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ABSTRACT

As additive manufacturing (AM) continues to grow in its abilities, so does the need for a quick and
effective method of determining how it should be applied. Over time, these methods are naturally
developed and passed on as tacit knowledge. However, with the rapid advancement of AM technologies,
identifying parts which are eligible for AM as well as gaining insight on what value it may add to a
product needs to be modelled in an objective and transferrable way. This paper presents a framework
for determining the candidacy of a part or assembly for AM, represented by its economic feasibility and
potential for AM-specific benefits. A set of selection criteria is developed with the goal of fast-screening
in mind; that is specific data which can be automatically extracted from CAD models and resource
planning databases. A case study is performed to validate the criteria and decision model chosen, as well
as gain insight to the potential for a more widespread application. The decision model successfully
identified economic feasibility and AM potentials, which suggests the results of the case study show
promise for a semi-automatic decision support system for identifying AM candidates.
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1 INTRODUCTION

As additive manufacturing (AM) continues to mature, so does the need for a quick and effective method
of determining how it should be applied in product design. In the past, these methods are naturally
developed and passed on as tacit knowledge. However, with the rapid advancement of AM technolo-
gies, identifying parts which are eligible for AM as well as gaining insight on what value it may add to
a product needs to be modelled in an objective and transferrable way. This paper presents a framework
for determining the candidacy of a part or assembly for AM, which has been developed based on its
economic feasibility and potential for AM-specific benefits. A set of selection criteria is created with
the goal of fast-screening in mind; that is specific data which can be automatically extracted from CAD
models and resource planning databases. These selection criteria are used in conjunction with the candi-
dacy framework to develop a semi-automated decision support system (DSS) for identifying candidates
for AM. The ultimate goal of the DSS is to provide users with a quick and simple decision on whether
their part, which is currently being manufactured via traditional methods, should be considered for AM.
A case study is then performed which utilizes said DSS in the fast-screening of parts to determine where
AM is economically feasible and where it may provide significant value-added potentials.

2 BACKGROUND

There are well defined rules for selecting a specific traditional manufacturing (TM) process (Lovatt and
Shercliff, 1998), but making the choice between TM and AM is still a grey area for many organizations.
Determining what makes a part eligible for AM is a relatively new area of research, and authors have
taken a variety of approaches in finding the best method for evaluation. Because AM introduces new
capabilities that are unknown to TM methods, AM breaks many of the established rules and guidelines
developed for TM. While there are typically less restrictions on designers when utilizing AM, it is
not simply a universal solution, and industries require support to know when and how AM should be
applied. Therefore, comprehensive analysis of part candidacy for AM should not be limited to geometric
considerations and should weigh the cost and value-added trade off.

Klahn et al. (2014) identified four criteria to determine product components eligible for re-design; these
criteria are “integrated design”, “individualization”, “lightweight design”, and “efficient design”. While
each of these are important considerations when assessing a product for AM potential, a more detailed
breakdown of AM potentials can be found in the joint ISO/ASTM standard which outlines design guide-
lines for AM (ISO/ASTM, 2017). This method of criteria analysis focuses only on areas where AM will
succeed, and fails to address what makes AM a poor choice for a specific part, therefore not rejecting
parts with obvious limitations. Ultimately, the identification of a potential candidate for AM should be
based on a more comprehensive assessment of the supply chain and other economic factors in addition
to the potential benefits of AM.

Senvol outlined seven supply chain scenarios, as shown in Table 1, in which AM may be cost effective.
These scenarios cover manufacturing expense, lead time, inventory costs, sourcing, remote operations,
import/export costs, and functionality (Senvol LLC, n.d.). If a part falls into one or more of the scenarios,
AM should be explored further, however, if a part fails to meet any of the scenarios, it will most likely
not be cost effective. These scenarios provide an easy, high level way of checking for AM candidacy that
allows companies to quickly sort through their part list. The benefit of this method is that the questions
are easy to understand and can be quickly assessed; however, the focus of this research aims to determine
the AM candidacy for parts in a more objective and efficient manner. Therefore, a mapping of this tacit
knowledge into concrete data structures must be determined so that data can be collected and analyzed;
for example, rather than simply asking if their import/export costs are high, asking for hard data will
allow a DSS to consider the exact number along with all of the other criteria in forming a decision.
Lindemann and his colleagues (Reiher et al., 2013; Lindemann et al., 2015; Reiher ef al., 2017) cre-
ated a Trade-off Methodology (TOM) to help companies perform a quick, but more comprehensive,
assessment of AM candidacy. The criteria was developed from industry input and domain expertise
so to identify the most important factors of AM candidacy such as material consumption, processing
time, economical aspects, size limitations, part complexity, part consolidation, and post processing. The
TOM is filled out first by a company employee and then by an AM expert to evaluate the employee’s
responses and apply weightings to each criteria. Each criteria is weighted on a scale from 1-5, and while
definitions of each rating are often provided, there is still a significant amount of subjectivity introduced
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Table 1. Seven scenarios where AM should be considered

Scenario Description

Do you have parts that are expensive because they are complex, have high fixed costs (e.g.
tooling), or are produced in low volumes? AM may be more cost effective.

Does it take too long to obtain certain parts? Are your downtime costs extremely high? Do
you want to increase speed to market? Using AM, you can often get parts more quickly.
Do you overstock or understock? Do you struggle with long-tail or obsolete parts? AM can
allow for on-demand production, thus reducing inventory.

Are any of your critical parts sole-sourced? This poses a supply chain risk. By qualifying
a part for AM, you will no longer by completely reliant on one supplier.

Do you operate in remote locations where it is difficult, time consuming, or expensive to
ship parts? AM may allow you to manufacture certain parts onsite.

Do you pay substantial import/export costs on parts simply because of the location of your
business unit and/or your supplier? Onsite production by AM can eliminate these costs.
With AM, it is possible to redesign a part to improve performance beyond what was
previously possible.

Expensive to manufacture

Long lead times

High inventory costs

Sole-sourced from suppliers

Remote locations

High import/export costs

Improved functionality

by the types of questions asked, as well as requiring an expert to analyze the questionnaire. This opens
up the process to interpretation based on the expert’s past experience and biases and the employee’s
idea of each criteria (Kruse ef al., 2017). Allowing the decision to be formed based on the opinion of a
single expert fails to provide the user with an objective result. Machine learning can be used to improve
the subjectivity of their methods and create a more streamlined process. Reducing the amount of input
required by an AM expert in the early stages allows their expertise to be saved for later on in the process
when the decisions being made are less easily automated by a computer program.

Yao et al. (2017) introduced a hybrid machine learning recommendation system based on a design
feature database to automatically associate parts with AM potentials. Design features were manually
extracted based on engineering requirements from past instances and the targeted project. These studies
are helpful in identifying parts for part-level AM applications such as lightweight and customization,
but they fall short of handling assemblies. By restricting the system to not include assemblies, one of the
largest AM potentials, part consolidation, can never be considered. This method also limits the amount
of benefit to be gained by other potentials which are often used in conjunction with part consolidation,
such as light-weighting.

Yang and Zhao (2018) proposed a new set of candidacy rules to support the identification of part candi-
dates for part consolidation. The automation of the candidacy detection is automated in their following
works Yang et al. (2018a,b) with the consideration of modularization and cost. Their methods are spe-
cific for part consolidation potential and it requires a prerequisite of clearly defined mutual part relations
which impose difficulties for large-scale products/systems. To generalize the part selection for all types
of AM-enabled benefits and make the screening process more objective and cost-efficient, the work in
this paper is developed. To generalize part selection for all types of AM-enabled benefits and make
the screening process more objective and cost-efficient, an automated DSS is required to aid non-AM
experts in finding part candidates before design for AM take place by AM experts.

3 DEVELOPING THE CANDIDATE SELECTION FRAMEWORK

A framework is proposed to enable more comprehensive, objective, and cost-efficient selection of part
candidates for AM applications. The first and most important step in the framework is to derive the
candidate selection criteria which can be used to identify parts to be considered for AM. A combination
of criteria developed from TM metrics, AM metrics, and related literature are developed and filtered
to determine if they meet the requirements for a fast-screening tool, this process is discussed further
in the following section. Secondly, a database of parts and assemblies needs to be developed and each
instanced needs to be assessed for AM potential and labelled according to the selection criteria. Then,
when a new part or assembly needs to be assessed for AM candidacy, the same selection criteria will be
extracted from it and fed to the decision model. The decision model will then use the labelled database
of historical data to form the final AM candidacy decision. This process, as shown in Figure 1, can be
repeated until all of the desired parts have been assessed. The process can be broken down into three
major steps: the derivation of the selection criteria, the extraction and labelling of data to match the
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criteria, and forming the final decision via the DSS. This section of the paper will walk through the
process shown in Figure 1 and explain how each step is carried out.

™ AM Related
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Figure 1. Candidate selection framework

3.1 Derivation of candidate selection criteria

The first step in developing the selection criteria was to perform a comprehensive analysis of factors
which may affect the decision to manufacture a part using AM. These initial factors were formed based
on a combination of both TM-specific metrics and AM-specific metrics.

Choosing criteria which are driven by data and not open to interpretation by the user are important for the
DSS to remain unbiased. Criteria which are easily obtained through enterprise resource planning (ERP)
databases and CAD drawings take highest priority as these can be mined quickly and further increase
the amount of automation allowed by the DSS. Each category in the initial analysis of AM candidate
selection (Figure 2) will now be examined to determine which are appropriate for a fast-screening AM
DSS.

3.1.1 Geometric complexity

There is a significant difference between how TM and AM respond to geometric complexity, and it fol-
lows that this disparity makes the complexity of a part a good indicator of which manufacturing method
should be used. With TM, as complexity increases, the manufacturing cost increases and manufactura-
bility decreases. However, complexity has a much lesser effect on the cost of AM parts, and has led to
the term “complexity for free” being used to describe this AM potential. Therefore, parts of great com-
plexity should naturally be considered to have greater AM potential, as AM allows one to keep many
of the complexities of a part without needing to sacrifice features for manufacturability. Given a design
model, there are two methods for determining its complexity or manufacturability: feature-based and
feature-free (Li, 2015). The geometric complexity criteria shown in Figure 2 very much represent the
more traditional feature-based analysis. However, in this research the feature-free method is ultimately
considered as it facilitates a quicker determination of complexity; all that is required is the part volume,
part surface area, and bounding box volume. Valentan et al. (2008) found that a reasonable determina-
tion of complexity could be found using three different ratios: part volume to part surface area, bounding
box volume to part surface area, and bounding box volume to part volume. Together these simple met-
rics give a good idea of geometric complexity, and can also be useful in determining the lightweighting
potential of a part, as discussed in the next section. Another benefit of the feature-free method of com-
plexity analysis is that the data required can either be automatically extracted from a design model, or
when a design model is not available, manually entered by the user. The ease of obtaining these values
allows all three to be used as a combined criteria for AM candidate detection.
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Figure 2. Initial analysis of AM candidate selection criteria

3.1.2 AM potentials

AM allows a unique set of value-added potentials which can often compensate for some of the higher
costs associated with AM. These can be defined as “lightweight potential”, “customization potential”,
“potential for internal channels/structures”, “functional integration potential”, “potential for designed
surface structures”, and “specific material options (hybrid materials, ...)” (ISO/ASTM, 2017). These
potentials could be used as selection criteria for AM eligibility, since if a user wants to take advantage
of an AM-specific potential, the likelihood that that part should be considered increases significantly.
However, they were ultimately not chosen to be directly part of the criteria as the user operating the
DSS need not be an AM expert and may not be familiar with AM potentials and where they can be
applied. Instead, each individual potential is an output of the DSS, with a combination of automatically-
and user-completed questions in the criteria helping to form the decision. This facilitates the DSS not
only being able to identify if printing the part seems economically feasible, but what AM potentials one
should consider when redesigning the part.

A part that is optimized for TM will seldom see any economic benefits when directly switched AM,
except in certain cases such as small batch size. The addition of these unique AM potentials allows the
original part to achieve great enhancements when redesigned. The decision to use AM will ultimately
depend on the trade-off between new or optimized features and product cost; something that is unique
to each company and must be determined at a later stage in the decision process.

3.1.3 Economical considerations

The initial criteria in this section were largely derived from well-defined TM productivity metrics
(Huang et al., 2002). However, once more abstract metrics were considered, such as those outlined
in Table 1, the final criteria chosen became a hybrid of both TM and AM metrics. These criteria were
selected as production costs, batch size, lead time, inventory costs, sole-sourced from suppliers, and
import/export costs. TM metrics were chosen as they present potential weak spots for AM (e.g. batch
size) and AM metrics were chosen which present potential benefits not accessible to TM (e.g. lower
demand on inventory backlog).

3.1.4 Supply chain & sustainability

Both the supply chain and sustainability categories were highly related to the economic considerations,
and were therefore absorbed into the “economic analysis™ category for the final criteria. For example,
if the import/export costs of a TM part are very high, there would be a good potential for exploring a
decentralized supply chain. Then, having more localized part manufacturing would decrease transporta-
tion and packaging costs as well as negative environmental effects. The questions in this category were
difficult to answer, as the user of the DSS may not be familiar with how each may affect their part. By
obtaining information about import/export and inventory costs, the questions in this category can be
answered indirectly, and later be interpreted by the decision model.
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3.1.5 Management & company requirements

The management section of the initial AM candidate selection criteria was designed to consider con-
cerns such as staff knowledge of AM and development deadlines, and the company requirements section
was designed to highlight areas where AM currently struggles when compared to TM such as surface
finish and fatigue. Ultimately, the criteria from these sections were found to be ineffective in determin-
ing AM potential, or too abstract to effectively capture in an objective way. For example, while AM can
improve time-to-market and lead to shorter development time (Muir and Haddud, 2018), the purpose
of this screening is to find parts within a company which are already being manufactured through tra-
ditional methods which may have cost savings or other potentials when switched to AM. Development
deadlines are much more of a concern for new designs and need not be considered in a quick screen-
ing process. With respect to the company requirements category, it was deemed ineffective to consider
something like surface finish in the initial screening stage as there are both ways to achieve the desired
properties through AM, and there is the potential that a redesign of the part or assembly could lead to
the requirements being fulfilled in another way.

Table 2. Summary of part selection criteria for fast-screening of AM candidacy

Selection Criteria | Units | Source
Economic Analysis
Production costs $ /part | ERP
Batch size # of parts | ERP
Inventory costs $ ERP
Import/export costs $ ERP
Sole-sourced from suppliers? Y /N ERP
AM Potentials Analysis
Does the part contain internal channels/structures? Y /N | User
Would the part benefit from enhanced cooling? Y /N | User
Number of components # CAD
Number of fasteners # User
Number of assembly interfaces # User
Are there similar parts with slight modifications? Y /N | User
Does the part require human body shape compliance? Y /N | User

3.2 Extracting and labelling the data

Expert analysis of as many traditionally manufactured parts as possible forms a knowledge base of the
unique circumstances which give a part AM potential or lack thereof. Similar to how a human would
learn and become an expert in any domain, the more exposure the DSS has to a variety of parts with
differing manufacturing processes, sizes, shapes, complexities, etc., the more successful it will be in
analyzing future parts. The experts analyze each part based on the developed selection criteria and
make their decisions according to the list in Table 3. This labelled data can then serve as the input to
the DSS.

Table 3. AM eligibility decision

Candidacy Decision

Economic Analysis
Economically feasible

AM Potentials Analysis

Potential for lightweighting
Potential for customization
Potential for internal channels/structures
Potential for part consolidation
Potential for designed surface structures
Potential for specific material options
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3.3 Choosing the decision model

Machine learning is a promising solution to the problem of subjectivity in part selection as it can elimi-
nate the need for experts to make the final decision on an individual part’s potential for AM. Expert input
is still required to create the database on which an algorithm forms its decision, but there are established
methods which can be applied to reduce human bias in this data collection. Much of the industry input
gathered is valuable and can be consolidated and altered to decrease subjectivity within this research.
Current methods of evaluating a part’s AM eligibility given a set of criteria either rely on AM experts
to form the final decision, or a simple tally of the results to be compared with an acceptance threshold.
As discussed, relying on AM experts is expensive and opens the door to the decision being biased by
the expert’s personal experience. On the other hand, while tallying results is less open to bias, it fails
to capture the complex relationships between criteria. When provided with information-rich data that
has been modelled in such a way to maximize domain knowledge, machine learning can perform very
well in automatically finding the complex relationships that make up a model. For example, the Decision
Tree algorithm forms a chain of if-else decisions to separate the data into classes; the deeper the tree, the
more complex the decision model (Bishop, 2006). Then, the tree can be “pruned” to prevent overfitting
on the training set. To ensure quality data, bias is even further reduced by designing the questions
in such a way that there is seldom a subjective response. When a response must rely on a designer’s
opinion, the training set can be labelled by multiple designers to make sure the result is in agreement
with the norm.

The model will return a list of parts which return true for any of the candidacy decisions shown in
Table 3. Any positive response is returned because while a part may not economically feasible to be
printed in its current state, it may see different results after being redesigned for AM. In other words,
when a part shows no AM potential, it is disregarded; however, when it shows any AM potential, it
is identified so that it can be analyzed by an expert in a more complete way. This method eliminated
experts wasting time identifying parts which have been determined to show no AM potential.

4 CASE STUDY

To determine the feasibility of using machine learning to find AM part candidates, a preliminary case
study is performed. In order to test the DSS, a database had to first be developed labelled according
to the criteria described above in Table 2, then the machine learning model had to be trained on said
data. When data from ERP databases or CAD drawings are unavailable, the user is asked to input
them manually. The current work is focused on establishing the comprehensive set of criteria and test
the feasibility of applying general ML models. Future research will be on finding more efficient and
domain-specific ML models.

4.1 Database structure

The database contains approximately 120 training instances of varying parts and assemblies curated
from various resources including parts from other projects at McGill University and online repositories
like GrabCAD. An example entry is shown in Table 4.

4.1.1 Missing data

Much of the information required for the economic analysis must be obtained from protected ERP
databases, and is inaccessible at this time. To mitigate this, the SolidWorks costing tool was used to gen-
erate a rough estimate for the cost of manufacturing each part via machining and then AM. Comparing
these costs along with an estimated lead time is what formed the economic feasibility decision.

4.2 Training

Six different classifier algorithms from the sklearn python library (skl, n.d.) were trained on the database
to determine which yielded the highest accuracy: Logistic Regression (LR), Linear Discriminant Anal-
ysis (LDA), K Nearest Neighbors (KNN), Decision Tree (DT), Naive Bayes (NB), and Support Vector
Machine (SVM). These algorithms, as well as sklearn, are commonly known and widely used in the
machine learning community. Detailed information on the mathematics behind each classifier can be
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Table 4. Example database training entry

Image
b4
>
-
Geometric Costs & Economic Considerations Potential

Volume  463.26cm> Batch Size 100 parts Contains internal channels/structures? No
SA 539.93cm? Production $212.48/part Would benefit from conformal cooling? No
BB () 17.85cm Lead Time 30 days Number of components 1
BB(w) 11.10cm Number of fasteners N/A
BB (h) 9.22cm Number of assembly interfaces N/A

Similar parts with slight modifications? No

Requires human body shape compliance? No

found in a variety of introduction to ML texts (Hastie et al., 2001; Bishop, 2006). The algorithms men-
tioned can be considered the baseline for testing ML methods, and future development of this research
will involve a more in depth assessment of the ML method chosen.

Given the training set of 120, 10% of the samples were set aside for cross validation. The DT classifier
consistently outperformed the others, scoring >90% accuracy on all tests, and was therefore chosen as
the classifier used for testing. This is likely due to its ability to capture complex relationships between
criteria. An example of the training results is shown below in Table 5. In some tests, the classifiers reach
100% accuracy in training, testing, or both sets. A high testing score can be concerning as it suggests
the model may be overfitting, however, the high accuracy in the test set suggests that this is not of issue.
These extremely high scores may be caused by the training database not containing a diverse enough

set of parts.
Table 5. ML Training Results
Classifier | Training Set Accuracy | Test Set Accuracy
LR 0.9285 0.9285
LDA 0.8809 0.9285
KNN 0.8809 0.8571
DT 1.0 1.0
NB 0.8333 0.6428
SVM 0.976 1.0
4.3 Testing

Using the model generated from the DT classifier, a test part was evaluated that had not previously been
seen by the algorithm. The part chosen was from GE’s “Airplane Bearing Bracket Challenge” conducted
through GrabCAD. The purpose of the challenge was to redesign the airplane bearing bracket for AM
focusing on weight and strength improvements. This part was chosen as it is a clear example of a part
that should be further considered for AM, and the machine learning algorithm should therefore be able
to identify that.

The results of the DSS are summarized in Table 7. The classifier model found that the airplane bearing
bracket would not be economically feasible given the current design, batch size, production cost, and
lead time. However, it did find that there is a lightweighting potential for the part. Therefore, while the
part is not economically feasible to print as-is, with AM reducing the raw material required to create it
and furthermore the costs associated with running, the part very well may be worth switching to AM
after being redesigned. Therefore, this part would be recommended to undergo a more thorough analysis
for AM.

686

https://doi.org/10.1017/dsi.2019.72 Published online by Cambridge University Press

ICED19


https://doi.org/10.1017/dsi.2019.72

Table 6. Test Entry: Airplane Bracket

Image
Geometric Costs & Economic Considerations Potential

Volume  109.67cm’ Batch Size 175 parts Contains internal channels/structures? No

SA 250.44cm? Production $37.98/part Would benefit from conformal cooling? No

BB () 12.34cm Lead Time 40 days Number of components 1

BB (w) 8.46cm Number of fasteners N/A

BB (h) 3.81cm Number of assembly interfaces N/A
Similar parts with slight modifications? No
Requires human body shape compliance? No

Table 7. AM eligibility decision

Output Result
Economically feasible No
Potential for lightweighting Yes
Potential for customization No
Potential for internal channels/structures | No
Potential for part consolidation No
Potential for designed surface structures No
Potential for specific material options No

5 DISCUSSION

The results presented in this paper show promise for a semi-automatic DSS for fast-screening of part

candidates for AM, however, some things need to be considered as research progresses:

1. The database requires a more diverse set of parts to represent all of the AM potentials. Currently
the most represented potential is lightweighting, with part consolidation in second. It follows that
lightweighting and part consolidation consistently have the highest accuracy scores. Part conso-
lation especially is seeing increased accuracy as the number of part consolidation-centric training
examples increases, and this suggests that as more data becomes available for the other potentials
their accuracy will increase as well.

2. The economic feasibility decision is currently solely based on estimations. However, with more
complete data from an industry partner, the criteria presented in Table 2 should be sufficient
in forming a good idea of economic feasibility. Obtaining this data and retesting for economic
feasibility is a goal of future research.

Adding more data to the part database and adjusting the criteria and model to perform better is the

main focus of future research. Currently the candidacy decisions are simply presented as yes or no; an

interesting addition to this research would be to incorporate a tiered or scaled output where each indi-
vidual candidacy decision is ranked (e.g. 90% lightweighting potential, low/medium/high lightweight
potential, etc). This would allow users to specify the threshold at which they’d like to consider parts.

For example, a company may be very new to AM and only wish to consider parts with a very high

lightweighting potential; having a tiered candidacy decision would allow the DSS to filter out any parts

that don’t meet the specific threshold.

6 CONCLUSIONS & FUTURE WORK

The AM candidate selection criteria presented in this paper provide an efficient way to quickly determine
where and how AM should be applied within an organization. The case study performed shows how
machine learning can be used to speed up the process while reducing bias in the final result. However,
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the case study could only be performed using a limited amount of data, as most of the criteria in the
Economic Considerations section is sensitive and protected information. Without information from the
ERP, the result can only be based on lead time and production cost. Future work in this area involves
obtaining more complete data so that a true analysis of economic feasibility can be conducted.
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