CORRIGENDUM AND ADDENDUM

to the paper

AN INFINITE CONSTRUCTION IN RING THEORY

by E. A. WHELAN

(Received 15 September, 1989; revised 26 March, 1990)

1. Point (3) of the main theorem of our paper [3, Theorem 1.1] is incorrect: this note corrects the main and consequential errors, and shows that (after minor adjustments) almost all the other results of [3], including the remaining seven points of Theorem 1.1, remain correct.

2. The theme of [3] was a family of functors $G_t(-)$, defined on the category of rings with unity for each cardinal t. For t = 0, 1, the results of [3] are unchanged, but, for $2 \le t < \infty$, major, and, for t infinite, less major, corrections are necessary; we therefore assume $2 \le t$. Terminology and notation are standard or as in [3], and I would like to thank A. W. Chatters and an anonymous referee for comments which prompted this correction.

3. In [3, p. 350] we defined the (functorial) ring extensions $R \to G_t(R)$ using an index set B such that $card(B) = b \ge t$ is an infinite cardinal, and a family T_1 of injective mappings $\sigma: B \to B$ such that:

(a) $\forall \sigma \in T_1$, card $(B \setminus \text{Im}(\sigma)) = b$;

(b) $\forall \sigma, \tau \in T_1$, $(\operatorname{Im}(\sigma) \cap \operatorname{Im}(\tau) \neq \emptyset) \Rightarrow \sigma = \tau$. To these axioms we must now add the stipulation (incorrectly treated as optional in [3]) that:

(c) if $t \ge 2$, $B = \bigcup_{\sigma \in T_1} \text{Im}(\sigma)$, i.e. $\{\text{Im}(\sigma) : \sigma \in T_1\}$ is a complete set of equivalence classes (each of cardinality b) in B.

4. As in [3], let H_1 be the unital monoid of injective mappings $B \to B$ generated by $T_1, H_2 = \{\text{Im}(\tau) : \tau \in H_1\}$. Additionally, for $n \ge 0$, let X_n be the subset of mappings comprising the products of exactly *n* elements of T_1 and $Y_n = \{\text{Im}(\tau) : \tau \in X_n\}$ for $n \ge 0$. Suppose that *M* is as in [3], that, for each $i \in B$ and each pair $I, J \in H_2, x_i \in M$, $E_{IJ} \in \text{End}(M_R)$ are also as in [3], and that the ring $G = G_t(R)$ is (still) the subring of $\text{End}(M_R)$ generated by $\mathbb{E} = \{E_{IJ}: I, J \in H_2\}$ plus the left multiplications by the elements of *R*.

5. From [3],

(a) each E_{μ} centralizes R;

- (b) $\mathbb{E} \cup \{0\}$ is multiplicatively closed;
- (c) $E_{BB} = 1_G = id_M;$

(d) for all $I, J \in \Omega$, $E_{BB} = E_{BI}E_{IJ}E_{JB}$;

(e) for all $I, J, K, L \in \Omega, E_{IJ}E_{KL} = 0$ if and only if $J \cap K = \emptyset$;

(f) if $t \ge 2$ then for every $n \ge 1$ and every $I \in X_n$ there exists $J \in X_n$ such that $I \cap J = \emptyset$.

Glasgow Math. J. 33 (1991) 121-123.

E. A. WHELAN

6. The error in Theorem 1.1(3) of [3] is the claim that $G = G_t(R)$ is left and right free on \mathbb{E} . To get a counter-example, take t = 2, $T_1 = \{\sigma, \tau\}$, and $I = \text{Im}(\sigma)$, $J = \text{Im}(\tau)$, so that $B = I \cup J$ and $I \cap J = \emptyset$. Then E_{II} , E_{JJ} are orthogonal idempotents and $E_{II} + E_{JJ} = E_{BB} = \text{id}_M$.

7. The purported proof of 'freeness' is at [3, 2.3], but depends crucially on [3, 2.2(d)], which claims without specific proof that a form of partial cancellation holds in \mathbb{E} . The following is an easy counter-example: for any $t \neq 0$, if $J \in \Omega$, $J \neq B$, then $E_{BJ}E_{JJ} = E_{BJ}E_{BB} = E_{BJ} \neq 0$.

8. For infinite t, the new assumption (c) of Section 3 makes no practical difference, but for $2 \le t < \infty$, it ensures that the idempotent $1 - \sum_{I \in Y_n} E_{II}$ is zero for every $n \ge 0$.

9. Whether t is finite or infinite, it is (now) easy to check that, for each $n \ge 0$, $E_{IJ}E_{KL} = E_{IL}\delta_{JK}$ for all I, J, K, $L \in Y_n$, i.e. each set $\mathbb{E}_n = \{E_{IJ}: I, J \in Y_n\}$ is a set of matrix units over R of degree t^n . Thus, using the condition mentioned in Section 8, we have the following result.

PROPOSITION 1. If $2 \le t < \infty$ and $n \ge 0$:

(a) the bimodule $G(n) = R\mathbb{E}_n = \mathbb{E}_n R$ is a subring of $G_t(R)$, isomophic (over R) to $M_{t^n}(R)$;

(b) $\mathbb{E}_n \subseteq \mathbb{Z}\mathbb{E}_{n+1};$

(c) hence $R = G(0) \subset G(1)$ ($\simeq M_t(R)$) $\subset \ldots \subset G(n)$ ($\simeq M_{t^n}(R)$) $\subset \ldots$ is a strictly ascending chain of subrings of $G = G_t(R)$, with union G.

10. It now follows easily that, for $t < \infty$, the other points of Theorem 1.1 of [3] are correct, as are the results of Section 4 and of Section 3 excluding 3(iv). The problems concern one-sided ideals, where our "proofs" made extensive but implicit use of freeness. Using the subrings G(n) it follows that, if $A \subset B$ are right ideals of R then $AG \subset BG$, and hence (correcting Sections 3(iv) and 5 of [3]) we have the following theorem.

THEOREM 2. (a) If R is right primitive then so is $G = G_t(R)$; (b) $J(R) = R \cap J(G)$ and J(G) = GJ(R) = J(R)G.

We do not know if the converse to Theorem 2(a) is true. Clearly, however, every prime of R is an intersection of maximal, right primitive or quasi-primitive ideals (see [4] for the latter definition) if and only if the same holds in $G_t(R)$.

11. Using the rings G(n) it is also possible for us to obtain information about the structure and isomorphism classes of the ring extensions $R \to G_t(R)$, $2 \le t \le \infty$. If $n \in \mathbb{N}$, let \sqrt{n} denote the product of the distinct prime divisors of n.

PROPOSITION 3. If $2 \le t \le \infty$ then $G_t(R)$ and $G_{\sqrt{t}}(R)$ are isomorphic as R-algebras to the tensor product (over R)

 $H = G_{p(1)}(R) \otimes G_{p(2)}(R) \otimes \ldots \otimes G_{p(r)}(R),$

where $p^{(1)}, p^{(2)}, \ldots, p^{(r)}$ are the distinct prime divisors of t.

123

We observe that each extension $R \to G_{p(i)}(R)$ has no non-trivial tensor product decomposition (over R), that the decomposition as a product of such indecomposables in Proposition 3 is unique, and that ring extensions resembling these have been discussed at various places in the literature, e.g. [1, p. 341]. Finally, we note that (contrary to [3, p. 351]) if $2 \le t(1)$, $t(2) \le \infty$ then $G_{t(1)}(R)$ embeds over R in $G_{t(2)}(R)$ if and only if $\sqrt{t}(1)$ divides $\sqrt{t}(2)$.

12. Apart from the error over cancellation (see Section 7 above), most of the rest of [3] remains correct in the case that t is infinite. In particular, "freeness" (Theorem 1.1(3) of [3]) is correct, and a proof may be found in Theorem 2.3 of [2]. For infinite t, the only further errors in [3] concern embeddings (where $G_{t(1)}(R)$ does not embed over R in $G_{t(2)}(R)$ when $2 \le t(1) < t(2)$ and t(2) is infinite), and the discussion of the Jacobson radical in [3, 5.1, 5.2 and 5.3]. This discussion becomes correct if the assertions just cited are amended to stipulate that t is infinite (though a drafting error must also be eliminated: in [3, 5.1] the term "right quasi-inverse" should read "right inverse".

13. By ([3, Theorem 1.1(8)], if $2 \le t$ each ring $G = G_t(R)$ has the pleasing property that every finitely generated one-sided G-module is cyclic. It is not difficult to establish the analogous property for bimodules: if t(1), t(2) > 1 are cardinals, S, R are rings and $G = G_{t(1)}(S)$, $H = G_{t(2)}(R)$ then every finitely generated H - G bimodule is principal (as a bimodule).

REFERENCES

1. M. K. Smith, Group actions on rings: some classical problems, in F. van Oystaeyen (ed.), *Methods in ring theory* (D. Reidel, 1984), 327–346.

2. E. A. Whelan, Another infinite construction in ring theory, submitted to Quart. J. Math. Oxford.

3. E. A. Whelan, An infinite construction in ring theory, *Glasgow Math. J.* 30 (1988), 349–357.

4. E. A. Whelan, The symmetric ring of quotients of a primitive ring is primitive, *Comm.* Algebra 18 (1990), 615-633.

School of Mathematics University of East Anglia Norwich, Norfolk NR4 7TJ England