A CHARACTERIZATION OF PROJECTIVE METRIC SPACES

BY

ROLFDIETER FRANK

ABSTRACT. A projective metric space is a pappian projective space together with a quadric and a certain equivalence relation on the pairs of those points which do not belong to the quadric. This equivalence relation is defined by means of the corresponding quadratic form and satisfies a condition which is a projective version of Miquel's theorem. We characterize the projective metric spaces of dimension at least two over fields of order at least 13.

§1. Introduction. Let V be a vector space over a commutative field K, and let $Q: V \to K$ be a quadratic form with the corresponding bilinear form f_Q . The pair (V, Q) is called a *metric vector space*. Let $\Pi(V)$ denote the projective space corresponding to V, the points of which are the one-dimensional subspaces of V, and let \mathcal{P}_Q denote the set of those points of $\Pi(V)$ for which the quadratic form Q is not zero. On $\mathcal{P}_Q \times \mathcal{P}_Q$ we define an equivalence relation \equiv_Q by $(A, B) \equiv_Q (C, D)$: \Leftrightarrow There exist vectors $a, b, c, d \in V$ satisfying $A = Ka, \ldots, D = Kd$, such that one of the following statements holds:

By [5, Lemma 3.1] \equiv_Q is the linear congruence relation defined by Schröder [7]. If (V, Q) is regular, then $(A, B) \equiv_Q (C, D)$ iff $\sigma_A \circ \sigma_B = \sigma_C \circ \sigma_D$, where σ_X is the reflection in the hyperplane perpendicular to X (see [5, Lemma 1.1]). Therefore $(A, B) \equiv_Q (C, D)$ implies that A, B, C, D are on a common line and that the angle from A to B equals the angle from C to D. This justifies the name "linear congruence relation". The pair $(\Pi(V), \equiv_Q)$ is called a *projective metric space*. In [8] Schröder characterizes the projective metric spaces, starting with a subset \mathcal{P} of the point set of a projective space and an equivalence relation on $\mathcal{P} \times \mathcal{P}$. In the present paper, we start with a set \mathcal{P} and

Received by the editors January 29, 1985.

Key words: quadratic form, Miquel's theorem, congruence relation, embedding into a projective space. AMS Subject Classification: 51F99.

[©] Canadian Mathematical Society 1985.

an equivalence relation \equiv on $\mathcal{P} \times \mathcal{P}$. It turns out that the properties of the equivalence relation used by Schröder can also be used to embed \mathcal{P} into a projective space Π such that (Π, \equiv) is a projective metric space.

§2. **Result**. Let \mathcal{P} be a set and \mathcal{L} a set of subsets of \mathcal{P} satisfying $|l| \ge 2$ for every $l \in \mathcal{L}$. The elements of \mathcal{P} are called *points*, those of \mathcal{L} are called *lines*. The pair $(\mathcal{P}, \mathcal{L})$ is a *linear space*, iff for every pair of distinct points $A, B \in \mathcal{P}$ there exists one and only one line $l \in \mathcal{L}$ with $A, B, \in l$. A subset \mathcal{T} of \mathcal{P} is a *subspace*, iff it contains with every pair of distinct points the line through these points. If \mathcal{M} is a set of points, then there exists a smallest subspace containing \mathcal{M} , called the *hull* of \mathcal{M} . A *plane* is the hull of three noncollinear points. For any subset \mathcal{M} of \mathcal{P} we define $\mathcal{L}_{\mathcal{M}} := \{l \cap \mathcal{M} : l \in \mathcal{L} \text{ and } |l \cap \mathcal{M}| \ge 2\}$. Then $(\mathcal{M}, \mathcal{L}_{\mathcal{M}})$ is a linear space, which is *embedded* into $(\mathcal{P}, \mathcal{L})$. We say that $(\mathcal{M}, \mathcal{L}_{\mathcal{M}})$ is *locally completely embedded* into $(\mathcal{P}, \mathcal{L})$, iff $|l \cap \mathcal{M}| \ne l$ for every line $l \in \mathcal{L}$ (see [1, p. 346]).

PROPOSITION 1: Let Q be a quadratic form on a vector space. We write \mathcal{P} and \equiv for \mathcal{P}_{Q} and \equiv_{Q} . Then the following statements hold:

- (1) $(A, A) \equiv (B, B)$ for all $A, B \in \mathcal{P}$.
- (2) Given $A, B, C \in \mathcal{P}$, there is at most one $X \in \mathcal{P}$, denoted by ABC, such that $(A, B) \equiv (X, C)$ holds. If ABC exists, then so does $\pi(A)\pi(B)\pi(C)$ for every permutation π of $\{A, B, C\}$.
- (3) Let A, B, C, D be elements of \mathcal{P} such that $A \neq B$. If ABC and ABD exist, then so does ACD.

Because of (1), (2), (3) R: = {(A, B, C): $A, B, C \in \mathcal{P}$ and ABC exists} is a ternary equivalence relation (see [1, pp. 64-65]). Therefore we get a linear space with point set \mathcal{P} , if for every pair of distinct points $A, B \in \mathcal{P}$ we define the line A + B: = { $X \in \mathcal{P}$: ABX exists} through A and B. We denote this linear space by $L(\mathcal{P}, \equiv)$ and the set of all its lines by \mathcal{L} . For the linear space $L(\mathcal{P}, \equiv)$ the following statements hold:

- (4) Let a, b, c ∈ L be pairwise intersecting lines contained in a plane ε. Then every line contained in ε meets at least one of them.
- (5) Let ε be a plane containing points A, B, C, D, no three of them collinear, such that C(B(AXA)B)C = DXD for every X ∈ ε. Then for every line l ∈ ℒ_ε and every point X ∈ ε there is at most one line m ∈ ℒ_ε through X, which does not meet l. (This means that (ε, ℒ_ε) is a semi-affine plane as defined by Dembowski [3].)
- (6) (Hexagram condition of [8, Theorem 7]) Let A,..., G be elements of P. If each of the sets {A,B,C}, {C,D,E}, {E,F,G}, {B,D,F}, {A,BDF,G} is collinear, then the set {ABC,CDE,EFG} is also collinear, and (ABC) (CDE) (EFG) = A (BDF)G.

PROOF: The validity of (1), (2), (3), (4) and (6) follows from [8, Theorem 7]. We show that (5) is true. Let ϵ be a plane containing points A, B, C, D, no three of them collinear, such that C(B(AXA)B)C = DXD for every $X \in \epsilon$. There is a three-dimensional metric vector space (V, q) corresponding to ϵ . If the underlying field K has

only two elements, then (5) is obviously true. Therefore we may assume $|K| \ge 3$. We choose vectors $a, b, c, d \in V$ such that $A = Ka, \ldots, D = Kd$ and define a map σ_a : $V \to V$; $x \mapsto x - q(a)^{-1} f_q(a, x) a$. Now σ_a and $-\sigma_a$ are the only isometries of V to induce the map $\tilde{A}: \epsilon \to \epsilon$; $X \mapsto AXA$ (see [6, Lemma 3.4]). Therefore $\sigma_a \circ \sigma_b \circ \sigma_c = \sigma_d$. Because a, b, c are linearly independent, this implies dim (Rad $V) \ge 2$ (see [6, Proposition 3.5]). In case dim (Rad V) = 2 we have char $K \neq 2$, and hence q(x) = 0 is equivalent to $f_q(x, x) = 0$ which in turn is equivalent to $x \in \text{Rad } V$. If dim (Rad V) = 3, then q(x + y) = q(x) + q(y) for all $x, y \in V$. In each case the set $\{x \in V: q(x) = 0\}$ is a subspace of V. The assertion of (5) follows. \Box

The hexagram condition was stated first by Schröder [8]. The following example illustrates its significance for elementary geometry. Let *V* be the three-dimensional real vector space and *Q* the square of the Euclidean length. Then the affine geometry corresponding to (V, Q) is the three-dimensional Euclidean space. Let eight points of *V* be attached to the vertices of a cube in such a way that for five of the six faces of the cube the vertices correspond to points on a circle. The vertices of any quadrangle lie on a circle iff opposite inner angles add up to 180° . Consequently four points A, B, C, D, no three of them collinear, lie on a circle iff $(\mathbb{R}(A-B), \mathbb{R}(C-B)) \equiv_Q (\mathbb{R}(A-D), \mathbb{R}(C-D))$ in the projective metric space corresponding to (V, Q). Therefore the hexagram condition implies that the vertices of the sixth face of the cube correspond to points on a circle too, which is the assertion of the theorem of Miquel (see [2, p. 131]). Schröder [8] calls the hexagram condition a projective version of the theorem of Miquel holds. In view of this fact, Theorem 2 confirms Schröder's interpretation.

THEOREM 2: Let \mathcal{P} be a set and \equiv an equivalence relation on $\mathcal{P} \times \mathcal{P}$ satisfying conditions (1)–(6) stated in Proposition 1. Let the linear space $L(\mathcal{P}, \equiv)$ contain at least two lines, on every line at least three points and on one line at least 13 points.

Then $L(\mathcal{P}, \equiv)$ is locally completely embeddable into a projective space Π , and (Π, \equiv) is a projective metric space.

§3. Towards the Proof of Theorem 2. Throughout this paragraph, \mathcal{P} is a set and \equiv is an equivalence relation on $\mathcal{P} \times \mathcal{P}$ satisfying conditions (1)–(6) stated in Proposition 1. ϵ is a plane of $L(\mathcal{P}, \equiv)$ containing at least three points on every line $l \in \mathcal{L}_{\epsilon}$. Our aim is the proof of the following proposition.

PROPOSITION 3: The linear space $(\epsilon, \mathcal{L}_{\epsilon})$ is locally completely embeddable into a projective plane.

For every $A \in \epsilon$ we define a map $\tilde{A}: \epsilon \to \epsilon$; $X \mapsto AXA$. By [8, (22) and (24)] \tilde{A} is a collineation satisfying $\tilde{A} \circ \tilde{A} = id_{\epsilon}$. For collinear points $A, B, C \in \epsilon$ we have $\tilde{A} \circ \tilde{B} \circ \tilde{C} = \tilde{ABC}$ by [8, (23)]. We remark that although Schröder proves (22)–(24) in [8] under stronger assumptions, his proof remains valid without changes in our more general situation. If for $A, B, C \in \epsilon$ there is a point $D \in \epsilon$ such that $\tilde{A} \circ \tilde{B} \circ \tilde{C} = \tilde{D}$ only

453

if A, B, C are collinear, then the assertion of Proposition 3 follows from [6, Main Theorem 6.31]. Hence we may assume that ϵ contains non-collinear points A_0, B_0, C_0 and a point D_0 such that $\tilde{A}_0 \circ \tilde{B}_0 \circ \tilde{C}_0 = \tilde{D}_0$.

LEMMA 4: Let $(\epsilon, \mathcal{L}_{\epsilon})$ be a semi-affine plane, g and h disjoint elements of \mathcal{L}_{ϵ} , and X a point of ϵ not on g. Then there is a line $l \in \mathcal{L}_{\epsilon}$ such that $X \in l$ and $l \cap g = \emptyset$.

PROOF: We may assume $X \notin h$, as otherwise the assertion is obvious. We choose two points H_1 and H_2 on h. The line $X + H_1$ meets g in a point G_1 . The point Z: = H_1G_1X is collinear with X and H_1 and distinct from both. The line $Z + H_2$ meets g in a point G_2 . The point Y: = G_2H_2Z is collinear with Z and G_2 . Also $(X + H_1) \cap (Z + G_2) = \{Z\}$ and $X \neq Z$ imply $X \neq Y$. We show that the line l: = X + Y is disjoint to g. Assume there is a point $S \in l \cap g$. Then each of the sets $\{Z, X, G_1\}, \{G_1, S, G_2\}, \{G_2, Y, Z\}, \{X, S, Y\}, \{Z, XSY, Z\}$ is collinear, and the hexagram condition implies that the set $\{ZXG_1, G_1SG_2, G_2YZ\}$ is also collinear. Because $ZXG_1 = H_1$ and $G_2YZ = H_2$ we have $G_1SG_2 \in h$, a contradiction to $G_1SG_2 \in g$ and $g \cap h = \emptyset$.

LEMMA 5: If ϵ does not contain distinct points U and V such that $\tilde{U} = \tilde{V}$, then we have:

- (*i*) Let A, \ldots, D be elements of ϵ satisfying $\tilde{A} \circ \tilde{B} = \tilde{D} \circ \tilde{C}$. If A, B, C are noncollinear, then $(A + B) \cap (D + C) = \emptyset = (A + D) \cap (B + C)$.
- (ii) The linear space $(\epsilon, \mathcal{L}_{\epsilon})$ is a semi-affine plane.

(iii) For every line $l \in \mathcal{L}_{\epsilon}$ there is a line $m \in \mathcal{L}_{\epsilon}$ such that $l \cap m = \emptyset$.

PROOF: (i) Assume there is a point $X \in (A + B) \cap (D + C)$. Then we have $\widetilde{ABX} = \widetilde{A} \circ \widetilde{B} \circ \widetilde{X} = \widetilde{D} \circ \widetilde{C} \circ \widetilde{X} = \widetilde{DCX}$ which implies ABX = DCX and therefore X, $ABX \in (A + B) \cap (D + C)$. This contradicts $A + B \neq D + C$, for X = ABX would imply A = B. Hence $(A + B) \cap (D + C) = \emptyset$ is true. Similarly $(A + D) \cap (B + C) = \emptyset$ follows from $\widetilde{A} \circ \widetilde{D} = \widetilde{B} \circ \widetilde{C}$.

(*ii*) By (*i*) no three of the points A_0, B_0, C_0, D_0 are collinear. Therefore (*ii*) follows from condition (5).

(*iii*) We may assume that l meets $A_0 + B_0$. Then by (*i*) and (*ii*) l meets $D_0 + C_0$ too. We call the points of intersection A_1 and D_1 . There are points $B_1 \in A_0 + B_0$ and $C_1 \in D_0 + C_0$ such that $\tilde{A}_1 \circ \tilde{B}_1 = \tilde{A}_0 \circ \tilde{B}_0 = \tilde{D}_0 \circ \tilde{C}_0 = \tilde{D}_1 \circ \tilde{C}_1$. Because A_1 , B_1 , C_1 are noncollinear, (*i*) implies $(A_1 + D_1) \cap (B_1 + C_1) = \emptyset$. Together with $l = A_1 + D_1$ this proves (*iii*).

LEMMA 6: If for a point $A \in \epsilon$ the collineation \tilde{A} fixes three noncollinear points $X, Y, Z \in \epsilon - \{A\}$, then \tilde{A} is the identity map on ϵ .

PROOF: Because \tilde{A} fixes every line through A, the following is obvious: If \tilde{A} fixes points $R, S \in \epsilon$ not collinear with A, then \tilde{A} fixes the line R + S pointwise. We will frequently make use of this fact. Because every line of \mathcal{L}_{ϵ} contains at least three points, we may assume $A \notin X + Y$, Y + Z, Z + X. We choose points $U \in X + Y$, $V \in Y + Z$

Z, $W \in Z + X$ distinct from X, Y, Z and may assume $A \notin U + V$, U + W. For every point $P \in \epsilon - \{Z\}$ the line P + Z meets at least one of the lines U + V, V + W, X + Y in a point distinct from Z. Hence \tilde{A} fixes every point of P + Z if P and Z are not collinear with A. Therefore \tilde{A} fixes all points of ϵ , except perhaps the points on the line A + Z. But then \tilde{A} must be the identity map on ϵ .

LEMMA 7: If ϵ contains distinct points U and V such that $\tilde{U} = \tilde{V}$, then we have:

- (*i*) \tilde{A} is the identity map on ϵ for every $A \in \epsilon$.
- (*ii*) (ϵ , \mathscr{L}_{ϵ}) is a semi-affine plane.

(iii) The diagonals of any parallelogram in $(\epsilon, \mathcal{L}_{\epsilon})$ do not intersect.

PROOF: (i) Let X be a point of ϵ not on U + V. The map $\tilde{U} (= \tilde{V})$ fixes the lines U + X and V + X, and hence fixes X. Therefore \tilde{U} is the identity map on ϵ . Let A be a point of ϵ not on U + V. The map \tilde{A} fixes U and V. We choose a point $W \in A + U$ distinct from A and U. Because AWA = AW(UAU) = (AWU)AU = (UWA)AU = UW(AAU) = UWU = W, \tilde{A} fixes W too. Hence \tilde{A} is the identity map by Lemma 6. If B is a point on U + V distinct from U and V, then \tilde{B} fixes the noncollinear points U, V, A and hence is the identity map by Lemma 6.

(*ii*) ϵ contains four points A_1, \ldots, A_4 such that no three of them are collinear. By (*i*) we have $\tilde{A}_1 \circ \tilde{A}_2 \circ \tilde{A}_3 = \tilde{A}_4$. Hence (*ii*) follows from condition (5).

(*iii*) Let A, B, C, D be distinct points of ϵ such that $(A + B) \cap (C + D) = \emptyset = (A + D) \cap (B + C)$. We show that A + C and B + D do not intersect. Assume there is a point $X \in (A + C) \cap (B + D)$. Then $(XAC + XBD) \cap (A + D) = \emptyset$; for if there is a point $Y \in (XAC + XBD) \cap (A + D)$, the hexagram condition implies C((XAC)Y(XBD))B = (XA(XAC))((XAC)Y(XBD))((XBD)DX) = X(AYD)X = AYD, and hence $AYD \in (A + D) \cap (B + C)$. Similarly we get $(XAC + XBD) \cap (A + B) = \emptyset$. But now there are two lines (namely A + D and A + B) containing A which do not meet the line XAC + XBD. By (*ii*) this is not possible.

If ϵ does not contain distinct points U and V such that $\tilde{U} = \tilde{V}$, then we deduce from Lemma 4 and Lemma 5 that $(\epsilon, \mathcal{L}_{\epsilon})$ is an affine plane. Hence Proposition 3 is true in this case. If ϵ does contain such points, define an ideal point to be a set of pairwise nonintersecting lines which fill out ϵ . An ideal point is to lie on each of its lines. If there exist at least two ideal points, then we define the set of all ideal points to be a new line. We deduce from Lemma 4 and Lemma 7 that in this way we get a projective plane. This concludes the proof of Proposition 3.

PROPOSITION 8: Let $(\mathcal{P}, \mathcal{L})$ be a linear space containing at least two lines, on every line at least three points and on one line at least 13 points. If every plane ϵ of $(\mathcal{P}, \mathcal{L})$ is embeddable into a projective plane $\Pi(\epsilon)$ such that $(\Pi(\epsilon), \equiv_{\epsilon})$ is a projective metric plane for a suitable equivalence relation \equiv_{ϵ} on $\epsilon \times \epsilon$, then $(\mathcal{P}, \mathcal{L})$ is locally completely embeddable into a projective space Π .

PROOF: The proof of Proposition 8 is contained in the proof of Theorem 2.3 in [4].

454

§4. **Proof of Theorem 2.** Let ϵ be any plane of the linear space $L(\mathcal{P}, \equiv)$ and denote by \equiv_{ϵ} the restriction of \equiv to $\epsilon \times \epsilon$. By Proposition 3 the linear space $(\epsilon, \mathcal{L}_{\epsilon})$ is locally completely embeddable into a projective plane $\Pi(\epsilon)$. Now [8, Theorem 7] yields that $(\Pi(\epsilon), \equiv_{\epsilon})$ is a projective metric plane. We deduce from Proposition 8 that $L(\mathcal{P}, \equiv)$ is locally completely embeddable into a projective space Π . The pair (Π, \equiv) satisfies the conditions of Theorem 7 in [8] and hence is a projective metric space.

REFERENCES

1. Bachmann, F.: Aufbau der Geometrie aus dem Spiegelungsbegriff (second edition). Berlin-Heidelberg-New York: Springer 1973.

Benz, W.: Vorlesungen über Geometrie der Algebren. Berlin-Heidelberg-New York: Springer 1973.
Dembowski, P.: Semiaffine Ebenen. Arch. Math. 13, 120–131 (1962).

4. Frank, R.: Gruppentheoretische Kennzeichnung der Geometrien metrischer Vektorräume. Geom. Ded. 16, 1984, 157–165.

5. Frank, R.: Zur gruppentheoretischen Darstellung der projektiv-metrischen Geometrien. J. of Geom. 22, 158–166 (1984).

6. Lingenberg, R.: Metric Planes and Metric Vector Spaces. New York: Wiley Interscience 1979.

7. Schröder, E. M.: Eine gruppentheoretisch-geometrische Kennzeichnung der projektiv-metrischen Geometrien. J. of Geom. 18, 57–69 (1982).

8. Schröder, E. M.: On Foundations of Metric Geometries. Rendiconti del Seminario Matematico di Brescia 7, 583-601 (1984).

DEPARTMENT OF MATHEMATICS UNIVERSITY OF TORONTO TORONTO, ONTARIO CANADA M5S 1A1

1986]