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ON THE UNIQUENESS OF MARTINGALES
WITH CERTAIN PRESCRIBED MARGINALS

MICHAEL R. TEHRANCHI,∗ University of Cambridge

Abstract

This note contains two main results. (i) (Discrete time) Suppose that S is a martingale
whose marginal laws agree with a geometric simple random walk. (In financial terms,
let S be a risk-neutral asset price and suppose that the initial option prices agree with
the Cox–Ross–Rubinstein binomial tree model.) Then S is a geometric simple random
walk. (ii) (Continuous time) Suppose that S = S0eσX−σ 2〈X〉/2 is a continuous martingale
whose marginal laws agree with a geometric Brownian motion. (In financial terms, let
S be a risk-neutral asset price and suppose that the initial option prices agree with the
Black–Scholes model with volatility σ > 0.) Then there exists a Brownian motion W

such that Xt = Wt + o(t1/4+ε) as t ↑ ∞ for any ε > 0.
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1. Introduction

Let S = (St )t≥0 be a positive martingale. If we know the marginal laws of the random
variables St for all t ≥ 0, what can we say about the law of the whole process S? The
contribution of this note is two results which may offer some insight into this question. The
first result is in discrete time.

Theorem 1.1. Suppose that S is a positive martingale such that

P

(
St

S0
= ukdt−k

)
=

(
t

k

)
pk(1 − p)t−k for all 0 ≤ k ≤ t

for some constants 0 < d < 1 < u, where

p = 1 − d

u − d
.

Then log S is a simple random walk with transition probabilities

P

(
St

St−1
= u

)
= p = 1 − P

(
St

St−1
= d

)
.

The second result says that the continuous-time analogue of Theorem 1.1 is true in a certain
asymptotic sense.
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Theorem 1.2. Let S be a positive continuous martingale with respect to a right-continuous
complete filtration and such that

log

(
St

S0

)
∼ N

(
−σ 2t

2
, σ 2t

)
for all t ≥ 0

for some constant σ > 0. Let X be the continuous local martingale such that

St = S0eσXt−σ 2〈X〉t /2.

Then there exists a Brownian motion W defined on the same probability space such that

t−1/4−ε(Xt − Wt) → 0 almost surely (a.s.) as t ↑ ∞
for any ε > 0. In particular, the law of Xn converges weakly to the law of W as n ↑ ∞, where
Xn

t = n−1/2Xnt .

A natural question is whether the local martingale X introduced in Theorem 1.2 must be a
Brownian motion itself. Unfortunately, this note does not offer an answer. This question is
connected to the existence of so-called fake Brownian motions, but we will defer discussion of
this connection to Section 3 below.

The motivation for this study comes from finance. Suppose we model the time-t price of
an asset by the random variable St , and we suppose that the process S = (St )t≥0 is a positive
martingale under the risk-neutral probability measure. Now consider a European call option
written on this asset with maturity date T ≥ 0 and strike price K ≥ 0. There would be no
arbitrage in the market if the time-0 price C0(T , K) of this option is given by the formula

C0(T , K) = E[(ST − K)+].
That is to say, the marginal laws of the random variables St for t ≥ 0 determine the initial prices
of the options.

In practice, however, we do not need to compute option prices. Rather, we can observe the
initial stock price S0 and a collection of initial option prices {C0(Ti, Ki) : i ∈ I }. It goes without
saying that, in reality, the index set I is finite. However, since the number of observations is
large, it is mathematically convenient to pretend that {(Ti, Ki) : i ∈ I } = [0, ∞) × [0, ∞).
Since

D+C0(T , K) = −P(ST > K),

where D+ denotes the right-hand derivative in K , the collection of option prices determines
the marginal laws of the random variables St for all t ≥ 0.

From the discussion above, a fundamental modelling problem is to find a martingale S

consistent with these observed marginal laws. The first result in this direction is due to Kellerer
[14], who showed that there exists a Markovian martingale with a prescribed set of marginal
laws so long as those laws have constant mean and increase in the convex order. A concrete
formulation of this result is this: we are given a function C0 : [0, ∞) × [0, ∞) → [0, ∞) and
a number S0 > 0 such that

T �→ C0(T , K) is increasing for each K ≥ 0,

K �→ C0(T , K) is decreasing and convex for each T ≥ 0
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satisfying the boundary conditions

C0(0, K) = (S0 − K)+ and C0(∞, K) ≤ S0 for all K ≥ 0,

C0(T , 0) = S0, D+C0(T , 0) = −1, and C0(T , ∞) = 0 for all T ≥ 0.

Kellerer showed that there exists a positive martingale S such that C0(T , K) = E[(ST −K)+].
In the financial mathematics literature, Derman and Kani [6] and Dupire [7] considered the

problem of inferring asset price dynamics from call prices, in the discrete- and continuous-time
settings, respectively. An important observation of Dupire is that, subject to some regularity
assumptions on the initial call price surface C0, there exists a function σloc such that the solution
S of the stochastic differential equation

dSt = Stσloc(t, St ) dWt

is consistent with these option prices. (Herein W denotes a Brownian motion.) In particular,
the function σloc is given by the formula

σloc(T , K) =
(

2∂C0(T , K)/∂T

K2∂2C0(T , K)/∂K2

)1/2

.

Turning from existence to uniqueness, the alliteratively named paper of Madan and Yor [16]
contains a survey of other explicit constructions of Markovian martingales with prescribed
marginal laws. It should be noted, however, that apart from the local volatility model of Dupire,
the other constructions are necessarily discontinuous martingales. For one of the special cases
considered here, that S has the same marginals as geometric Brownian motion, discontinuous
constructions based on Skorokhod embeddings have been proposed by Xu [23].

With this financial context, we can interpret the main results of this note. Recall that the
Cox–Ross–Rubinstein [5] binomial tree model for a risk-neutral asset price is a discrete-time
martingale S such that log S is a simple random walk with transition probabilities

P

(
St

St−1
= u

)
= 1 − d

u − d
= 1 − P

(
St

St−1
= d

)

for some constants 0 < d < 1 < u. The content of Theorem 1.1 is that, perhaps surprisingly,
the full dynamics of the Cox–Ross–Rubinstein model (and, hence, the initial prices of path-
dependent and American-style options) are fully determined from the initial European call
option prices.

The continuous-time version of the binomial tree model is the Black–Scholes model, in
which the risk-neutral asset price is modelled as

St = S0eσWt−σ 2t/2.

In this case the call prices are given by the Black–Scholes formula

CBS(S0, T , K, σ) = S0�

(
log(S0/K)

σ
√

T
+ σ

√
T

2

)
− K�

(
log(S0/K)

σ
√

T
− σ

√
T

2

)
.

Note that inserting the Black–Scholes formula into Dupire’s formula yields σloc(T , K) = σ ,
as it should. The content of Theorem 1.2 is that if the asset price S has continuous trajectories
and if the observed option surface is consistent with the Black–Scholes model, then in a certain
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sense the price process S, when properly scaled over a very long time horizon, resembles a
geometric Brownian motion.

The motivation for studying the question of uniqueness comes from attempts to apply the
so-called HJM methodology to call price dynamics. The idea is to treat the dynamics of the
whole call price surface as fundamental, rather than derived from the dynamics of the underlying
asset price. See the articles of Carmona and Nadtochiy [3], [4], Kallsen and Krühner [13], and
Schweizer and Wissel [20], [21] for various partial implementations of this approach.

We now outline one version of this HJM programme, which is very close in spirit (if
not in detail) to [3]. The following argument also appears in [22]. Suppose that F =
(Ft (τ, m))t≥0, τ≥0, m≥0 is a random field evolving according to the stochastic partial differential
equation with boundary condition

dFt(τ, m) =
(

∂Ft

∂τ
− 1

2
m2 ∂2Ft

∂m2 σ 2
t + m

∂Bt

∂m
σt − Btσt

)
dt

+ Bt(τ, m) dWt on (τ, m) ∈ (0, ∞) × [0, ∞), (1.1a)

Ft(0, m) = (1 − m)+ on (τ, m) ∈ {0} × [0, ∞), (1.1b)

and suppose that S is a positive local martingale with dynamics

dSt = Stσt dWt,

where the random field B = (Bt (τ, m))t≥0, τ≥0, m≥0 and process σ = (σt )t≥0 are given. For
each fixed (T , K), define a new process by

Ct(T , K) = StFt

(
T − t,

K

St

)
.

Now, by an application of the generalised Itô formula (see Theorem 3.3.1 of [15] for instance)
we have

dCt(T , K) =
(

StBt

(
T − t,

K

St

)
+ StFt

(
T − t,

K

St

)
σt − K

∂Ft

∂m
σt

)
dWt.

Therefore, by construction, the process (Ct (T , K))t∈[0,T ] is a local martingale such that

CT (T , K) = (ST − K)+.

In particular, the market consisting of a stock with price S and a family I of call options with
prices (Ct (Ti, Ki))t∈[0,Ti ] for all i ∈ I is free of arbitrage opportunities. The advantage of this
formulation of a market model is that we may take the market observable initial stock price S0
and the initial normalized call surface F0(τ, m) = C0(T , mS0)/S0 as the model input.

To implement this programme, we need only formulate a set of easy-to-check sufficient
conditions on the initial prices S0, F0 and volatility processes σ , B such that (1.1) has a
financially meaningful solution. Unfortunately, life is not so simple. Indeed, (1.1) is very
poorly behaved. The first hint that there is a problem is that the operator −∂2/∂m2 does not
generate a continuous semigroup with respect to any reasonable function space. Actually, things
are even worse. If we insist that the local martingales S and C(T , K) are true martingales, we
have the formula

Ct(T , K) = E[(ST − K)+ | Ft ].
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Durrleman [8] proved that in this case the at-the-money implied volatility tends to the spot
volatility as T ↓ t , which in our notation translates into the condition

σt = √
2π lim

τ↓0

Ft(τ, 1)√
τ

.

In particular, the term − 1
2m2(∂2Ft/∂m2)σ 2

t is actually a cubic nonlinearity! But, from a
modelling perspective, we have the important observation that the stock price volatility process
σ is not a free input to (1.1), but rather it is derived from its solution. The remaining question
is, then, how much freedom is there to choose the call price volatility random field B?

It is hoped that the results of this note help to clarify where the bottleneck in this HJM
programme lies. For instance, if C0(T , K) = CBS(S0, T , K, σ0) for all (T , K) then
Corollary 3.1 below says that necessarily

1

t

∫ t

0
σ 2

s ds → σ 2
0 a.s. as t ↑ ∞.

That is to say, the initial call price surface constrains the possible dynamics of F , and in
particular, forces the long time average of the squared spot volatility to converge to the initial
squared implied volatility.

Remark 1.1. Note that in the original HJM framework, as proposed by Heath et al. [11], the
analogous problem does not arise. Recall that if we suppose the random field (ft (τ ))t≥0, τ≥0
evolves according to the HJM–Musiela equation (probably first appearing in this form in [17])

dft (τ ) =
(

∂ft

∂τ
+ bt (τ )

∫ τ

0
bt (u) du

)
dt + bt (τ ) dWt,

and define rt = ft (0) and Pt(T ) = exp[− ∫ T −t

0 ft (τ ) dτ ], then the process(
exp

[
−

∫ t

0
rs ds

]
Pt(T )

)
t∈[0,T ]

is a local martingale for each fixed T > 0. Interpreting f as the forward rate surface, r as
the spot volatility process, and P as the price of a zero-coupon bond, we see that we have a
no-arbitrage market model. Furthermore, since the operator ∂/∂τ does generate a nice
semigroup with respect to almost any function space of interest, we see that only very mild
conditions are needed on the random field b to ensure the existence of the financially meaningful
solution

ft (τ ) = f0(t + τ) +
∫ t

0
bs(τ + t − s)

∫ τ+t−s

0
bs(u) du ds +

∫ t

0
bs(τ + t − s) dWs

for any initial forward curve f0. See, for instance, the lecture notes [9] of Filipović for a
rigorous treatment of this equation.

Now, to carry the analogy further, suppose that the initial bond price curve P0 is consistent
with a model with constant interest rate ρ, so that P0(τ ) = e−ρτ or, equivalently, f0(τ ) = ρ

for all τ ≥ 0. Unlike the call option case discussed above, nothing can be concluded about the
long-time behaviour of the average t−1

∫ t

0 rs ds. For instance, consider the case when f0(τ ) = ρ

and bt (τ ) = γ e−λτ . It is straightforward to check the spot rate dynamics are of the Vasicek–
Hull–White [12] form

drt = λ(r̄(t) − rt ) dt + γ dWt,
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where the time-varying mean reversion level is r̄(t) = ρ + γ 2(1 − e−2λt )/2λ2. Since we can
write rt explicitly as

rt = ρ + γ 2

2λ2 (1 − e−λt )2 +
∫ t

0
γ e−λ(t−s) dWs,

a routine calculation involving the stochastic Fubini theorem and the Itô isometry shows that

1

t

∫ t

0
rs ds → ρ + γ 2

2λ2 in L2.

In particular, unlike the call option case considered above, the initial forward rate curve does
not perfectly predict the long-term average spot interest rate unless γ = 0, i.e. the interest rate
dynamics are trivial. This example seems to indicate that the HJM approach to call options
differs in a fundamental way from the original HJM approach to interest rate modelling.

The remainder of this short note is organised as follows. In Section 2 we prove Theorem 1.1.
In Section 3 we introduce the notion of an α-fake Brownian motion. We explore some of the
properties of these process, and, in particular, prove Theorem 1.2 above. Finally, in Section 4
we state and prove a few miscellaneous results on α-fake Brownian motions which might be
useful in either proving that all α-fake Brownian motions are true Brownian motions, or else,
finding an example of a non-Brownian α-fake Brownian motion.

2. The uniqueness of the Cox–Ross–Rubinstein model

This section is devoted to the proof of Theorem 1.1. We begin with a lemma.

Lemma 2.1. Let S be a positive martingale. If, for all t ≥ 1, the random variable St/St−1
takes values in the set {u, d} for some constants 0 < d < 1 < u, then log S is a simple random
walk with

P

(
St

St−1
= u

)
= 1 − d

u − d
= 1 − P

(
St

St−1
= d

)
.

Remark 2.1. Lemma 2.1 is well known. It says that the binomial tree model has exactly one
equivalent martingale measure, and so, by the second fundamental theorem of asset pricing, is
complete.

Proof of Lemma 2.1. Let F be the filtration relative to which S is a martingale. Since
St/St−1 can only take two values, the martingale property shows that

St−1 = E[St | Ft−1] = St−1uP

(
St

St−1
= u

∣∣∣∣ Ft−1

)
+ St−1dP

(
St

St−1
= d

∣∣∣∣ Ft−1

)
;

thus,

P

(
St

St−1
= u

∣∣∣∣ Ft−1

)
= 1 − d

u − d
= 1 − P

(
St

St−1
= d

∣∣∣∣ Ft−1

)
.

Since St/St−1 is manifestly independent of Ft−1, we conclude that log S is a random walk.

Now we are ready for the proof of Theorem 1.1.

Proof of Theorem 1.1. Since S1/S0 takes values in {u, d}, Lemma 2.1 yields

P(S1 = uS0) = 1 − d

u − d
= 1 − P(S1 = dS0).
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Now fix t ≥ 2 and let

pij = P(St = ujdt−j S0 | St−1 = uidt−1−iS0) for 0 ≤ i ≤ t − 1, 0 ≤ j ≤ t,

be the one-step transition probabilities. By Lemma 2.1, it is enough to show that

pij = 0 if j < i or j > i + 1.

For clarity in the calculations to come, we will use a change of notation:

q = 1 − d

u − 1
, r = u

d
⇐⇒ u = r(1 + q)

1 + qr
, d = 1 + q

1 + qr
.

Now we record the observation that

t∑
j=0

pij = 1 for all 0 ≤ i ≤ t − 1. (2.1)

The martingale property of S yields, in the new notation,

t∑
j=0

rjpij = ri 1 + qr

1 + q
for all 0 ≤ i ≤ t − 1, (2.2)

and the law of total probability and the prescribed marginal distributions of St and St−1 yield

t∑
i=0

(
t − 1

i

)
qipij =

(
t

j

)
qj 1

1 + q
for all 0 ≤ j ≤ t. (2.3)

We must show that the only nonnegative solution to (2.1), (2.2), and (2.3) is the random walk
transition probabilities

p̂ij =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1

1 + q
= u − 1

u − d
if j = i,

q

1 + q
= 1 − d

u − d
if j = i + 1,

0 otherwise.

To this end, introduce a generating function P by the formula

P(x, y) =
t−1∑
i=0

t∑
j=0

(
t − 1

i

)
pij x

iyj .

The functional counterpart to (2.1) is

P(x, 1) = (1 + x)t−1 for all x. (2.4)

Similarly, the counterpart of (2.2) is

P(x, r) = 1 + qr

1 + q
(1 + xr)t−1 for all x (2.5)
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and the counterpart of (2.3) is

P(q, y) = 1

1 + q
(1 + yq)t for all y. (2.6)

Now consider the polynomial

P̂ (x, y) =
t−1∑
i=0

t∑
j=0

(
t − 1

i

)
p̂ij x

iyj = 1

q + 1
(1 + yq)(1 + xy)t−1

generated by the geometric random walk transition probabilities (p̂ij )i,j . Of course, since a
geometric random walk with these transition probabilities is consistent with the martingale
property and the binomial marginals, the polynomial P̂ satisfies (2.4), (2.5), and (2.6).

Since P(x, y) − P̂ (x, y) is a polynomial of at most degree t − 1 in x and of degree t in y,
vanishing when x = q and y ∈ {1, r}, we can write

P(x, y) = P̂ (x, y) + (q − x)(1 − y)(r − y)

t−2∑
i=0

t−2∑
j=0

bi,j x
iyj . (2.7)

Our goal, then, is to show that bi,j = 0 for all 0 ≤ i ≤ t − 2, 0 ≤ j ≤ t − 2. This will be done
by induction.

First, we establish the base case. Matching coefficients of x0yj in (2.7) yields

p0,j = rb0,j − (1 + r)b0,j−1 + b0,j−2 for all 2 ≤ j ≤ t − 2,

p0,t−1 = −(1 + r)b0,t−2 + b0,t−3,

p0,t = b0,t−2.

First we show that the inequality

b0,j−1 ≥ rt−j − 1

rt−j−1 − 1
b0,j for all 1 ≤ j ≤ t − 2

holds by backward induction. The base case j = t − 2 is true since

b0,t−3 = (1 + r)b0,t−2 + p0,t−1 ≥ (1 + r)b0,t−2.

Now assuming that

b0,J−1 ≥ rt−J − 1

rt−J−1 − 1
b0,J

holds for some 2 ≤ J ≤ t − 2, we have

b0,J−2 = (1 + r)b0,J−1 − rb0,J + p0,J

≥ (1 + r)b0,J−1 − rb0,J

≥ (1 + r)b0,J−1 − r
rt−J−1 − 1

rt−J − 1
b0,J−1

= rt−J+1 − 1

rt−J − 1
b0,J−1,

establishing the inequality for j = J − 1 and completing the induction.
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It now follows by another induction and the fact that b0,t−2 = p0,t ≥ 0 that

0 ≤ r − 1

rt−j−1 − 1
b0,t−2 ≤ b0,j ≤ rt−j−1 − 1

rt−1 − 1
b0,0 for all 0 ≤ j ≤ t − 2. (2.8)

Now match the coefficients of xiy0 in (2.7):(
t − 1

i

)
pi,0 = rqbi,0 − rbi−1,0 for all 1 ≤ i ≤ t − 2, pt−1,0 = −rbt−2,0.

As before, using the fact that pi,0 ≥ 0 for all 0 ≤ i ≤ t − 1 and induction yields

0 ≥ qt−i−2bt−2,0 ≥ bi,0 ≥ q−ib0,0 for all 0 ≤ i ≤ t − 2. (2.9)

Inequalities (2.8) and (2.9) together imply that b0,0 = 0 and, hence,

bi,0 = b0,j = 0 for all 0 ≤ i ≤ t − 2, 0 ≤ j ≤ t − 2.

Now suppose that

bi,h = bh,j = 0 for all 0 ≤ i ≤ t − 2, 0 ≤ j ≤ t − 2, and 0 ≤ h ≤ k − 1,

for some 1 ≤ k ≤ t − 3. As before, we can conclude that

0 ≤ rbk,j − (1 + r)bk,j−1 + bk,j−2 for all 2 + k ≤ j ≤ t − 2,

0 ≤ −(1 + r)bk,t−2 + bk,t−3,

0 ≤ bk,t−2,

and

0 ≤ rqbi,k − rbi−1,k for all k + 1 ≤ i ≤ t − 2,

0 ≤ −rbt−2,k.

By the same argument as before we see that

bi,k = bk,j = 0 for all 0 ≤ i ≤ t − 2, 0 ≤ j ≤ t − 2,

concluding the induction.

Theorem 1.1 has an arithmetic version.

Theorem 2.1. Suppose that X is a martingale such that

P(Xt = 2k − t) =
(

t

k

)
2−t for all 0 ≤ k ≤ t.

Then X is a simple symmetric random walk.

The proof of the Theorem 1.1 can be adapted to this case. However, we present here a very
short and clever argument due to Chris Rogers [19].

https://doi.org/10.1239/jap/1371648961 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1371648961


566 M. R. TEHRANCHI

Proof of Theorem 2.1. First, note that the given law of Xt implies that E[Xt ] = 0 and
E[X2

t ] = t . Furthermore, since X is a square-integrable martingale, its increments are
uncorrelated. In particular, the Pythagorean formula says that

E[X2
t ] =

t∑
s=1

E[(Xs − Xs−1)
2].

This implies that E[(Xt − Xt−1)
2] = 1 for all t ≥ 1. However, since the random variables Xt

and Xt−1 take values in the disjoint sets {t, t−2, . . . , 2−t, −t} and {t−1, t−3, . . . , 3−t, 1−t},
respectively, we conclude that |Xt − Xt−1| ≥ 1 a.s. But, since E[(Xt − Xt−1)

2] = 1, we have
Xt − Xt−1 ∈ {−1, 1} a.s. By the same argument as the proof of Lemma 2.1, the martingale
property of X implies that X is a random walk.

3. Asymptotic uniqueness of the Black–Scholes model

In this section we will prove Theorem 1.2. However, rather than launching directly into the
proof, we begin with a definition.

Definition 3.1. An α-fake Brownian motion is a continuous local martingale X with respect to
a right-continuous complete filtration such that

Xt + α〈X〉t ∼ N(αt, t) for all t ≥ 0.

To see why it is convenient to offer Definition 3.1, note that if S = S0eσX−σ 2〈X〉/2 is a
continuous martingale such that

log

(
St

S0

)
= σX − σ 2〈X〉

2
∼ N

(
−σ 2t

2
, σ 2t

)
for all t ≥ 0,

as in the hypothesis of Theorem 1.2, then X is a −σ/2-fake Brownian motion.
The notion of fake Brownian motion was introduced recently by Oleszkiewicz [18],

corresponding to a 0-fake Brownian motion in the terminology above. (Actually, Oleszkiewicz
also insisted that a fake Brownian motion not be a true Brownian motion, while our definition of
α-fake Brownian motion does not.) A natural question is whether there are non-Brownian α-fake
Brownian motions. Hamza and Klebaner [10] gave several constructions for discontinuous
martingales with the same marginal laws as Brownian motion, but it seems thatAlbin [1] was the
first to give a construction of a non-Brownian 0-fake Brownian motion. Also, see Oleszkiewicz’s
paper for several other intuitive constructions, again when α = 0. Unfortunately, we do not
know if there are non-Brownian examples when α �= 0.

We now derive some properties of α-fake Brownian motions, which may have some
independent interest. Since we are concerned with the case when α �= 0, the following lemma
shows that we need only consider α = 1.

Lemma 3.1. Let X be an α-fake Brownian motion with respect to a filtration (Ft )t≥0. If α �= 0
then the process X̂ given by

X̂t = αXt/α2

is a 1-fake Brownian motion with respect to (Ft/α2)t≥0.
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Remark 3.1. Recall that our aim is to prove Theorem 1.2. In particular, the claim that
t−1/4−ε(Xt − Wt) → 0 for some Brownian motion W is equivalent to t−1/4−ε(X̂t − Ŵt ) → 0
for the Brownian motion Ŵt = αWt/α2 . In particular, there is no loss assuming that α = 1.

Proof of Lemma 3.1. Since Xs + α〈X〉s ∼ N(αs, s) by definition, α(Xs + α〈X〉s) ∼
N(α2s, α2s). The proof is concluded by noting that X̂t + 〈X̂〉t = αXs + α2〈X〉s , where
t = α2s.

The following lemma has an elementary proof, but is the key result underlying this study.

Lemma 3.2. Suppose that X is a 1-fake Brownian motion. Then, for all λ < 1
2 , we have

E[eλ〈X〉t ] ≤ eλt/(1−2λ)

for all t ≥ 0.

Proof. For all θ ∈ R, we have

E[eθ(Xt+〈Xt 〉)] = e(θ2/2+θ)t

for all t ≥ 0 since Xt ∼ N(t, t). Also, since eθXt−θ2〈X〉t /2 defines a positive local martingale,
and, hence, a supermartingale, we have

E[eθXt−θ2〈X〉t /2] ≤ 1

for all θ ∈ R and t ≥ 0. Hence, by Hölder’s inequality,

E[eλ〈X〉t ] = E[(e2λ(Xt+〈Xt 〉)/(1−2λ))(1−2λ)/(2−2λ)(e−2λXt−(2λ)2〈X〉t /2)1/(2−2λ)]
≤ E[e2λ(Xt+〈Xt 〉)/(1−2λ)](1−2λ)/(2−2λ)E[e−2λXt−(2λ)2〈X〉t /2]1/(2−2λ)

≤ eλt/(1−2λ).

Lemma 3.2 yields a useful quantitative estimate.

Lemma 3.3. Suppose that X is a 1-fake Brownian motion. Then, for all δ ≥ 0, the inequality

P(|〈X〉t − t | > δ) ≤ 2e−δ2/8(t+δ)

holds for all t ≥ 0.

Proof. By Lemma 3.2 and Markov’s inequality, we have, for 0 ≤ λ < 1
2 , the bound

P(〈X〉t − t > δ) ≤ E[eλ〈X〉t ]e−λ(t+δ) ≤ e−λ(t+δ−t/(1−2λ)) = e−(
√

t+δ−√
t)2/2

for all t > 0 and δ ≥ 0, where in the equality we set λ = 1
2 (1 − √

t/(t + δ)). Similarly, we
have

P(t − 〈X〉t > δ) ≤ E[e−λ〈X〉t ]eλ(t−δ) ≤ eλ(t−δ−t/(1+2λ)) = e−(
√

t−√
t−δ)2/2

for all 0 ≤ δ < t , where now λ = 1
2 (

√
t/(t − δ) − 1) > 0. Hence,

P(|〈X〉t − t | > δ) ≤ e−(
√

t+δ−√
t)2/2 + e−(

√
t−√

t−δ)2/2 ≤ 2e−δ2/8(δ+t),

since √
t − √

t − δ ≥ √
t + δ − √

t ≥ δ

2
√

t + δ
.

https://doi.org/10.1239/jap/1371648961 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1371648961


568 M. R. TEHRANCHI

Corollary 3.1. If X is a 1-fake Brownian motion then

〈X〉t
t

→ 1 a.s. as t ↑ ∞.

Proof. Fix a δ > 0, and note that Lemma 3.3 says that

P

(∣∣∣∣ 〈X〉n
n

− 1

∣∣∣∣ > δ

)
≤ 2e−nδ2/8(1+δ).

Since the right-hand side is summable, the first Borel–Cantelli lemma implies that

lim sup
n

∣∣∣∣ 〈X〉n
n

− 1

∣∣∣∣ ≤ δ a.s.

and, since δ > 0 is arbitrary,
〈X〉n

n
→ 1 a.s.

Now, for n ≤ t ≤ n + 1, we have

〈X〉n
n

(
n

n + 1

)
≤ 〈X〉t

t
≤ 〈X〉(n+1)

n + 1

(
n + 1

n

)
a.s.,

so that 〈X〉t
t

→ 1 a.s.,

as claimed.

The pointwise estimate of Lemma 3.3 can be strengthened to a uniform estimate.

Lemma 3.4. Suppose that X is a 1-fake Brownian motion. Then, for all δ ≥ 0, the inequality

P

(
max

0≤t≤T
|〈X〉t − t | > δ

)
≤ 2

(
1 + 2T

δ

)
e−δ2/32(T +δ)

holds for all T > 0.

Proof. Now note that⋂
0≤k≤T/δ+1

{|〈X〉kδ − kδ| ≤ δ} ⊆
{

max
0≤t≤T

|〈X〉t − t | ≤ 2δ
}
,

since if kδ ≤ t ≤ (k + 1)δ and 〈X〉(k+1)δ − (k + 1)δ ≤ δ then

〈X〉t − t ≤ 〈X〉(k+1)δ − kδ ≤ 2δ

and if 〈X〉kδ − kδ ≥ −δ then

〈X〉t − t ≥ 〈X〉kδ − (k + 1)δ ≥ −2δ.

Therefore, we have the estimate

P

(
max

0≤t≤T
|〈X〉t − t | > 2δ

)
≤

∑
0≤k≤T/δ+1

P(|〈X〉kδ − kδ| > δ)

≤ 2

(
1 + T

δ

)
e−δ2/8(T +2δ),

where we have used Lemma 3.3 and bounded the sum by the largest term.
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Proof of Theorem 1.2. Let X be a 1-fake Brownian motion. By Corollary 3.1, we have
〈X〉t /t → 1 a.s. and, in particular, 〈X〉t → +∞ a.s. The Dambis–Dubins–Schwarz theorem
yields the existence of a Brownian motion W such that Xt = W〈X〉t .

Fix ε > 0. Our goal is to show that, for all k > 0, the probabilities

P

(
n−1/4−ε max

n≤t≤n+1
|Xt − Wt | > k

)

are summable. Indeed, by the first Borel–Cantelli lemma we would then have

n−1/4−ε max
n≤t≤n+1

|Xt − Wt | → 0 a.s. as n ↑ ∞,

proving the first claim.
Now note that

P

(
n−1/4−ε max

n≤t≤n+1
|Xt − Wt | > k

)
≤ P

(
max

0≤t≤n+1
|〈X〉t − t | > n1/2+ε

)
+ P

(
n−1/4−ε max

n≤t≤n+1
|Xt − Wt | > k, max

0≤t≤n+1
|〈X〉t − t | ≤ n1/2+ε

)
.

We can use Lemma 3.4 to bound the first term by

P

(
max

0≤t≤n+1
|〈X〉t − t | > n1/2+ε

)
≤ 2 exp

(
−n2ε 1

32(1 + 2n−1/2+ε)

)
,

which is summable. The second term is bounded by

P

(
n−1/4−ε max

n≤t≤n+1
|W〈X〉t − Wt | > k, max

0≤t≤n+1
|〈X〉t − t | ≤ n1/2+ε

)
≤ P

(
n−1/4−ε max

n≤t≤n+1, |s−t |≤n1/2+ε
|Ws − Wt | > k

)
.

The right-hand side is bounded by

P

(
max

0≤t−n≤1
|Wt − Wn| > 1

2n1/4+εk
)

+ P

(
max

|s−n|≤n1/2+ε+1
|Ws − Wn| > 1

2n1/4+εk
)
.

It is clear that the second term dominates the first. By the stationarity of the increments of
Brownian motion, the second term is bound by

2P

(
max

0≤s≤4n1/2+ε
|Ws | > 1

2n1/4+εk
)

= 2P

(
max

0≤s≤1
|Ws | > 1

4nε/2k
)

by Brownian scaling. The right-hand side decays like e−nεC for some constant C > 0, and, in
particular, is summable. The proof that Xt = Wt + o(t1/4+ε) a.s. is concluded.

As for the second claim, we first show that the finite-dimensional distributions of Xn
t =

n−1/2Xnt converge to those of Brownian motion. Let

Yt = (t + 1)−1/2(Xt − Wt),
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so that Yt → 0 a.s. as t ↑ ∞. Then

Xn
t = Wn

t +
√

t + 1

n
Ynt ,

where Wn
t = n−1/2Wnt is a Brownian motion. For any t1, . . . , tk , we have

(Xn
t1

− Wn
t1
, . . . , Xn

tk
− Wn

tk
) =

(√
t1 + 1

n
Ynt1 , . . . ,

√
tk + 1

n
Yntk

)
→ 0 a.s.,

and of course the random vector (Wn
t1
, . . . , Wn

tk
) has the same law as (Wt1 , . . . , Wtk ). Therefore,

(Xn
t1
, . . . , Xn

tk
) → (Wt1 , . . . , Wtk ) in distribution,

by Theorem 3.1 of [2].
Finally, we will show that the law of the family of processes (Xn)n is tight. Fix a time

horizon T > 0 and k > 0. Then we have the bound

P

(
max

s,t∈[0,T ], |s−t |≤δ
|Xn

t − Xn
s | > k

)
≤ P

(
max

s,t∈[0,T ], |s−t |≤δ
|Wn

t − Wn
s | > 1

2k
)

+ P

(
max

t∈[0,T ]

(
t + 1

n

)1/2

|Ynt | >
1

2
k

)
.

We have already shown that the second term on the right vanishes as n ↑ ∞. Hence,

lim sup
n↑∞

P

(
max

s,t∈[0,T ], |s−t |≤δ
|Xn

t − Xn
s | > k

)
≤ P

(
max

s,t∈[0,T ], |s−t |≤δ
|Wt − Ws | > 1

2k
)

→ 0

as δ ↓ 0 by the tightness of Wiener measure. The proof is now complete by Theorem 7.5 of [2].

4. α-fake miscellany

Now that we have proven the main results, we conclude with some miscellaneous
propositions regarding α-fake Brownian motions. The first shows that the case α = 0 is
very different to α �= 0. In particular, in place of Corollary 3.1 above we have the following.

Proposition 4.1. There exists a 0-fake Brownian motion X such that

lim inf
t↑∞

〈X〉t
t

= 0 a.s. as t ↑ ∞.

Proof. This simple construction is due to Oleszkiewicz [18]. Let B and Y be independent
Brownian motions, and let Z be an N(0, 1) random variable independent of B and Y . Define
a continuous process X by

Xt =
{

Yt if 0 ≤ t ≤ 1,

[Y1 cos(Blog t ) + Z sin(Blog t )]√t if t > 1.
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It is straightforward to check that X is a martingale in its own filtration. Since Xt ∼ N(0, t)

for all t ≥ 0 is a 0-fake Brownian motion. Note that its quadratic variation is given for t ≥ 1
by the formula

〈X〉t = 1 +
∫ t

1
[−Y1 sin(Blog s) + Z cos(Blog s)]2 ds

= 1 + R2
∫ log t

0
[sin(Bu − θ)]2eu du,

where R =
√

Y 2
1 + Z2 and θ = tan−1(Z/Y1). Fix ε > 0, and define a sequence of stopping

times by T0 = 0, and

T2k−1 = inf
{
u ≥ T2k−2 : | sin(Bu − θ)| < 1

2ε
}

for k ≥ 1,

T2k = inf{u ≥ T2k−1 : | sin(Bu − θ)| > ε} for k ≥ 1,

and note that

e−T2k

∫ T2k

0
[sin(Bu − θ)]2eu du ≤ e−T2k

∫ T2k−1

0
eu du + e−T2k

∫ T2k

T2k−1

ε2eu du

≤ e−(T2k−T2k−1) + ε2.

By the strong Markov property of Brownian motion, the random variables (T2k −T2k−1)k≥1 are
identically distributed and conditionally independent given θ . Since P(T2 − T1 > N | θ) > 0
a.s. for all N , the second Borel–Cantelli lemma shows that, a.s.,

lim inf
t↑∞

〈X〉t
t

≤ lim inf
k↑∞ e−T2k 〈X〉eT2k ≤ ε2R2.

Since ε > 0 was arbitrary, we are done.

The remainder of the note is concerned with the α �= 0 case. The next result shows that
α-Brownian motions have good integrability properties.

Proposition 4.2. Suppose that X is a 1-fake Brownian motion. Then X is a true martingale
such that E[〈X〉pt ] < ∞ and E[sup0≤s≤t |Xs |p] < ∞ for all t ≥ 0 and p ≥ 1.

Proof. The finite exponential moments of 〈X〉t from Lemma 3.2 imply that E[〈X〉pt ] < ∞
for all t ≥ 0 and p ≥ 1. The result follows from the Burkholder–Davis–Gundy inequality.

In Corollary 3.1 we have proven that 〈X〉t ∼ t for large t . Here we refine this result.

Proposition 4.3. Suppose that X is a 1-fake Brownian motion. Then

E[〈X〉t ] = t, var(〈X〉t ) ≤ 4t.

Proof. Since Xt + 〈X〉t ∼ N(t, t) by assumption, we know that

E[Xt + 〈X〉t ] = t.

But, by Proposition 4.2 we know that X is not only a local martingale, but a true martingale.
Hence, E[Xt ] = X0 = 0, and

E[〈X〉t ] = t.
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Now, by Lemma 3.2, the random variable 〈X〉t has a moment generating function which is
finite on an open neighbourhood of the origin. Hence, we can expand both sides of

E[eλ〈X〉t ] ≤ eλt/(1−2λ)

in powers of λ and compare terms. Since the λ0 and λ1 terms agree, we can conclude from the
coefficient of λ2 that

E[〈X〉2
t ] ≤ t2 + 4t.

The next two results lead to sufficient conditions that a 1-fake Brownian motion is a true
Brownian motion.

Proposition 4.4. Let X be a 1-fake Brownian motion. Then

var(〈X〉t ) = − 2
3E[X3

t ].

In particular, X is a true Brownian motion if and only if E[X3
t ] ≥ 0 for all t ≥ 0.

Remark 4.1. Theorem 4.1 of [22] can be rephrased as follows: if X is a 1-fake Brownian
motion such that the conditional distribution of the increments Xt − Xs given Fs is symmetric
for all 0 ≤ s ≤ t , then X is a true Brownian motion. Note that Proposition 4.4 above is a
generalisation of this result, replacing conditional symmetry of the increments with marginal
symmetry of Xt . In particular, if X is both a 1- and a 0-fake Brownian motion then X is a true
Brownian motion. This fact has already been noted in [23].

In fact, by Lemma 3.1, we can rewrite Proposition 4.4 for a general α-fake Brownian motion
Y as

E[Y 3
t ] = − 3

2αvar(〈Y 〉t ).
Johannes Ruf has observed that the above equality implies that if Y is both an α1- and an α2-fake
Brownian motion, for α1 �= α2, then Y is a true Brownian motion.

Proof of Proposition 4.4. Since Xt + 〈X〉t ∼ N(t, t), we have

E[(Xt + 〈X〉t )2] = t + t2,

and, hence,

E[〈X〉2
t ] = t + t2 − 2E[Xt 〈X〉t ] − E[X2

t ].
Since X is a square-integrable martingale with X0 = 0, Lemma 4.3 yields

E[X2
t ] = E[〈X〉t ] = t,

so that

var(〈X〉t ) = E[〈X〉2
t ] − E(〈X〉t )2 = −2E[Xt 〈X〉t ].

On the other hand, Itô’s formula yields the identity

X3
t − 3Xt 〈X〉t = 3

∫ t

0
(X2

s − 〈X〉s) dXs. (4.1)
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Since the expected quadratic variation of the stochastic integral above can be bounded as

E

[∫ t

0
(X2

s − 〈X〉s)2 d〈X〉s
]

≤ 2E

[∫ t

0
(X4

s + 〈X〉2
s ) d〈X〉s

]

≤ 2E

[
〈X〉t sup

0≤s≤t

X4
s + 〈X〉3

t

]

≤ 2E[〈X〉2
t ]1/2E

[
sup

0≤s≤t

X8
s

]1/2 + 2E[〈X〉3
t ],

and both expectations appearing on the last line above are finite by Proposition 4.2, the right-
hand side of (4.1) is a square-integrable martingale, and, in particular,

E[X3
t ] = 3E[Xt 〈X〉t ].

Note that if E[X3
t ] = 0 for all t ≥ 0 then 〈X〉t = t a.s. for all t ≥ 0, and the conclusion follows

from Lévy’s characterisation of Brownian motion.

The next proposition gives bounds on the joint moment generating function of (Xt , 〈X〉t )
near the origin.

Proposition 4.5. Suppose that X is a 1-fake Brownian motion. Fix t ≥ 0 and (θ, φ) such that
2|φ| < θ2 < 1. Then

E[eθXt+φ〈X〉t ] ≤ e(θ2/2+φ)t if θ > 0,

E[eθXt+φ〈X〉t ] ≥ e(θ2/2+φ)t if θ < 0.

There is equality in either of the above inequalities if and only if 〈X〉t = t a.s.

Proof. Note that, since θ2/2 < 1
2 , we can deduce that E[eθ2〈X〉t /2] < ∞ by Lemma 3.2. In

particular,

E[eθXt−θ2〈X〉t /2] = 1

by Novikov’s criterion.
When θ > 0, Hölder’s inequality yields

E[eθXt+φ〈X〉t ] = E[(eθ(Xt+〈X〉t ))(θ2+2φ)/θ(2+θ)(eθXt−θ2〈X〉t /2)2(θ−φ)/θ(2+θ)]
≤ E[eθ(Xt+〈Xt 〉)](θ2+2φ)/θ(2+θ)E[eθXt−θ2〈X〉t /2]2(θ−φ)/θ(2+θ)

= e(θ2/2+φ)t .

Similarly, when θ < 0, Hölder’s inequality once more implies that

1 = E[eθXt−θ2〈X〉t /2]
= E[(eθXt+φ〈X〉t )(2−|θ |)|θ |/2(|θ |+φ)(eθ(Xt+〈X〉t ))(θ2+2φ)/2(|θ |+φ)]
≤ E[eθXt+φ〈X〉t ](2−|θ |)|θ |/2(|θ |+φ)E[eθ(Xt+〈X〉t )](θ2−2φ)/2(|θ |+φ)

= E[eθXt+φ〈X〉t ](2−|θ |)|θ |/2(|θ |+φ)(e−(θ2/2+φ)t )(2−|θ |)|θ |/2(|θ |+φ).

Note that in both cases above, there is equality if and only if 〈X〉t is a.s. constant by the criterion
for equality in Hölder’s inequality. But, Lemma 4.3 says that E[〈X〉t ] = t , and, hence, 〈X〉t is
a.s. constant if and only if 〈X〉t = t a.s.
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Remark 4.2. The same argument as in Proposition 4.5 can be used to bound the moment
generating function of X further from the origin. For instance, the inequality

E[eθXt ] = E[(eθ(Xt+〈Xt 〉))θ/(2+θ)(eθXt−θ2〈X〉t /2)2/(2+θ)]
≤ E[eθ(Xt+〈Xt 〉)]θ/(2+θ)E[eθXt−θ2〈X〉t /2]2/(2+θ)

≤ eθ2t/2

holds for all θ ≥ 0. In particular, for all x ≥ 0 and θ ≥ 0, we have

P(Xt > x) ≤ E[eθXt ]e−θx ≤ eθ2t/2−θx = e−x2/2t ,

where we have let θ = x/t in the equality.

Proposition 4.6. Let X be a 1-fake Brownian motion with respect to a probability measure P.
Define a locally equivalent measure Q by

dQ

dP

∣∣∣∣Ft = e−2Xt−2〈X〉t .

Then Q is a probability measure under which the process

Yt = Xt + 2〈X〉t
is a −1-fake Brownian motion.

Proof. Let
Mt = e−2Xt−2〈X〉t .

Since Xt + 〈X〉t ∼ N(t, t) under P, we have

EP[Mt ] = E[e−2(Xt+〈X〉t )] = 1,

so that Q is a probability measure. Also, since

Mt = e−2Xt−(−2)2〈X〉t /2,

Girsanov’s theorem implies that Y = X + 2〈X〉 is a Q-local martingale. Finally, since, for all
θ ∈ R, we have the calculation

EQ[eθ(Yt−〈Y 〉t )] = EP[e(θ−2)(Xt+〈X〉t )] = e(θ2/2−θ)t ,

we see that Yt − 〈Y 〉t ∼ N(−t, t) under Q for all t ≥ 0, concluding the proof.
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