � vuÿ1u. Therefore, since ��; u; 
� 2 Arr�C�, we
see that � � v� � ��u���u��ÿ1 � v� � � � �uuÿ1v�� � � � u� � 
 and 
 � �v��ÿ1 �

�u��ÿ1�u�� � �v��ÿ1 � 
 � �uÿ1uvÿ1�� � 
 � ��vuÿ1u���ÿ1 � 
 � �u��ÿ1 � �. &

The following properties of UR and VR will be important for us.

Lemma 3.3. The graphs UR and VR form inverse subsemigroupoids in C.

Proof. Taking into account the assertions (i) and (ii) in the previous lemma, one
easily sees that UR and VR, respectively, are closed under taking inverses.

Now we show that UR is closed under multiplication. Let
��; u; 
�; �
; v; �� 2 Arr�UR�. Since ��; u; 
� � �
; v; �� � ��; uv; �� 2 Arr�C�, we see that
� � �uv�� � �. Moreover, by applying the assumptions and Lemma 3.2, we obtain
that fbg � � \ R, fcg � 
 \ R, bÿ1b � uuÿ1 and vvÿ1 � cÿ1c � uÿ1u. Therefore
�uv��uv�ÿ1 � uvvÿ1uÿ1 � uuÿ1uuÿ1 � uuÿ1 � bÿ1b. Thus property (b0) ensures that
��; uv; �� 2 Arr�UR�. Thus UR is, indeed, closed under multiplication. This immedi-
ately implies the same property of VR. &
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Lemma 3.4. For any elements �; 
 2 T, there exists at most one arrow in UR��; 
�.

Proof. Let ��; u; 
� 2 Arr�UR�. Then, by making use of property (b0), we obtain
that bÿ1b � uuÿ1 and u� � �uuÿ1�� � u� � �bÿ1b�� � u� � �ÿ1 � � � u� � �ÿ1
 where
fbg � � \ R. If ��; v; 
� is also in Arr�UR� then, similarly, we have bÿ1b � vvÿ1 and
v� � �ÿ1
. Thus u � \R v, and so, since � is idempotent pure, we see that u � v. &

Lemma 3.5. The semigroupoid VR is closed under taking divisors in C, that is, if
a; b; c 2 Arr�C� such that c � a � b and c 2 Arr�VR� then a; b 2 Arr�VR� follows.

Proof. Suppose that ��; u; 
�; �
; v; �� 2 Arr�C� such that ��; u; 
� � �
; v; �� �
��; uv; �� 2 Arr�VR�. Then there exists x � uv in S such that ��; x; �� 2 Arr�UR�. In
order to show that ��; u; 
� 2 Arr�VR�, it su�ces to verify that xvÿ1 � u and
��; xvÿ1; 
� 2 Arr�UR�. The inequality x � uv implies xvÿ1 � uvvÿ1 � u and
xÿ1x � vÿ1v. On the other hand, since ��; x; ��; ��; vÿ1; 
� 2 Arr�C�, we have
��; xvÿ1; 
� 2 Arr�C�, and so � � �xvÿ1�� � 
. Furthermore, ��; x; �� 2 Arr�UR�
whence fbg � � \ R and bÿ1b � xxÿ1 follow. Hence we obtain that
�xvÿ1��xvÿ1�ÿ1 � xvÿ1vxÿ1 � xxÿ1 � bÿ1b. Thus ��; xvÿ1; 
� 2 Arr�UR�, and so
��; u; 
� 2 Arr�VR� is proved. Dually, one can also verify that �
; v; �� 2 Arr�VR�. &

Now we are prepared to complete the proof of Theorem 3.1. For every
i �0 � i � n�, de®ne X i to be the subgraph in C determined by the set of arrows

[i
j�0
fa; aÿ1: a 2 A�wj�g:

Let R be the R-class of S containing the element ssÿ1. Then ssÿ1 2 � \ R, so that the
semigroupoid UR contains the arrow ��; s; ��.

The most important property of the graphs X i �0 � i � n� is that they are con-
tained in VR. This is veri®ed in the following way. First notice that if a 2 Arr�VR�
then aÿ1 2 Arr�VR� immediately follows since VR is an inverse subsemigroupoid in C
by Lemma 3.3. To prove the assertion, we proceed by induction on i. Clearly, we
have Arr�X 0� � f��; s; ��; ��; s; ��ÿ1g � Arr�UR� � Arr�VR�. Assume that Arr�X i� �
Arr�VR� for some i with 0 � i < n. According to whether wi�1 is obtained from wi by
one of the steps (S0),(S00) and (S2), by (S1), or by (S10), the following three possibi-
lities occur by de®nition:

Arr�X i�1� � Arr�X i�;�i�
Arr�X i�1� � Arr�X i� [ fc; cÿ1g �a; b 2 Arr�X i� with c � a � b�;�ii�
Arr�X i�1� � Arr�X i� [ fa; aÿ1; b; bÿ1g �c 2 Arr�X i� with c � a � b�:�iii�

By applying the induction hypothesis and, in cases (ii) and (iii), the facts that VR is
closed under multiplication, and under taking divisors, respectively, we infer that
Arr�X i�1� � Arr�VR�.

In particular, this implies that Arr�X n� � Arr�VR�, and so ��; t; �� 2 Arr�VR�.
Hence, by de®nition, there exists x � t in S such that ��; x; �� 2 Arr�UR�. However,
we have seen above that ��; s; �� 2 Arr�UR� whence it follows by Lemma 3.4 that
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x � s. Thus we have shown that s � t holds in S. By symmetry, the reverse inequal-
ity is also valid, completing the proof of the equality s � t. &

Remark 3.6. In the special case where � is a group congruence, or, equivalently,
when S is an E-unitary inverse semigroup and � is the least group congruence on S,
then the proof can be considerably simpli®ed and made more transparent as follows.
In this special case, C is necessarily a semigroupoid whose `local subsemigroups'
C��; �� �� 2 T� are semilattices. Thus, by Simon's Lemma ([4], cf. also [16]), the fol-
lowing holds: for any two coterminal paths p � a1a2 . . . ak and q � b1b2 . . . bm on
the graph C which `span' the same subgraph in C, that is, which satisfy A�p� � A�q�,
we have the same product a1 � a2 � . . . � ak � b1 � b2 � . . . � bm. Given a ®nite, `sym-
metric', connected subgraph X in C and two objects �; 
 in Obj�X�, this allows us to
de®ne an arrow e�X ; �; 
� as the product of any ��; 
�-path spanning X . (A sub-
graph is termed `symmetric' if it is closed under taking inverses.) Therefore, instead
of introducing subgraphs UR and VR and proving Lemmas 3.2±3.5, all we have to do
is to assign e�X i; 1; �� to X i for every i �0 � i � n� and to observe that
e�X i�1; 1; �� � e�X i; 1; �� for each i �0 � i < n�. Note that e�X i; 1; �� �0 � i � n� is
just the unique element of UR�1; ��.
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