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ASYMPTOTIC BEHAVIOUR AND BLOW-UP OF SOME
UNBOUNDED SOLUTIONS FOR A SEMILINEAR HEAT

EQUATION

by D. E. TZANETIS
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The initial-boundary value problem for the nonlinear heat equation u, = Au + Xf(u) might possibly have global
classical unbounded solutions, u* = u(x, r; uS), for some "critical" initial data u*. The asymptotic behaviour of
such solutions is studied, when there exists a unique bounded steady state w(x,A) for some values of L We
find, for radial symmetric solutions, that u*(r,t)-*w{r) for any 0 < r < l but supu*(-,() = "*(0,t)-*°o> as t-»oo.
Furthermore, if u0 > u*, where u* is some such critical initial data, then u = u(x, t; u0) blows up in finite time
provided that / grows sufficiently fast.

1991 Mathematics subject classification: 35K57

1. Introduction

We consider the initial-boundary value problem for a semilinear heat equation of the
form:

(u), xinfi , t>0 (1.1a)

u(x,£)=0, x on dSl, t>0 (l.lb)

u(x,0) = uo(x),xinn, (l.lc)

which models the temperature distribution of a large number of physical phenomena
from physics, chemistry and biology. The term A/(u) represents nonlinear heat
generation. Here A is a positive parameter, / is positive, increasing and convex, i.e.

/(s)>0 for s>0,/ '(s)>0,/"(s)>0 for s>0 (1.2)

and its growth at infinity is such that

Jds//(s)<oo. (1.3)

0

The initial condition uo(x) is a positive function in L°°(ft) and satisfies the compatibility
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(b)
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FIGURE 1. Response diagrams for the problem (1.4)

condition uo(x) = 0 on BQ, i.e. u0eX = {u0(x)eLco(Q): uo(x)>0 in Q, uo(x) = O on
We also take ft to be a bounded domain of UN(N>2) with a C2+a boundary

A steady state corresponding to (1.1a, b) satisfies:

Aw + Xf(w) = 0, x in Q

w(x)=0, x on dQ.

(1.4a)

(1.4b)

It is well known that the problem (1.4) may or may not have a solution depending on
the values of X [1,7]. Figure 1 shows possible forms of the response diagram for the
problem (1.4) [1,6].

In any case there is a X* such that (1.4) has a solution for X<X* but not for X>X*.
We can observe from figure l(a,b) that in these cases there is additionally a X, such that
for 0<X<X. the Problem (1.4) has a unique solution [1,6,7].

It is also known that for X>X*, u(x,t;X), the solution to (1.1), blows up in finite time,
i.e. there exists a t* < oo such that

limsup

For X<X* there is at least a minimal steady stage wm which is asymptotically stable
[1,4,16], while for X.<X<X* there is at least a second, non-minimal, solution w of (1.4),
which plays the role of "critical" initial data, i.e. if uo<w then u(-,t;uo)-*wm(-) as r->oo,
if uo = w then u = w and if uo>w then u blows up [4,8]. If now 0<X<X^ then wm is the
unique solution to (1.4) and behaves as an attractor, i.e. there is a domain, or region, of
attraction, which we denote by A(wm), such that if uoeA(wm) then u(-,t;uo)->wm as
t-KX). In this case the non-minimal w is replaced by some other type of critical initial
data M$, certainly in the sense that if UO<MJ then u(x,t;u0) is bounded and u->wm

uniformly as t->oo, while if «0»»* then u blows up [8]: u%ed+A(wm). With these critical
data u%, u* = u(x, t, u$) is a weak solution (L'-solution) to (1.1) for all time, unbounded
in L00 but bounded in L1 [10,13].

We still do not have a complete answer regarding the global existence of unbounded
classical solutions u* to (1.1). For N = 3 and/(u) = e" some solutions u* can blow up in a
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self-similar form at a time t*<oo. These can continue to exist after t* as bounded
solutions [10]. We characterise this behaviour as partial blow-up (when the solution
continues to exist beyond t* as a weak solution) in contrast with complete blow-up
(u = oo for t>t*) [10]. It is not clear if there exist such solutions for other problems of
the type (1.1) when the response diagram is of form l(a) or l(b), for instance when
f(u) = e", N>\0, since here the method of construction of self-similar solutions fails. It is
however possible to find more general problems where partial blow-up takes place in a
manner other than self-similar (see Section 5 in [10]).

We speculate that there are cases where u* is global classical unbounded solution, not
only at X = X*, f(u) = e", N>IO, [9], but also for 0<A<A. for some N>2. (We recall
that in [9], for X = X*, a solution u* (under certain initial conditions) is found to exist
for all time and to be unbounded. Moreover u*->w* a.e. as t-+oo, where w* is a
singular steady state.)

In this paper we analyse the asymptotic behaviour of any such solution u*. Also we
discuss what happens to the solution of (1.1) if the initial data are greater than critical
««•

In Section 2, for the radially symmetric case, we prove that, given suitable restrictions
on the initial data, u*(r,t)-*wj{r), 0 < r < 1 as £->oo. In the following section we consider
u = u(x, t; u0) with u0 > u$, and find that u blows up in finite time, provided that /(s)
grows fast enough.

2. Convergence of unbounded solutions

We study the asymptotic behaviour of global classical unbounded solutions to (1.1)
when fi is the unit ball, i.e. Q = B(0,1), in UN for some N>1 (for JV = l, X. = 0). Thus
(1.1) can be written as

uf=Aru* + Xf(u*),0<r<l,t>0 (2.1a)

dJ*M (2.1b)u(l,t)
dr

ii*(r,0) = u8(r),0<r<l. (2.1c)

The corresponding steady state problem of (2.1a, b) is:

Arw + A/(w) = 0 , 0 < r < l (2.2a)

w'(0) = 0, w(l) = 0. (2.2b, c)

Here Ar( •) = d\ • )/8r2 + ((N - l)/r) d{ • )/dr.
The conditions 8u*(0, t)/dr = w'(0) = 0 are a consequence of boundedness of solutions

rather than a specific requirement on them. We take 0 < k < X, so that (2.2) has a unique
solution wm which, in the following, we denote by w.

We now suppose that the following hypothesis is fulfilled.
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(HJ There are "criticaF initial data u% such that u* = u(x,t\u%) is a global unbounded
classical solution to (1.1) or (2.1).

These initial data u$ are critical in the sense that for uo<u% u(x,t;u0) is uniformly
bounded, whereas for uo>u%, u = u(x,t;u0) is unbounded in L°°-norm, i.e. u$ed+A(wm)
[10]. In addition by standard arguments u(-,(;uo)-»w() uniformly, see [13] and the
references therein.

The hypotheses (Hi) implies that there exists a sequence of times (tn) such that sup
"*(".tn)^00> tn-*00 a s n-»oo. Moreover we can show that sup u*(-,t)->oo as t-»oo. Let
us assume for a contradiction, that there exists a sequence tn-*co with ||u*(-,tn)|| <k;
then we may deduce the existence of an omega limit set of u*: a)(M3) = {i>eL°°(Q):3Tn

-•oo s.t. «(•, Tn;ug)-»!)}#0, then by standard arguments ca(M$) = {w}, since w is the
unique steady state. We deduce that u*->w, contradicting the unboundedness of u*, see
[12,13].

Also following Lacey and Tzanetis [10], see also [13], we may deduce that u* is an
L'-solution i.e.

u*eC([0,T];L1(n)), (2.3a)

f(u*)eLl(QT),QT = ax{O,T) (2.3b)

and u* satisfies

I [# ] !„dx- \ Sui/s.dxds = } j(uAiP + fyf(u))dxds (2.3c)
n to n to n

for every ^eC2(QT) with i/̂  = 0 on 5Q and 0 < t 0 < t < T f o r every large T. Furthermore
the following estimate holds:

J u*(x, t)dx < c, c a constant. (2.4)

It is obvious that (2.4) excludes the possibility of complete blow-up occurring for u*,
while (H j) does not permit partial blow-up to take place.

We also impose the following hypothesis:

(H2) There is no non-negative singular solution to (1.4) or (2.2) for Ae(0, A.).

Note that (W2) is known to hold in certain cases, for instance when/(s) = sp (unforced
case/(0) = 0), see [15]. In the forced case (/(0)>0), which is our interest, we can show,
by using phase plane analysis, that (H2) is true for the Problem (2.2) at least when
/(s) = ̂  or / (s)=(l +s)p, p>0 and N>3.

Indeed, by making the transformation
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(2.5a)
where

M = w(0) and z(s0) = - M - 2 s 0 , 2s0 = In **" Z."' (2.5b)

the Problem (2.2) for/(s) = cs takes the form:

-z'—z — 2 + 2ez = 0, so<s< oo (2.6a)
- 2

z(oo)=-oo,z(oo)=-2. (2.6b)
By setting

on the (x.^-phase plane, (2.6) becomes:

y = (N-2)y-x, so<s<oo (2.7a)

x = x(y — 2), s0 < s < oo (2.7b)

x(oo) = y(oo) = 0 (2.7c)

with compatibility condition,

§ , l=x(s0) and a= -w(l) = y(s0). (2.8)

The system (2.7) has two critical points, at (0,0) and (2(N — 2), 2). Then it can be proved
that there exists a unique heteroclinic orbit joining the point (0,0) and (x(s0), y(s0)) =
[X,a). Taking s0-* — co and studying the behaviour of the solution to (2.7), subject to
(2.8), one can show that as s0->-oo either (x(so),y(so))->{2(N - 2 ) , 2) or (x(s0), y(s0))
spirals about (2(N — 2),2). More precisely, for each pair (x(s0),y(s0)), which is equal to
(A, a) via the compatibility condition (2.8) and the change of variables (2.5), we obtain

The above observations are depicted by the response diagrams shown in fig. 2.
The critical point (Ax,2) corresponds to the singular solution w0O>0 which satisfies

(2.2. a,c) woo(r)->oo as r->0 and is a limit of regular solutions of (2.2) [6,9]. From the
above response diagrams it is apparent that there is no singular solution to (2.2) for
0 < A < A., f(s) = e". Thus (H2) is fulfilled. Also these diagrams have some similar features
to figure 1 (a) and (b) respectively. For more details see Bebernes and Eberly [2], as
well as Joseph and Lundgren [6], where in addition the case of/(s)=(l +s)p is studied.
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(b)

(b) NslO, L = kn = 2(N-2) = k*
a=-w'{\)

FIGURE 2. The response diagrams for the problem (2.2)

We note that any solution w of (1.4) is positive and if fi is a ball then w is radially
symmetric and radially decreasing i.e. w(x) = w(r) > 0, w'(r)<0, 0 < r < l , and w satisfies
(2.2). Also any solution u of (1.1) is positive and if again Cl is a ball with uo(x) = uo(r)
then u(x, t) = u(r, t) is radially symmetric and satisfies (2.1). Furthermore if M'o(r)<0 then
«r(r,t)<0, 0 < r < 1, 0 < r < Ti.e. u is radially decreasing, see Gidas et al. [5].

Our purpose is to show that u*(r, t), the solution to (2.1), is eventually decreasing in r;
this will be crucial to what follows. If we had that u$'(r)<0 then by applying the
maximum-minimum principle and Hopfs boundary point lemma we would obtain that
u?(r,t)<0, 0 < r < l , 0<t<7^ for every T. Here we do not require u$'(r)<0 however we
can still proceed by using a result due to Ni and Sacks [14]. The following lemma
holds.

Lemma 2.1. Let u*(r,t) be the solution to (2.1) and (Hi), (1.2), (1.3) be satisfied; then
there exists aO<t0<co such that ur(r,t)<0, 0 < r < 1, t>to.

Analogous to the blow-up point we may define xe f i to be a divergence point of u if
there exists a sequence (xm,tm) such that xm-*x, tm->co and u(xm, tm)-»oo as m->oo. Then
we have the following theorem.

Theorem 2.2. Let u* be the solution to (2.1) and (HJ, (1.2), (1.3) be satisfied, then the
measure of the set of divergence points of u* is zero. Furthermore, r = 0 is the only
divergence point ofu*, and for any re(0,1] , u*(r,t) is bounded for every t>0.

Proof. Let us assume for a contradiction that there exists some ro>0 such that
u*(rm,tm)-K» as tm->oo and rm-*r0. Lemma 2.1 implies u*(r,t^-*oo as tm-*co uniformly
on [0,ro/2]. But this result contradicts (2.4), i.e. that \nu*dx is bounded as f->oo. Hence
the only divergence point can be r=0. Since u* is not uniformly bounded, r = 0 is indeed
a divergence point. For every 0 < r < 1, u*(r,i) is bounded for t>0, while from the result
that sup M*-*OO above, u*(0,t) = sup u*(-,t)-*ao as £->oo. •

We now define a ring-shaped domain fl,cfl for a given ne(0,1) by
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There holds the following:

Proposition 2.3. Let us assume that (//,) holds and u* satisfies (2.1). Then

\ \Oast-+co. (2.9)

Proof. We shall first prove that (2.9) holds for a subsequence of time. Indeed,
multiplying (2.1a) by u,*and integrating over Q, x (*<,, T), ^ >0, we obtain

T T

J | uf{x,i)dxdt = \ { u*(Au* + Xf(u*))dxdt
tott, l o <%,

r r *du* A A , r r (
<o en, on <o o, \

Vu* + X-F(u*))dxdt
dt J

(2.10)l 1 ^

where we have used F(u) = Jo f(s)ds and

| | f
ro 1 * 1 = 1 *"1

Theorem 2.2 implies that u*(x, t) is uniformly bounded in Cln/2 x [0, oo) so that by using
standard parabolic regularity theory, see Ladyzenskaja et al. [11], we obtain that
u*,u*u*.,u*.x. are bounded in C"-"12 (fi,x [£0, oo)) for some lo>0, 0 < a < l , where C"-"'2

represents the space of Holder continuous functions with exponent a for x, and a/2 for t.
From this observation we can bound the right-hand side of (2.10) from above by a
constant, independent of T. Hence we have

T

J | uf(x,t)dxdt<c
(0 H,

and since c is independent of T

J \uf\x,t)dxdt<c. (2.11)

to n,

The last relation implies that there exists a subsequence of times (tk) such that

J u*\x,tk)dx-+0 as tk-*ao. (2.12)
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To see that (2.12) holds for all subsequences of time, we appeal again to the fact that uf
is bounded in C-"'2((\ x [*<,, oo)). This implies that

is uniformly continuous on [t0, oo). Let us assume now that there exists a subsequence
tm-KX> such that v(tm)-/>0 as tm-*oo; then we can deduce the existence of a constant c>0
such that v(tm)>c>0 for all m, redefining (tJ if necessary. On the other hand from the
uniform continuity of v(t) we can choose some <5 > 0 such that for a given e e (0, c/2),

\v(t)-v(tm)\ <e for \t-tm\ <S.

Integrating over (tm — S,tm + d) we obtain

J v(t)dt>(c-e)28>cd
tm-t

and

J v{t)dt> Y J v(t)dt>mc5.
to k = l tk — t

From the last relation we deduce

OO tm + >

J v(t)dt= lim J v(t)dt> lim mcS = oo
(0 tm->oo lo m—ao

which contradicts (2.11) (the sequence ( t j may be chosen so that tm + l — tm>25). This
completes the proof. •

We are now ready to give the main theorem of this section.

Theorem 2.4. Let u* be the solution to (2.1), 0<X<L and hypotheses (HJ, (H2) be
satisfied . Then u*(r, t)->w(r) as t-*co for any 0 < r < 1.

Proof. We first suppose that

Mr*(l,r)-w'(l) as t-»oo. (2.13)

Setting u*(r, t) = U(r, t) + w(r) where w(r) is the solution to (2.2) and substituting into
(2.1a) we obtain,

ArU + A[/( U + w) - /(w)] = \V + Xf\y) U = ufc, t)

where W<>'<M*. We now consider the Problem (2.1) as a one-parameter family of
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problems with t as a parameter. The existence of the solution to (2.1) implies that the
following family of initial value problems,

U"(r, t) + — I/'fa t) + Xf'(y)U{n t) = uftr, t), 0<r < 1, (2.14a)
r

1/(1; t) = 0 (2.14b)

U'(l;t) = uf{l,t)-w'(l) (2.14c)

has a solution for each value of the parameter r>0 . The solution (2.14) can be written
in the following integral form:

U{r,t)= =[.u?(l,t)-W'(l)Mr,t) + lk(r,s;t)u*(s,t)ds (2.15)
r

where v = v(r; t) satisfies

(2.16a)

u(l;t) = 0,o'(l;t) = l, (2.16b)

and k = k(r, s; t) is the solution

k" + ̂ -^-k' + Xf'(y)k = 0,r>0,r^s (2.17a)
r

k(s,s;t) = O,k'(s,s;t)=-l, (2.17b)

where the derivatives are taken with respect to r. From (2.15) we get

| [/fat)| < |ur*(l,0-w'(l)||H + \]k(r,s;t)u?(s,t)ds\
r

and using Cauchy-Schwarz inequality

/i V/V1 V 2

<\uni,t)-W'(l)\\v\+hk2(r,s;t)ds\ U u*\s,t)ds\ . (2.18)

As long as u*(r, t) exists and is uniformly bounded in time for any r>rj>0, the solution
U(r,t) to (2.14) also exists for any f > 0 and is bounded independently of t, 0<rj<r<l.
Consequently v, the solution to (2.16), is bounded independently of t. K(r,s;t), the
solution to (2.17), is well defined, and exists for any finite interval r]<r< 1, is continuous
and bounded, and its bound is independent of t, and J,} K2ds<c2.
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Hence from (2.18) we obtain

/ \i/2

| U(r;t)\<\ttfl,t)-w'(l)|c, + cJ J uf(x,t)dx\ ,

where cu c2 depend on r\. Taking the limit as t->co, and from the assumption (2.13) and
Proposition 2.3, we deduce that

|u*(r,t) — w(r) | ->0 as t->oo, 0 < ^ < r < l

for every f/>0, which proves the theorem under (2.13).
We will now show that (2.13) holds. Again using the parabolic regularity of u* we

have that uf{r,t) is bounded in C>a/2([jj, 1] x [t0, oo)), hence |u*(l,t)| is bounded as
t-*co. This implies the existence of a subsequence of time, say tn, such that

ur*(UnH«<0 as tn->oo. (2.19)

(As we are restricting u0 to satisfy uo>w we know that u*>w and hence «f(l,f)<w'(l).)
Considering now the initial value problem,

^ ^ (2.20a)

wa(l)=0, w;(l) = a<0 (2.20b)

and setting u*(r, t) = U(r, t) + wa(r), it is easily seen, by repeating the above procedure
that

u*(r,ta)^wa(r), rn->oo, as n-oo (2.21)

uniformly for r in \r\, 1]. Note that the initial value problem (2.20) has at most one
solution in 0 < r < 1. We want to exclude the case of a#w'(l). Indeed, let us assume that
a#w'(l). If (2.20) had a bounded solution wjj) in (0,1), then this would contradict the
uniqueness of the solution to (1.4) or (2.2) since 0<A<A.. On the other hand, if wa(r)
was unbounded with wJ(r)-> + oo as r->0 this would contradict the hypothesis (H2).
There remains the case w^r)-* — oo as r-»0. Taking now rj sufficiently small the last
limit implies that VVO(J/)<0 and from (2.21) we deduce that u*(r\,t^-*wa{rf) as tn-K» or
u*(ri,tn)<0 for tn large enough. But the last statement contradicts the positivity of u*{r,t)
on (0,1) for all t>0. Hence a = w'(l) for all sequences (O so that (2.13) holds. This
completes the proof of the theorem. •

We expect that the above results can be generalised to cover Robin boundary
conditions, as well as the unforced case, i.e./(0)=0. We conjecture that it is possible to
get some sort of convergence even in the case when Q is not a ball.
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3. Blow-up for large initial data

In this section we again consider u* = u(x,t;u%) to be a global classical unbounded
solution, i.e. (HJ is satisfied and moreover the following condition holds:

il is convex and uj e C(H). (3.1)

Our purpose is to show, under some growth restrictions on /, that taking uo
>uo>

it = u(x, t; u0) blows up in finite time. This manifests the critical nature, of u$: for u0 > u$
in £2, u blows up in finite time, whereas for uo<u$ u(x,l;uo)->w(x) uniformly as t-nx>;
also u* = u(x, t;u%)->w(x) as t->oo for any xeQ — {0}, at least if fi is a ball (see section
2). We assume / i s such that

/(s) = keas, s > 0 and for k, a > 0. (3.2)

Our main result is the following:

Theorem 3.1. Let u* be a solution o/(l.l), and hypothesis (Hx) and conditions (3.1,2)
all hold. Ifuo>u$ in fi, then the solution u = u{x,t;u0) o/(l.l) blows up infinite time.

The proof will be given after some preliminary results. Throughout this section, we keep
the convention that u0, uj, u0 always have the order

uo(x)<u5(x)<tio(x), x in £1

Hence by comparison we obtain u < u* < u, x in Q, t > 0 where u, u*, u are solutions of
(1.1) with initial data u0, u$, u0 respectively.

We now consider the following linearized problem about w*:

'(u*)z, xinfi , t>0 (3.3a)

z = 0, xondil, t>0 (3.3b)

z(x, 0) = zo(x) > 0, x in Q, t=0 (3.3c)

and we have:
Lemma 3.2. (a) / / u(x, 0) = uo(x) > u% - yz0 then u(x, t) > u*(x, t) - yz(x, t), x in fi, t > 0.
(b) //0<zo(x)<UoM-"oM then u(x,t)>u*(x,t) + z(x,t), x in £1 t>0.

Proof, (a) Setting v = u *—yz we observe that,

~Av- Xf(v) = Xy(f'(s) -/'(u* ))z < 0,
at

since u*>s>u* — yz and z>0 in f2 (z>0 on (0, T] x J2, for any T>0 by the maximum-

https://doi.org/10.1017/S001309150002280X Published online by Cambridge University Press

https://doi.org/10.1017/S001309150002280X


92 D. E. TZANETIS

minimum principle). Also v<u at t = 0 and t = « on the boundary dil for every t>0.
Hence v is a lower solution to (1.1) with u(x,0) = uo(x) and v<u, in Q, t>0.
(b) We now set v(x, t) = u*(x, t) + z(x, t) and have

since z>0 and u* + z>s>u* in Q. Moreover v<u at t = 0 and y = « on the boundary
<3Q. Hence u is a lower solution to (1.1) with u(x,0) = uo and v<u, which completes the
proof of the lemma. •

We consider now the linear eigenvalue problem,

A^ + A/'(u# = ̂ , x in 12.

ip = 0, x on <3Q.

where w is the unique solution to the steady state problem (1.4). It is known, [1,7], that
for the principal eigenpair (//l9 ^ ) /*i<0, as a consequence of the minimality of w,
i^i^O, and I/ 'J^O. For uo<«g, u is uniformly bounded, u(x,t;uo)-*w(x) uniformly as
t-»oo [12,13]. Therefore for t large, we have,

w(x) < M(X, t) < w(x) + e^1(x)e"" + O(e2"") (3.4)

for some constant e>0 (e depending upon u0) [7]. From Lemma 3.2(a) and (3.4) we
obtain

-O(c2'"') (3.5)

for t large.
As the next step we have the proposition:

Proposition 3.3. Let u* = u(x,t;u$) be the solution of(l.l), and (Hi), (1.2,3) and (3.1,2)
be satisfied, then

$f"(u*)dx->co as £->oo for q>N.
a

Proof. To obtain this we use a result of Friedman and McLeod [3]. Let M(t) = sup
M*( •, t), then for t large enough,

| VM*( •, r) I 2 < 2 f f(s)ds, x in Q, t »0, (3.6)
u«(x, I)
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(this uses M(f)->oo as £->oo). We define xo(t) by u*{x0, t) = M(t) and introduce polar
coordinates (r, 6) about xo{t); (3.6) implies

du* 2 M

dr

Integrating over the interval (0, r), we find that

<2J f(s)ds<2(M-u*)f(M).

u*{x,t)>hi for r<M1 / 2/"1 / 2(M) = r0. (3.7)

Considering the ball B(xo,ro), and using (3.7) we obtain

(3.8)

where M = M(t), and c is a positive constant depending upon N. Now taking the limit
in (3.8) as t-+co, provided q>N, the desired result follows.

Proof of the theorem. We take u0 > uj in ft and choose M0 > 0 and y > 0 such that

v

From Lemma 3.2 and (3.2,5) we obtain,

/(M) = k exp(ati) > k exp[a(w* + z)]

(3.9)

where

t > t0 > 0, for some t0 > 0.
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We may choose now y such that

1 +- = q>N, or y= -, q>N.

y q-i

Thus for these values of y, (3.9) and Proposition 3.3 imply:

J f{u)dx>Bk\ exp(qau*)dx = B J/*(u*)rfx->oo as t->oo. (3.10)

n n a
Now we are ready to show that u blows up in finite time if u0 > uJ. By introducing

the functional

a(t)=f u(x,t)<Pi

where (Aj.cpj) is the principal eigenpair of —A with Dirichlet boundary conditions so
Ax >0 with q>! >0 in Q and taking \\cpi ||Li = l, we obtain from (1.1),

a\t) = \ ii,q>ldx=-Xla{t) + ̂  f(&)<Pidx. (3.11)

Following Ni et al. [13], a result of Gidas et al. [5] may be applied for a convex region
to give

j f{u)dx<(m + l) J f(u)dx,t>t0> (3.12)
n no

where Qo is a subregion of Q, i.e. CioczQ and m is some positive integer; this result uses
the fact that u decreases near <3Q. Now (3.11) yields:

f(ii)dx, (3.13)

where /C = infno^1>0 (note that infn<p!=O) for some Q o c ^ - Bu t from (3.10) we have
jn /(«)dx-»co as t^oo so (3.12) implies

J /(u)dx->oo as t-»-oo,
fio

and it follows from (3.13) that a(t)-*co as t-*oo.
Now applying Jensen's inequality to (3.11)

(3.14)
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Taking Tsuch that Xf(s) — Xls>0 for s>a(T), and integrating (3.14), we get

t—T< J < J = c<oo

which implies that a(t) becomes infinite in finite time t*<c + T. Hence it blows up in
finite time since a{t)<supu(-,t). •

Note that this proof is easily adapted to problems with Robin boundary conditions.

4. Discussion

In this paper we have discussed the implications of there being an unbounded, but
classical, solution to (1.1) in cases where (1.4) has a unique classical and no singular
weak solution (X < X.). In a previous paper such classical unbounded solutions have been
found to exists, but, in that case, there was no classical steady state but instead a weak
singular stationary solution (X = X* = X,). For this latter case any small pertubation of
the initial data left the qualitative behaviour unchanged.

Here we have looked at problems with solutions M* given as the supremum
(equivalently, the limit of a monotonic increasing sequence) of solutions u which
converge to the (unique) steady state as f->oo. It has already been found that such u*
must be both unbounded and an L1 solution of (1.1). It had already been established
that for certain situations, e.g. f(u) = e" with 3<N<9, u* could have this behaviour
through blowing up partially, and consequently any increase of initial data results in
complete blow-up. We have now examined the only alternative, namely that u* never
blows up but instead satisfies supu*(-,t)->oo as r->oo. We have seen (Section 2) that for
radially symmetric problems u*(0,r)->oo as t-*co whereas, for any r>0, u*(r,t)->w(r).
We conjecture that similar properties should hold for asymmetric problems: u* has a
divergence set D of measure zero and u*-*w, pointwise, as r->oo for xeQ\D. We have
also found that for exponential nonlinearities with Q being convex u* is again critical:
not only does u o

< u o result in u-nv as t-»oo but wo>ug implies that u blows up
completely. We again conjecture that results like these should apply even for Q not
convex and for / either growing faster than exponentially, or somewhat more slowly
than exponentially (but still maintaining the requirement necessary for blow-up, (1.3)).

Knowledge of such u*, whether they blow up partially or are instead classical but
unbounded, has some practical significance. The simplest model for exothermic reactions
is of the form (1.1) with/(u) = e". Then u* is critical in that it separates values of u (i.e.
of temperature) that have subcritical behaviour—u<u* means that u->w as f-+oo and
no violent reactions occurs—from supercritical behaviour—u > u* means, at least if ft is
convex, that u blows up and ignition takes place. Both critical phenomena do not
appear to result in true physical blow-up. For partial blow-up temperature u* decays
after the blow-up time and a (weak) solution to (1.1) continues for all time. For classical
unbounded u* it only becomes large as t gets large, so one can expect that effects such
as reactant depletion with actually limit the size of u.

https://doi.org/10.1017/S001309150002280X Published online by Cambridge University Press

https://doi.org/10.1017/S001309150002280X


96 D. E. TZANETIS

Acknowledgement. The author is grateful for fruitful discussions with A. A. Lacey. It is
hereby acknowledged the support from grant number ERBCHRXCT 930439 under the
EC Human Capital and Mobility Scheme.

REFERENCES

1. H. AMANN, Fixed point equations and nonlinear eigenvalue problems in ordered Banach
spaces SI AM Rev. 18 (1976), 620-709.

2. J. BEBERNES and D. EBERLY, Mathematical Problems from Combustion Theory (Springer-
Verlag, New York, 1989).

3. A. FRIEDMAN and B. MCLEOD, Blow-up of positive solutions of semilinear heat equations,
Indiana Univ. Math. J. 34 (1985), 425-447.

4. H. FUJITA, On the nonlinear equations Au + e" = 0 and u, = Au + e", Bull. Amer. Math. Soc. 75
(1969), 132-135.

5. B. GIDAS, W.-M. Ni and L. NIRENBERG, Symmetry and related properties via the maximum
principle, Comm. Math. Phys. 68 (1979), 209-243.

6. D. D. JOSEPH and T. S. LUNDGREN, Quasilinear Dirichlet problems driven by positive sources,
Arch. Rational Mech. Anal. 49 (1973), 241-269.

7. H. B. KELLER and D. S. COHEN, Some positive problems suggested by nonlinear heat
generation, J. Math. Mech. 16 (1967), 1361-1376.

8. A. A. LACEY, Mathematical analysis of thermal runaway for spatially inhomogeneous
reactions, SI AM J. Appl. Math. 43 (1983), 1350-1366.

9. A. A. LACEY and D. TZANETIS, Global existence and convergence to a singular steady state
for a semilinear heat equation, Proc. Roy. Soc. Edinburgh Sect. A 105 (1987), 289-305.

10. A. A. LACEY and D. E. TZANETIS, Global, unbounded solutions to a parabolic equation, / .
Differential Equations 101 (1993), 80-102.

11. O. A. LADYZHENSKAJA, V. A. SOLONNIKOV and N. N. URAUCEVA, Linear and quasilinear
equations of parabolic type, in Trans. Math. Monographs 23 (Amer. Math. Soc, Providence, RI,
1968).

12. H. MATANO,- Asymptotic behavior and stability of solutions of semilinear diffusion
equations, Publ. Res. Inst. Math. Sci. 15 (1979), 401-454.

13. W.-M. Ni, P. E. SACKS and J. TAVANTZIS, On the asymptotic behavior of solutions of
certain quasilinear parabolic equations, J. Differential Equations 54 (1984), 97-120.

14. W.-M. Ni and P. E. SACKS, The number of peaks of positive solutions of semilinear
parabolic equations, SIAM J. Math. Anal. 16 (1985), 46CM71.

15. W.-M. Ni and P. E. SACKS, The singular behavior in nonlinear parabolic equations, Trans.
Amer. Math. Soc. 287 (1985), 657-671.

16. D. H. SATTINGER, Monotone methods in nonlinear elliptic and parabolic boundary value
problems, Indiana Univ. Math. J. 21 (1972), 979-1000.

DEPARTMENT OF MATHEMATICS
NATIONAL TECHNICAL UNIVERSITY
ZOGRAFOU CAMPUS
15780 ATHENS
GREECE

https://doi.org/10.1017/S001309150002280X Published online by Cambridge University Press

https://doi.org/10.1017/S001309150002280X

