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The motion of rigid particles in complex fluids is ubiquitous in natural and industrial
processes. The most popular toy model for understanding the physics of such systems is
the settling of a solid sphere in a viscoelastic fluid. There is general agreement that an
elastic wake develops downstream of the sphere, causing the breakage of fore-and-aft
symmetry, while the flow remains axisymmetric, independent of fluid viscoelasticity
and flow conditions. Using a continuum mechanics model, we reveal that axisymmetry
holds only for weak viscoelastic flows. Beyond a critical value of the settling velocity,
steady, non-axisymmetric disturbances develop peripherally of the rear pole of the sphere,
giving rise to a four-lobed fingering instability. The transition from axisymmetric to
non-axisymmetric flow fields is characterized by a regular bifurcation and depends
solely on the interplay between shear and extensional properties of the viscoelastic fluid
under different flow regimes. At higher settling velocities, each lobe tip is split into
two new lobes, resembling fractal fingering in interfacial flows. For the first time, we
capture an elastic fingering instability under steady-state conditions, and provide the
missing information for understanding and predicting such instabilities in the response
of viscoelastic fluids and soft media.

Key words: complex fluids, non-Newtonian flows

1. Introduction

A solid sphere sedimenting under gravity through a fluid is one of the most important
problems in fluid mechanics. Apart from serving as a simplified case of a general family
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Figure 1. Schematic representation of a solid sphere falling in a circular cross-section tube filled with a
viscoelastic fluid. The sphere moves downwards and displaces fluid upwards. The fluid flows from the bottom
of the tube to the top. Thus the regions below and above the sphere are referred to as upstream and downstream,
respectively.

of immersed body flows, the motion of particles through a fluid finds applications in flow
and mixing in porous media (Kurzthaler et al. 2021), blood flows (Freund 2014), drug
delivery (Geng et al. 2007), stability of suspensions (Kegel & van Blaaderen 2000), and
rheology (Bird, Armstrong & Hassager 1987a). The flow field around the sphere provides
an interesting mix of shearing and extensional kinematics. The upstream stagnation point
generates biaxial extension and divergence of streamlines around the sphere. There are
regions of transient shear flow around the sphere where the shear rate increases between
the upstream pole and the equator and subsequently decreases towards the downstream
pole. At the downstream stagnation point, the fluid experiences high uniaxial extensional
rates, accompanied by long residence times (see figure 1 for upstream/downstream region
definition).

Since the seminal work of Sir George G. Stokes in 1851 (Stokes 1851), it is well-known
that the flow profile around an isolated, slowly sedimenting sphere in a Newtonian fluid
exhibits both fore-and-aft and axial symmetry. For Newtonian fluids, these symmetries
break as the particle settling velocity is increased, and inertia comes into play (Natarajan
& Acrivos 1993). For viscoelastic fluids, the situation is fundamentally different.
Viscoelastic fluids usually possess microstructures composed of macromolecules, such as
synthetic polymer chains, DNA/RNA and/or proteins. Even for slow flows, where inertia
is negligible, flow-induced microscale events (e.g. macromolecular interactions, chain
unravelling and stretch) give rise to macroscopic elasticity and nonlinear flow phenomena
during the sphere sedimentation (McKinley 2002; Chhabra 2006; D’Avino & Maffettone
2015; Zenit & Feng 2018). These phenomena include the development of a slowly decaying
high-velocity region downstream of the sphere, the so-called extended wake (Arigo et al.
1995; Fabris, Muller & Liepmann 1999), or the appearance of a negative wake, where
the fluid behind the sphere flows in the upward direction, against gravity, away from
the falling sphere (Bisgaard 1983; Arigo & McKinley 1998). The magnitude and type
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Sphere sedimentation

of elastic wake depends on the macromolecular extensibility (Harlen 2002). The sphere
usually reaches a terminal settling velocity (Arigo et al. 1995; Solomon & Muller 1996;
Arigo & McKinley 1998; Fabris et al. 1999). Few cases with oscillatory settling velocities
have been reported (Jayaraman & Belmonte 2003; Chen & Rothstein 2004). Nevertheless,
existing experimental, theoretical and computational works suggest that the flow remains
axisymmetric, regardless of different flow conditions and viscoelastic properties of the
fluids.

Given the symmetry-breaking patterns that arise beyond a critical flow rate in flows
of viscoelastic fluids in planar geometries (Arratia et al. 2006; Poole, Alves & Oliveira
2007; Haward et al. 2019; Varchanis et al. 2020a, 2022a) and the axisymmetry breaking
in bubbles rising in viscoelastic fluids (Hassager 1979; Moschopoulos et al. 2024), one
would expect axisymmetry around a falling sphere to break with increasing elasticity
of the fluid. However, in the absence of quantitative data, this assumption cannot be
verified. High-resolution three-dimensional velocity (e.g. particle image velocimetry) and
stress field (e.g. flow-induced birefringence) measurements are difficult to obtain due
to challenges in flow visualizations. Existing analytical attempts refer to axisymmetric
and weakly elastic flows (Housiadas & Tanner 2016). Thus a numerical solution of
the governing equations is necessary. However, the strong tensile stresses that develop
downstream of the moving sphere cause loss of numerical convergence and trigger the
well-known high Weissenberg number problem (Alves, Oliveira & Pinho 2021). Moreover,
three-dimensional viscoelastic flow simulations require extraordinary computational cost
and time to obtain accurate solutions. Consequently, computational works are restricted
to axisymmetric simulations (Jin, Phan-Thien & Tanner 1991; Lunsmann et al. 1993;
Rasmussen & Hassager 1993; Owens & Phillips 1996) or low settling velocities
(Knechtges 2015), and have never captured non-axisymmetric flow profiles and elastic
instabilities around the falling sphere.

2. Problem formulation

In this work, we present a simple model that captures the essential physics during the
settling of a solid sphere (density ρs, radius Rs) through a cylindrical tube (radius Rt)
filled with an incompressible viscoelastic fluid (density ρf , relaxation time λ, polymer
viscosity ηp, solvent viscosity ηs, and total viscosity η = ηp + ηs). We assume steady,
three-dimensional flow. The tube height is long compared to Rs, allowing the establishment
of a steady settling velocity Us (figure 1). Cartesian coordinates are employed, with the
origin placed at the centre of the sphere. This implies a reference frame in which the
sphere is stationary, and the tube (along with the fluid far from the sphere) is moving
at a uniform velocity Usez, where ei the unit normal vector in the ith direction. The
gravitational acceleration is given as −gez. The sphere does not rotate around any axis,
and its centre is located on the symmetry axis of the tube. We scale all lengths, velocities
and stress components with Rs, Us and ηUs/Rs, respectively. The Reynolds number
(Re = ρf UsRs/η) compares inertial to viscous forces. In typical experiments (Arigo et al.
1995; Solomon & Muller 1996; Arigo & McKinley 1998; Fabris et al. 1999; Jayaraman
& Belmonte 2003; Chen & Rothstein 2004) with small, high-density spheres (Rs < 3 mm,
ρs > 2500 kg m−3) and viscous fluids (η > 1 Pa s), inertia can be neglected (Re < 0.03).
Hence in simulations we set Re ≡ 0. The Weissenberg number (Wi = λUs/Rs) compares
elastic to viscous forces and is directly related to the settling velocity. We also define the
solvent to total viscosity ratio β = ηs/η, and the geometrical blockage ratio BR = R2

s /R2
t .

Thus the physical problem is governed by only three parameters, Wi, β and BR.
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The fluid rheology is described by the Oldroyd-B model, which reproduces the basic
experimentally measured properties of viscoelastic fluids (memory effects, development
of normal stresses under shear, extension hardening) with minimal parameters. According
to the kinetic theory (Bird et al. 1987b), macromolecules are modelled as non-interacting,
Hookean dumbbells in a Newtonian solvent. Under homogeneous steady shear, the model
predicts a constant shear viscosity, ηsh = η0, for any value of the shear rate (Bird et al.
1987a). However, under transient shearing, the model predicts shear thinning/thickening
effects (Varchanis et al. 2022b). Under homogeneous steady uniaxial extension, the
model predicts an extensional viscosity, ηe = 3ηs + 3ηp/[(1 − 2λε̇)(1 + λε̇)], which is
nearly constant for low extension rates ε̇, but becomes infinite for ε̇ ≥ 1/(2λ) (Bird
et al. 1987a). The solvent to total viscosity ratio β is related to the concentration of
macromolecules. Fluids with β → 0 correspond to concentrated solutions with transient
shear thinning/thickening effects (Varchanis et al. 2022b), while fluids with β → 1
correspond to ultra-dilute solutions with Newtonian-like shear response (Varchanis et al.
2022b). For any β value, strong extension hardening takes place around stagnation points
as ε̇ = 1/(2λ) is approached.

3. Governing equations and boundary conditions

The non-Newtonian flow is described by the incompressible and isothermal Cauchy
equations coupled with the Oldroyd-B constitutive equation, which accounts for the
contribution of non-Newtonian stresses. Neglecting inertia, the forms of the dimensionless
continuity, momentum and constitutive equations are expressed, respectively, as

∇ · u = 0, (3.1)

∇ · (−PI + T + 2βD) = 0, (3.2)

Wi
�
T + T = 2(1 − β)D, (3.3)

where u is the velocity vector, P is thermodynamic pressure, and 2D = ∇u + (∇u)T

is the deformation rate tensor. The inverted triangle above the stress tensor T in (3.3)

denotes the upper convected derivative,
�
T = ∂T/∂t + u · ∇T − (∇u)T · T − T · ∇u.

No-slip (n · u = 0) and no-penetration (t · u = 0) conditions are imposed on the sphere
surface. Note that n and t denote the normal and tangent unit vectors on the sphere surface,
respectively. On the tube wall (x2 + y2 = R2

t ) and inflow boundary (z = −25), we impose
u = [0, 0, 1]. Finally, on the outflow boundary (z = 25), we apply the open boundary
condition (Papanastasiou, Malamataris & Ellwood 1992). According to the open boundary
condition, the fluid velocities and stresses are not imposed at the outflow boundary but are
calculated from the weak form of the equations for the velocity unknowns (extrapolated
from the bulk). We have verified that the computational domain height (Hc = 50) does not
affect our predictions in any way.

4. Characterized quantities

The results that follow will be presented in terms of the drag force acting on the sphere F D
and the flow asymmetry parameter I. The dimensionless drag force exerted on the sphere
is defined as

F D =
∫

S
n · [−PI + T + 2βD] dS, (4.1)

where S is the dimensionless area of the sphere surface.
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Figure 2. (a,b) Indicative mesh views at the z = 0 and x = 0 planes, respectively. Only parts of the mesh are
shown. This mesh is created for visualization purposes only and is much coarser than meshes M1, M2 and
M3 (table 1). (c) The effect of mesh refinement on the asymmetry parameter for β = 0.1 and BR = 0.25. The
solution branches are obtained by direct steady-state simulations assuming symmetry across the x = 0 and
y = 0 planes.

The flow asymmetry parameter is defined as

I =
∫

V
|uφ| dV, (4.2)

where V is the dimensionless volume occupied by the fluid, and uφ = u · eφ is the
dimensionless azimuthal velocity. Here, I = 0 indicates axisymmetric flow; when I > 0,
azimuthal velocities arise and the flow becomes non-axisymmetric.

5. Computational method

The governing equations (3.1)–(3.3) are discretized and solved using the Petrov–Galerkin
stabilized finite element method for viscoelastic flows (PEGAFEM-V) (Varchanis
et al. 2019, 2020b; Varchanis & Tsamopoulos 2022). The positive definiteness of the
conformation tensor C = Wi T/(1 − β) + I is enforced by a symmetric square root
reformulation of (3.3) (Balci et al. 2011). All flow variables (u, P,

√
C) are interpolated

by linear polynomials, and the computational mesh is composed of structured tetrahedral
elements. The three-dimensional mesh is created by revolution of a two-dimensional
mesh (quadrilateral elements) around the z-axis and appropriate tetrahedralization of the
resulting hexahedral and prismatic elements. This handling guarantees that the mesh
is always axisymmetric (figure 2a). Moreover, the mesh is highly refined around the
downstream stagnation point (figure 2b). A mesh convergence study is given in figure 2(c).
Additional mesh convergence and validation studies can be found in Appendices A and B.
Mesh M2 (see table 1) was used in all direct steady-state simulations presented in the main
text.

For a given set of flow parameters (Wi, β, BR), we first perform transient simulations.
The initial conditions are u = 0, P = 0 and

√
C = I . At time t = 0+, a velocity

u = [0, 0, 1 − e−t] is applied on the tube wall and inflow boundary. For high Wi, transient
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Mesh he No. of elements No. of nodes

M1 0.01 286 724 48 701
M2 0.005 802 380 135 577
M3 0.0025 2 166 792 364 697

Table 1. Main characteristics of the meshes used in this study. Here, he denotes the dimensionless element
‘length’ at the rear pole of the sphere. Element and node numbers refer to one-quarter of the geometry, assuming
symmetry across the x = 0 and y = 0 planes.

simulations starting from equilibrium are very challenging and may lead to divergence
of our numerical scheme. In cases where divergence of our time marching scheme is
encountered, we use the last steady state obtained from convergent transient simulations,
Wip, as the initial condition, and gradually increase the Weissenberg number according to
the expression Wi = Wip + dWi (1 − e−t/dWi), where dWi is the increment in Wi.

Time integration of (3.1)–(3.3) is performed using a fully implicit, second-order
backward finite difference time integration scheme (see Varchanis et al. (2019) for details).
The time step for all transient calculations is dt = 0.02. A time step convergence study
is given in Appendix A. In all transient simulations, we solve the whole geometry by
patching four M1 meshes. These transient simulations are extremely time-consuming, and
only mesh M1 was used.

The steady states obtained by the transient simulations are then interpolated to mesh
M2 and used as an initial guess for direct steady-state simulations at the same values of
the flow parameters. Depending on the resulting mode of instability, we take advantage
of possible planar symmetries to reduce the computational cost. For example, when a
transient simulation of the whole geometry yields a four-lobed solution, direct steady-state
simulations are performed by solving only a quarter of the geometry, assuming flow
symmetry across the x = 0 and y = 0 planes. In the direct steady-state simulations,
the time derivative in the constitutive equation (3.3) is neglected, and Wi is altered
gradually; this process is called parameter continuation. Finally, the families of steady
solution branches in the parametric space are traced by a pseudo-arc-length continuation
algorithm (see Varchanis, Dimakopoulos & Tsamopoulos (2017) for details). This handling
enables efficient tracking of regular and saddle-node bifurcations in the parametric space.
Furthermore, using the bifurcation theory and the fact that parameter continuation starts
from a steady state obtained by transient simulations, we can determine whether a solution
branch is stable or unstable.

6. Results and discussion

We consider a base case of a sphere falling in a tube with Rt = 2Rs (BR = 0.25), filled
with a semi-dilute solution (β = 0.1). Starting from low Wi values (figures 3a,b), the flow
reaches an axisymmetric steady state, exhibiting an extended elastic wake that intensifies
with increasing Wi. For Wi > Wic ≈ 1.55, axisymmetric states become unstable, and a
regular bifurcation occurs (figure 3a). Flow profiles suddenly change, and a four-lobed
solution emerges (figure 3c). A right angle is formed by each pair of neighbouring lobes,
and the flow exhibits two planar symmetries, each one with respect to the plane formed by
opposing lobes.
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Figure 3. (a) Asymmetry parameter I versus Weissenberg number Wi for β = 0.1 and BR = 0.25. (b,c)
Iso-surfaces of the dimensionless stress tensor trace (tr(T ) = 20) with superimposed dimensionless velocity
magnitude (|u|) contours for Wi = 2, on the (b) unstable and (c) stable solution branches. (d,e) Contours
of dimensionless velocity magnitude and stress tensor trace on the plane z = 1.4 for Wi = 2, β = 0.1 and
BR = 0.25, on the (d) unstable and (e) stable solution branches. The solution branches are obtained by direct
steady-state simulations assuming symmetry across the x = 0 and y = 0 planes. The stability of the branches
is determined by a transient simulation of the whole geometry for Wi = 2.

An examination of the bifurcated solution in figure 3(c) reveals that axisymmetry
is broken only downstream of the sphere; the flow upstream of the sphere is still
axisymmetric (observe contours around the upstream pole in figures 3b,c). Obviously, this
non-axisymmetric instability is strongly related to the downstream stagnation point. To
get a better insight into the flow and deformation profiles around the rear pole, we plot in
figures 3(d,e) the velocity magnitude and stress tensor trace contours on the plane z = 1.4,
for Wi = 2. Starting with the unstable, axisymmetric solution, we observe that uniaxial
extension takes place around the rear stagnation point; the radial velocity is proportional to
the radial coordinate r =

√
x2 + y2, and the stresses are uniformly distributed peripherally

of the sphere. In the stable, bifurcated solution, extension is constrained inside the lobes,
downstream of the sphere. We observe the formation of two sheets, aligned with each pair
of opposing lobes, where planar extension takes place. Clearly, planar extension becomes
favourable over uniaxial extension, beyond a critical value of the settling velocity.

It is also worth examining the drag force on the particle. Figure 4(a) presents the
dimensionless drag force versus Wi. Beyond Wic, the drag force is higher in the stable
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Figure 4. (a) Dimensionless drag force F D versus Weissenberg number Wi for β = 0.1 and BR = 0.25.
(b) Asymmetry parameter I versus Weissenberg number Wi for β = 0, 0.1, 0.2, 0.4 and BR = 0.25. (c)
Asymmetry parameter I versus Weissenberg number Wi for β = 0.1 and Rs/Rt = 1/1.4, 1/2, 1/2.8, 1/4
(BR ≈ 0.062, 0.128, 0.25, 0.51). (d) Reciprocal critical Weissenberg number 1/Wic versus blockage ratio BR.
All solution branches are obtained by direct steady-state simulations assuming symmetry across the x = 0 and
y = 0 planes.

bifurcated state, meaning that more power is dissipated and a lower terminal velocity (Us)
is reached, compared to the unstable axisymmetric case. Consequently, this bifurcation
drives the system to a higher energy dissipation rate. This observation contradicts patterns
observed in steady elastic instabilities around planar stagnation points (Poole et al. 2007;
Varchanis et al. 2020a), where the stable asymmetric solutions dissipate less power
than the unstable symmetric ones. Our finding is unexpected because the transition of
the system to lower energy dissipation rates and the related ‘stress relief mechanism’
could partially explain such instabilities (Poole et al. 2007). However, the minimum
energy principle strictly holds under equilibrium, and does not necessarily hold in
out-of-equilibrium states (e.g. flowing systems). A representative example is the inertial
breakage of axisymmetry around a sphere falling in a Newtonian fluid, where the stable
non-axisymmetric solutions dissipate more power (Jenny, Dušek & Bouchet 2004) than
the unstable axisymmetric ones, in complete analogy to the present observations.

To understand the physics of this flow instability, we investigate the influence of the
rheological and geometrical parameters in our model. We start with the rheological
parameter, β, which mainly governs the shear response of the fluid (Varchanis et al.
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2022b). Note that the steady extensional viscosity is relatively insensitive to β. For
ε̇ ≥ 1/(2λ) (necessarily true when the instability occurs) and various β values, differences
in the startup extensional viscosity will be observed only at early times. As the stresses
evolve, any solvent contribution will become negligible compared to the exponentially
growing tensile stresses. Residence times around stagnation points are long. Thus the
role of β in extension-dominated regions is negligible. However, β plays a crucial role in
shear-dominated regions (after the front and before the rear pole of the sphere). As shown
by Varchanis et al. (2022b), low β values can create apparent shear thinning effects in
shear-dominated flows, even when using the Oldroyd-B model. Thus in shear-dominated
regions, low values of β allow variations in the local viscosity, while high values of β

imply a Newtonian-like response with almost constant local viscosity. Figure 4(b) shows
the effect of varying β for BR = 0.25. As β is increased (i.e. local viscosity variations
in shear-dominated regions are suppressed), the onset Wic for asymmetry increases. In
addition, for a given Wi, increasing β tends to reduce the asymmetry magnitude. Hence
we can conclude that local viscosity variations in the shear-dominated flow regions around
the sphere promote non-axisymmetric flow profiles. We believe that this steady elastic
instability will completely vanish for sufficiently large values of β, in analogy with
the steady elastic instabilities in the cross-slot channel (Xi & Graham 2009; Canossi,
Mompean & Berti 2020; Yokokoji et al. 2024) and the flow past a cylinder in a confined
channel (Varchanis et al. 2020a). We do not present solutions for β > 0.4 because the
stress boundary layers around the rear stagnation point become very thin, and reliable
solutions cannot be obtained with the present spatial discretization. In accordance with
our observations, increasing β has been found to diminish non-axisymmetric solutions in
Taylor–Couette flows (Avgousti & Beris 1993).

Next, we proceed to the effect of the geometrical parameter BR. Figure 4(c) shows the
effect of varying BR for β = 0.1. Increasing BR decreases the onset Wic for asymmetry,
and for a given Wi, increases the asymmetry magnitude. This happens because as BR
increases, the extension rate at the rear stagnation point becomes considerably larger than
the characteristic extension rate (Us/Rs), and extension hardening comes into play at lower
Wi values. Thus extension hardening also promotes non-axisymmetric flow states.

The BR parametric analysis also provides important information about the onset of this
flow phenomenon. A well-known criterion for the onset of purely elastic (i.e. inertialess)
flow instabilities proposed by McKinley, Pakdel & Öztekin (1996) considers the generation
of elastic tensile stresses along curving streamlines and can be expressed as

λU
R

τss

ηγ̇
= M2, (6.1)

where R is the characteristic radius of curvature of the streamline, τss is the streamwise
tensile stress, and γ̇ is the local deformation rate. When, at some locality in the flow
field, the left-hand side of (6.1) exceeds a critical value M2

c , the flow becomes prone to
instability originating from that location. For flows past a sphere falling in a tube, simple
scaling arguments for the values of R, τss and γ̇ around the downstream stagnation point
(McKinley et al. 1996) indicate that flow instability will arise for

1
Wic

= 1 + aBR

Mc
, (6.2)

where a is a numerical constant that is determined from experiments or simulations. Our
computational results for BR versus 1/Wic (figure 4d) follow the predicted linear scaling
very well. Fitting (6.2) to the data in figure 4(d) yields a = 5.5 and Mc = 3.6 (with Mc
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being consistent with values reported in other purely elastic instabilities; McKinley et al.
1996). These arguments strongly suggest that the initial perturbation to the flow field that
drives the breakage of axisymmetry is due to the accumulation of elastic tensile stresses
along the strongly curving streamlines passing around the downstream stagnation point.

Keeping all these points in mind, we propose a mechanism for the onset and subsequent
evolution of this flow instability. At low settling velocities (Wi < Wic), the extensionally
thickened fluid downstream of the sphere lies axisymmetrically around the z-axis, and the
local viscosity does not vary azimuthally. At the onset of critical conditions (Wi ≈ Wic),
the accumulation of elastic tensile stresses along the highly curving streamlines around
the rear stagnation point causes a disturbance that perturbs the elastic wake randomly
in the radial direction (figure 5a). Due to the axisymmetric nature of the geometry, the
radial deflection of the elastic wake generates non-axisymmetric disturbances downstream
of the sphere. These non-axisymmetric disturbances create variations in the deformation
rate and introduce shear contributions peripherally of the rear stagnation point. The
presence of shear deformations will give rise to increased and reduced flow resistance
paths. The local viscosity will decrease in regions with increased shear deformations
(indentations), while it will remain high in extension-dominated flow regions (lobes). This
flow resistance inequality will push more fluid into the indentations, amplify the azimuthal
disturbances, and eventually lead to the establishment of the non-axisymmetric steady
state.

In this new flow configuration, the flow is slow and extension-dominated (high stresses)
inside the lobes, while it is fast and shear-dominated (low stresses) inside the indentations.
Additionally, streamline curvature is minimized inside the lobes and maximized inside
the indentations. This high-stress/low-streamline curvature combination inside the lobes
(figure 5b) along with the low-stress/high-streamline curvature combination inside the
indentations (figure 5c) leads to a more topologically stable form, which is resistant to flow
perturbations. Our arguments are additionally supported by plotting the spatial variation
of M in (6.1) (Cruz et al. 2016) for two steady states with the same flow parameter values
(Wi = 2, β = 0.1, BR = 0.25) on the stable and unstable solution branches, respectively
(see figures 5d,e). On the unstable branch, the large volume of fluid that passes through the
red toroidal surface (red iso-surface for M = 4.5 in figure 5d) is prone to elasticity-driven
flow perturbations, leading to a topologically unstable axisymmetric form. In the stable
branch, the volume of fluid that is prone to perturbations is very small and localized at
each lobe tip (red iso-surfaces for M = 4.5 in figure 5c), leading to topologically stable
and observable patterns.

One last question that must be answered is why the flow bifurcates to four-lobed shapes.
We simulated many cases with various numbers of elements around the sphere, which
could presumably trigger solutions with different lobe numbers (e.g. using 81 elements
in the φ-direction would favour three-lobed solutions), but we always obtained four-lobed
stable solutions. We believe that shapes with point symmetry are favoured over shapes
without it because point symmetry can be seen as reminiscent of axisymmetry (the
previous state of the system). According to this idea, we expect only even-number-lobed
shapes behind perfectly spherical particles falling in perfectly circular cross-section tubes.
However, a two-lobed shape is inconsistent with our physical mechanism because it
leads to a single sheet of planar extension downstream of the sphere. This disallows the
formation of low-resistance, shear-dominated paths and the transition of the system to
more topologically stable forms. On the other hand, four is the smallest lobe number
exhibiting point symmetry and allowing the formation of low-resistance paths; this is
why we observe four-lobed shapes. Nevertheless, we cannot exclude the emergence of
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Figure 5. (a) Schematic illustration of the destabilization mechanism for non-axisymmetric flow of
viscoelastic fluids past a sphere. Coloured regions are indicative of the stress tensor trace obtained from
numerical simulations. (b,c) Contours of the dimensionless stress tensor trace with superimposed streamlines at
(b) φ = 3π/4 (red sheet), and (c) φ = π/2 (blue sheet), for Wi = 2, β = 0.1 and BR = 0.25. The streamlines
in (b,c) pass from the points (r, φ, z) = (0.1, 3π/4, −2) and (0.1, π/2, −2), respectively. (d,e) Translucent
iso-surfaces of the dimensionless stress tensor trace (tr(T ) = 20) along with red iso-surfaces of the spatial
variation of parameter M (M = 4.5) for Wi = 2, β = 0.1 and BR = 0.25 on the (d) unstable and (e) stable
solution branches.

odd-number-lobed shapes in non-axisymmetric geometries (e.g. particles and/or tubes
with surface defects).

Finally, we examine what happens at higher Wi values. Figure 6(a) presents I
versus Wi for our base case. After the regular bifurcation at Wi ≈ 1.55 and the
emergence of four-lobed shapes, the asymmetry parameter increases with increasing Wi.
However, at Wi ≈ 2.7, we observe two successive saddle-node bifurcations, defining
a hysteresis loop, and giving rise to eight-lobed shapes (see figure 6d). After the
first saddle-node bifurcation at Wi ≈ 2.7, each lobe tip is split into two new lobes,
and low-resistance paths emerge in between the pairs of new lobes. We interpret
this transition using the physical mechanism proposed for the breakage of azimuthal
symmetry. Tensile stresses around lobe tips grow exponentially with Wi (the flow is
extension-dominated at these regions). Even if streamline curvature remains constant
around these points, M increases proportionally with the square root of tensile stresses
(6.1) and Wi. At some Wic,2 and Mc,2, perturbations caused by tensile stresses along
curving streamlines destabilize the flow locally, and following the same events described
in previous paragraphs, the extension-dominated lobe tip evolves into a more topologically
stable form. The localities where perturbations originated from (figure 5e) become
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shear-dominated (high-curvature/low-stress combination) and extension is ‘diffused’
to the new lobes (low-curvature/high-stress combination), leading to the eight-lobed
shape. Interestingly, this eight-lobed structure resembles experimentally measured shapes
(Haward 1998) behind steel spheres falling in high molecular weight polystyrene
(HMWPS) using flow-induced birefringence (figure 6f ). Although the Oldroyd-B model
cannot quantitatively describe the rheology of HMWPS solutions, a visual comparison
between the simulated (figure 6e) and experimental (figure 6f ) stress fields reveals a nice
qualitative agreement and validates our toy model.

One can envision that the tip-splitting process will continue indefinitely with increasing
Wi, and eventually lead to a dendritic, fractal-like structure. Similar fingering instabilities
leading to dendritic patterns have been observed in many interfacial flows, such as the
invasion of one Newtonian fluid into another (Bischofberger, Ramachandran & Nagel
2014), and the decohesion of viscoelastic fluids (or soft media) from flat surfaces
(Anna et al. 1997; Bach et al. 2002; Lin et al. 2016). Figure 6(g) presents photos
from viscoelastic fluid filament stretching experiments (Anna et al. 1997). A cylindrical
sample of polystyrene solution is placed between two plates, and the upper plate is
separated at a prescribed velocity from the lower one, which is held still. As the process
evolves, a cylindrical fluid column is formed, while side and bottom views of the lower
glass endplate are provided (figure 6g). The filament is axisymmetric at low strains. As
strain accumulates, non-axisymmetric disturbances arise peripherally of the filament. The
intensity of these disturbances maximizes close to the endplate. Initially, the disturbances
have a four-lobed shape, but each lobe tip is split as strain increases. The deformation
patterns in figure 6(g) greatly resemble the flow profiles behind the sphere (figures 6b–d),
and this is not coincidental. If we restrict our analysis very close to the stagnation points,
then we can neglect the sphere curvature (flow past a sphere) and the presence of the
free surface (filament stretching case). Now, both flow set-ups are identical: fluid detaches
from a solid surface, forming a cylindrical ‘stream’ around a stagnation point. The only
difference is the limited amount of fluid in the filament case. As the process evolves, the
liquid reservoir on the endplate drains, leading to a thinner and faster ‘stream’. The flow
is time-dependent, and strain increases monotonically with time. Instead, incoming fluid
fuels the stagnation point behind the sphere, a finite amount of strain is accumulated along
streamlines passing near that region, and a steady state is established. These arguments
strongly suggest that we observe the same elastic instability in both cases and further
support our theory.

Finally, it is intuitive to discuss the similar patterns observed in the present inertialess
viscoelastic flow and the inertial Newtonian flow past a confined sphere. At low Reynolds
numbers, the Newtonian flow is steady and axisymmetric. At Re ≈ 105, a regular
bifurcation causes the breakage of axisymmetry (Natarajan & Acrivos 1993) and leads
to the formation of a ‘double-thread’ inertial wake (Tomboulides & Orszag 2000). In this
new flow configuration, the flow is steady, and the flow profiles exhibit planar symmetry
(Tomboulides & Orszag 2000). The similarity between the inertialess viscoelastic and
inertial Newtonian flows is, therefore, in the loss of the axisymmetric solution stability
via a regular bifurcation and the transition of the system to nonaxisymmetric steady states
with planar symmetries. However, these systems follow different paths as elasticity and
inertia increase. A hysteresis loop at Wi ≈ 2.7 drives the inertialess viscoelastic system
to a new steady state with an eight-lobed elastic wake. In contrast, a Hopf bifurcation at
Re ≈ 270 drives the inertial Newtonian system to time-dependent and eventually chaotic
states. We did not examine flow profiles for Wi > 3, but we believe that the flow will
become time-dependent at higher Wi, in analogy with other elastic instabilities around
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Figure 6. (a) Asymmetry parameter versus Weissenberg number for β = 0.1 and BR = 0.25. The solution
branches are obtained by direct steady-state simulations assuming symmetry across the x = 0 and y = 0
planes. The stability of the branches is determined by transient simulations of the whole geometry for
Wi = 2 and 3. (b i,c i,d i) Iso-surfaces of the dimensionless stress tensor trace (tr(T ) = 20) with superimposed
dimensionless velocity magnitude (|u|) contours for (b) Wi = 1.3, (c) Wi = 2, (d) Wi = 2.7 on the stable
solution branch (β = 0.1, BR = 0.25). (b ii,c ii,d ii) Contours of the dimensionless stress tensor trace on the
plane z = 1.4 for (b) Wi = 1.3, (c) Wi = 2, (d) Wi = 2.7 on the stable solution branch (β = 0.1, BR = 0.25).
(e, f ) Visual comparison between iso-surfaces of the dimensionless stress tensor trace (tr(T ) = 50) obtained
from simulations (Wi = 3.5, β = 0.1, BR = 0.25) and experimentally measured flow-induced birefringence
for a steel ball falling in a polystyrene solution (Wi ≈ 3.5) (Haward 1998). (g) Elongation of viscoelastic
fluid filaments: (g i,ii) side views for increasing strain, (g iii,iv) bottom views through a glass endplate for
increasing strain. Reproduced with permission from Anna, Spiegelberg & McKinley (1997). Copyright 1997,
AIP Publishing LLC.
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stagnation points (Poole et al. 2007; Varchanis et al. 2022a). Elasticity and inertia are
two forces that manifest at different length scales, act in a very different way, and even
suppress each other when they are both present in a flow. However, it seems that they can
cause similar flow phenomena when only one of them is present. Analogous correlations
have been made in the elastic (Poole et al. 2007) versus inertial (Poole, Rocha & Oliveira
2014) breakage of planar symmetry in a cross-slot flow.

7. Conclusions

To conclude, we have discovered a new viscoelastic fingering instability during the
sedimentation of a sphere. The onset and subsequent evolution of the instability depend
solely on the interplay between shear and rate-dependent extensional viscosities of
the viscoelastic fluid. Our analysis advances the fundamental understanding of the
relationship between rheological properties and macroscopically observed phenomena in
non-Newtonian flows, and sheds light on the physical mechanisms that trigger elastic
fingering instabilities in a wide class of flows, including flows past rigid particles and
decohesive flows.
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Appendix A. Analysis of the flow profiles around the hysteresis loop at high
Weissenberg numbers

Figure 7(a) presents the effect of mesh size on the asymmetry parameter for high
Weissenberg numbers. Mesh convergence at these values of Wi is slow because of
the exponentially growing stresses predicted by the Oldroyd-B model at the rear
stagnation point. Nevertheless, the hysteresis loop is numerically reproducible. Figure 7(b)
demonstrates the time step independence of the obtained solution, and verifies that the
lower branch is stable. Moreover, the stationary point monotonically attracts the transient
trajectory, indicating the absence of eigenvalues with imaginary parts. According to these
observations, the stationary points around Wi = 2.8 on the lower branch are stable nodes.

Figure 8 compares the solutions on each branch of the hysteresis loop at Wi = 2.512.
The tip-slitting occurs at the first turning point at Wi ≈ 2.72, and the solutions on the
intermediate and lower branches are characterized by eight-lobed elastic wakes. The
amplitude of the disturbances is more pronounced on the lower branch, and increases
monotonically with Wi after the second turning point at Wi ≈ 2.41. No fourfold solutions
exist for Wi > 2.72, and no eightfold solutions exist for Wi < 2.41.
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Figure 7. (a) The effect of mesh size on the asymmetry parameter for β = 0.1 and BR = 0.25. The solution
branches are obtained by direct steady-state simulations assuming symmetry across the x = 0 and y = 0 planes.
These solution branches are obtained by direct steady-state simulations assuming symmetry across the x = 0
and y = 0 planes. (b) The effect of time step size on the asymmetry parameter evolution for β = 0.1 and
BR = 0.25. Starting from the steady state at Wi = 1.8, we increase Wi to 2.8 according to the expression
Wi(t) = 1.8 + (1 − e−t). The whole geometry is solved in these transient simulations.
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Figure 8. (a) Asymmetry parameter versus Wi for β = 0.1 and BR = 0.25. (b–d) Iso-surfaces of the
dimensionless stress tensor tr(T ) = 20 with superimposed dimensionless z-velocity (uz) contours for Wi =
2.512, on the (b) upper, (c) intermediate, and (d) lower branches. This solution branch is obtained by direct
steady-state simulations assuming symmetry across the x = 0 and y = 0 planes.

Appendix B. Validation of the numerical method

In a spherical coordinate system (r, θ, φ), with θ and φ denoting the polar and azimuthal
coordinates, respectively, one can integrate over the fluid volume that is enclosed between
the surface of the sphere (r = 1) and any imaginary sphere with the same centre as the
sphere and radius r, and apply the divergence theorem and the boundary conditions at the
surface of the sphere to prove that

C(r) ≡
∫

S
u · er dS = 0, (B1)
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Figure 9. Absolute values of (a) C(r)/πr2 and (b) [(M(r) − F D) · ez]/πr2 versus r − 1 for β = 0.1, BR =
0.25, and various Wi values. These errors are obtained by direct steady-state simulations assuming symmetry
across the x = 0 and y = 0 planes.

k r = 1.01 r = 1.05 r = 1.5

4 0.00069740 0.00048742 −0.00140843
8 −0.00002574 −0.00003372 −0.00000987
12 0.00000767 0.00001041 0.00000085
16 −0.00000349 −0.00000254 −0.00000004
20 0.00000149 0.00000125 0.00000000

Table 2. Fourier coefficients of the azimuthal velocity for Wi = 1.8, β = 0.1 and BR = 0.25 at θ = π/2 and
various r. Mesh M2 is used.

for any r > 1. Here, dS = r2 sin θ dθ dφ. Consequently, |C(r)|/4πr2 is proportional to
the θ - and φ-averaged discretization error of the continuity equation (3.1). Accordingly,
starting from (3.2), we can show that

M(r) ≡
∫

S
(−PI + T + 2βD) · er dS = F D, (B2)

for any r > 1. Thus |(M(r) − F D) · ez|/4πr2 is proportional to the θ - and φ-averaged
discretization error of the momentum equation (3.2). Figure 9 shows these errors for
three different Wi values. The surface integrals are calculated from the continuous finite
element solution. For M2 mesh, the ‘element size’ ranges along r from he(r = 1) ≈ 0.005
to he(r = 2) ≈ 0.08.

We also examine the azimuthal velocity (uφ = u · eφ) on the x–y plane (θ = π/2). In
a sufficiently resolved velocity field, the magnitude of the Fourier expansion coefficients
uφ = c0/2 + ∑∞

k=1(ck cos(kφ) + sk sin(kφ)) should drop for high values of the k index.
We performed the Fourier analysis for Wi = 1.8, β = 0.1, BR = 0.25, and various r.
We found that ck < 10−11 for any k. Also, sk < 10−11 for any k /= 4, 8, 12, . . . . Table 2
presents sk for k = 4, 8, 12, 16, 20. The magnitude of these coefficients drops for high
values of the k index; thus the velocity field is sufficiently resolved.
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Finally, we examined the torque (T q) exerted on the sphere in simulations with the
whole geometry (using the discretization of M1 mesh). We found that T q < 10−15 for any
Wi < 3. This should be expected when an axisymmetric mesh is used.
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