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Abstract Felix and Murillo introduced the group AutΩ(X) of self-maps f of X, which satisfy Ωf =
1ΩX , and proved that the group is nilpotent with the order of nilpotency bounded by the Lusternik–
Schnirelmann category of X. In this paper we construct a spectral sequence converging to the group
AutΩ(X) and derive several interesting consequences.
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1. Introduction

Given a pointed CW-complex X let Aut(X) denote the set of homotopy classes of self-
maps of X which are homotopy equivalences. When endowed with the operation induced
by the composition of maps, Aut(X) becomes a group, called the group of self-homotopy
equivalences of X. This group has been extensively studied (see the survey [1] or the
recently published monograph [11]).

The purpose of this paper is to use spectral sequences to study the normal subgroup
AutΩ(X) of Aut(X), defined as the kernel of the homomorphism

Aut(X) → Aut(ΩX)f �→ Ωf.

The homomorphisms induced by Ωf on the homotopy groups of ΩX are the same (after
a shift in dimension) as those induced by f on the homotopy groups of X. It follows
that AutΩ(X) is a subgroup of the group Aut�(X), the kernel of the representation
Aut(X) → Autπ∗(X). The group AutΩ(X) was introduced by Felix and Murillo in [5],
where they showed that AutΩ(X) and Aut�(X) are generally different, that AutΩ(X)
is a nilpotent group, and that its order of nilpotency is bounded by the Lusternik–
Schnirelmann category of X.

Our construction is modelled after the construction of a spectral sequence converging
to the group Aut�(X), due to Didierjean in [4]. For later reference we recall that the
initial term of Didierjean’s spectral sequence is given by

Ep,q
1 = H2p+q+1(Xp; πp+1X),
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where p > 0, p + q ∈ {−1, 0, 1} and Xp is the pth Postnikov section of X. When
X is either finite dimensional or a Postnikov piece, the spectral sequence converges to
Aut�(X).

We will find that there is a spectral sequence converging to AutΩ(X) whose ini-
tial term differs from those in the previously described one only in the terms Ep,−p

1 ,
which are in general proper subgroups of the corresponding groups in the spectral
sequence of Didierjean. The construction of the spectral sequence will be carried out
in § 2. The usual methods for the construction of spectral sequences like exact cou-
ples are not appropriate, since they require the exactness of certain sequences, which
is lacking in our case, due essentially to the fact that the exact homotopy sequence
of a fibration is not exact in dimension 0. To overcome this difficulty some modifica-
tions are in order, and they are most easily described when the spectral sequence is
constructed by means of a Cartan–Eilenberg system. The classical reference for Cartan–
Eilenberg systems is [3], while the appropriate modifications can be found in [2], [6]
and [4]. In § 3 we apply the spectral sequence to derive some general conditions when
AutΩ(X) is trivial or when it equals Aut�(X). Next we consider its relation to the local-
ization: if P is a set of primes, and if X is simply connected, let X → XP denote the
localization with respect to P . In view of the theorems of Maruyama [8, 9] one would
expect that the natural homomorphism AutΩ(X) → AutΩ(XP ) P -localizes. This is
indeed the case when X is a Postnikov piece, while for X a finite complex, some prob-
lems arise and the answer is still unsatisfactory. We close § 3 with some computational
examples.

2. Construction of the spectral sequence

As we have already explained, the Cartan–Eilenberg method is best suited for our pur-
poses. Recall that a (non-abelian) Cartan–Eilenberg system is given by the following data
(for details, see [4]):

(i) abelian groups H−1(p, q) for 0 � p � q � ∞,

(ii) groups H0(p, q) for 0 � p � q � ∞,

(iii) pointed sets H1(p, p + 1) with base points bp for 0 � p < ∞,

(iv) homomorphisms η : Hn(p, q) → Hn(p′, q′) for n ∈ {−1, 0}, p � p′ and q � q′,

(v) homomorphisms δ : H−1(p, q) → H0(q, r) for p � q � r,

(vi) actions of H0(p, q) on H1(q, q + 1) which, through the action on the base-point,
define functions

δ : H0(p, q) → H1(q, q + 1) as δ : x �→ x · bq.
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These data satisfy some obvious commutativity and exactness conditions, most notably
the requirement that the following sequences are exact:

(i) when p � q � r,

H−1(q, r)
η �� H−1(p, r)

η �� H−1(p, q)

δ �� H0(q, r)
η �� H0(p, r)

η �� H0(p, q),

and

(ii) when p � q,

H0(p, q + 1)
η �� H0(p, q) δ �� H1(q, q + 1).

The proof of the following theorem requires only a straightforward verification of the
assertions (alternatively, follow [2]).

Theorem 2.1. Every non-abelian Cartan–Eilenberg system defines a spectral se-
quence (Er, dr) of cohomological type whose initial term is given by

Ep,q
1 = Hp+q(p, p + 1),

when p + q ∈ {−1, 0, 1}, and Ep,q
1 = 0 otherwise.

If there exists some P such that Hn(p, p + 1) is trivial when p > P , then this spec-
tral sequence converges to the graded group H0(0,∞) in the sense that the E∞ term
corresponds to the subquotients of the filtration

F pH0(0,∞) = Im(H0(p, ∞) → H0(0,∞)) = Ker(H0(0,∞) → H0(0, p)).

Finally, if H0(p, p + 1) and H1(p, p + 1) are abelian groups, and if the function

H0(p, p + 1) → H1(p + 1, p + 2), x �→ x · bp+1 − bp+1

is a homomorphism, then the resulting spectral sequence consists of abelian groups and
their homomorphisms.

We now apply the Cartan–Eilenberg method to construct a spectral sequence converg-
ing to AutΩ(X). Let X be of the homotopy type of a simply connected CW-complex,
and let

X2 ← X3 ← · · · ← Xp ← · · · ← X = lim
←

Xp

be the Postnikov decomposition of X, where Xp is the homotopy fibre of the Postnikov
invariant

ξp : Xp−1 → K(πpX, p + 1) (p = 2, 3, . . . ).

The Postnikov decomposition of a space is natural in the sense that for p � q there is a
fibre map between function spaces

map(Xq, Xq) → map(Xp, Xp),

https://doi.org/10.1017/S0013091501000554 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091501000554


676 P. Pavešić

thus, by restriction, we obtain a fibre map

autΩ(Xq) → autΩ(Xp).

Let F q
p denote the fibre (over 1Xp) of autΩ(Xq) → autΩ(Xp). For p � q � r there is a

fibration
F r

q ↪→ F r
p → F q

p ,

which allows the construction of a non-abelian Cartan–Eilenberg system: for p � q and
n ∈ {−1, 0} let Hn(p, q) := π−n(F q

p ); the homomorphisms η are induced by restrictions,
while the homomorphisms δ are determined by boundary homomorphisms in the homo-
topy long exact sequences of fibrations F r

q ↪→ F r
p → F q

p (note that the sequence starts at
the level of classifying spaces, so we get homomorphisms at the π0 level); for p � 0 let
H1(p, p + 1) be the set [Xp, K(πp+1X, p + 2)] with ξp+1 as base point; and, finally, let
H0(p, q) = π0(F q

p ) act on H1(q, q + 1) by pre-composition.
All properties required for a Cartan–Eilenberg system, except the exactness of the

sequence

H0(p, q + 1)
η �� H0(p, q) δ �� H1(q, q + 1) ,

follow directly from the definitions. To verify the remaining condition observe that for an
f ∈ H0(p, q), represented by a map f : Xq → Xq and satisfying Ωf = 1Xq , the condition
δ(f) = ξq+1 ◦ f = ξq+1 implies that there is a lifting f̄ : Xq+1 → Xq+1 for f , such that
Ωf̄ = 1Xq+1 .

Theorem 2.2. Let X be a simply connected CW-complex. Then there exists a spectral
sequence of cohomological type whose initial term is given as

Ep,−p−1
1 = Hp(X; πp+1X),

Ep,−p
1 = Ker(Ω : Hp+1(X; πp+1X) → Hp(ΩX; πp+1X)),

Ep,−p+1
1 = Hp+2(Xp; πp+1X),

where Ω is the cohomology suspension and p > 0.
If X is either finite dimensional or a Postnikov piece, then the spectral sequence con-

verges to the group AutΩ(X), i.e. the groups Ep,−p
∞ are the subquotients of the filtration

F p(AutΩ(X)) = Im(AutΩ,Xp(X) → AutΩ(X)),

where AutΩ,Xp(X) is the subgroup of AutΩ(X) consisting of self-equivalences which fix
the Postnikov section Xp.

Proof. Let us begin with the identification of the E1 term. Denote by aut�Xp(Xp+1)
the space of self-maps over Xp of Xp+1, which induce identity automorphisms on homo-
topy groups. By the remark following Proposition 3.1 of [4] and the proposition itself,
the map

Φ : map(Xp, K(πp+1X, p + 1)) → aut�Xp(Xp+1),
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which to an α : Xp → K(πp+1X, p + 1) assigns the composition

Xp+1 (1,α◦pr)−−−−−→ Xp+1 × K(πp+1X, p + 1)
µ �� Xp+1 ,

is a homotopy equivalence. It follows that Ep,−p−1
1 , the fundamental group of (the iden-

tity component of) aut�Xp(Xp+1), is isomorphic to Hp(Xp; πp+1X), which is in turn
isomorphic to Hp(X; πp+1X).

Since the Postnikov sections of ΩX are the spaces ΩXp, and since clearly α represents
an element of π0(F p+1

p ) if and only if Ωα � 0, as a map from ΩXp to K(πp+1X, p), we
obtain

Ep,−p
1 = π0(F p+1

p ) = Ker(Ω : Hp+1(Xp; πp+1X) → Hp(ΩXp; πp+1X)).

From the cohomology sequence of the pair (Xp, X) we see that Hp+1(Xp; πp+1X) is
isomorphic to the kernel of the connecting homomorphism

δ : Hp+1(X; πp+1X) → Hp+2(Xp, X; πp+1X).

Moreover, Hp+2(Xp, X; πp+1X) ∼= Hom(Hp+2(Xp, X), πp+1X), so, by the Hurewicz The-
orem, Hp+2(Xp, X) ∼= πp+2(Xp, X) ∼= πp+1X, so Hp+1(Xp; πp+1X) can be described as
the kernel of the homomorphism

Hp+1(X; πp+1X) = [X, K(πp+1X, p + 1)] → Hom(πp+1X, πp+1X),

which to an α : X → K(πp+1X, p + 1) assigns the induced homomorphism in πp+1.
Similarly, by considering the pair (ΩXp, ΩX), the group Hp+1(ΩXp; πp+1X) can be
identified with the kernel of the analogous homomorphism

[ΩX, K(πp+1X, p)] → Hom(πp+1X, πp+1X).

Since an α : X → K(πp+1X, p + 1), which satisfies Ωα = 0, induces a trivial homomor-
phism in homotopy, it represents an element of Hp+1(Xp, πp+1X), and hence an element
of Ker(Ω : Hp+1(Xp; πp+1X) → Hp(ΩXp; πp+1X)).

The convergence is proved as in Theorem 2.3. of [4]. �

3. Applications

We begin with two corollaries, which follow from elementary properties of the cohomology
suspension.

Corollary 3.1. If X is a co-H-space, then AutΩ(X) is trivial.

Proof. It is well known that in co-H-spaces the cohomology suspension is injective,
hence all terms Ep,−p

1 are trivial. �

On the opposite extreme we have the following corollary.
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Corollary 3.2. If X is a rational space, then AutΩ(X) = Aut�(X).

Proof. For dimensional reasons all elements in Hp+1(Xp; πp+1X) are products, and
are therefore annihilated by the cohomology suspension. Hence, the spectral sequences
for AutΩ(X) and for Aut�(X) coincide. �

Let P be a set of primes, and let X → XP denote the localization with respect to P .
Since the localization commutes with the loop space construction, it is natural to ask if
the induced homomorphism AutΩ(X) → AutΩ(XP ) is a localization of nilpotent groups.
This is indeed true when X is a Postnikov piece but unfortunately we have not been
able to prove the analogous result for X a finite-dimensional complex. The difficulty
is of the same kind as in the case of the localization of the group of self-equivalences
which induce identity on all homotopy groups. Maruyama [8] proved that when X is a
finite-dimensional complex, then Aut�n(X) → Aut�n(XP ) is the P -localization, where
Aut�n(X) denotes the group of self-equivalences which induce identity of the first n

homotopy groups. However, it is still unknown if Aut�(X) → Aut�(XP ) also localizes.

Theorem 3.3. Let X be a Postnikov piece. Then for any set of primes P the natural
homomorphism AutΩ(X) → AutΩ(XP ) is the P -localization.

Proof. The proof is by comparison of spectral sequences. Indeed, the localization
X → XP induces the localization between the corresponding spectral sequences, which
in turn implies that AutΩ(X) → AutΩ(XP ) is a P -localization. �

If X is an n-dimensional CW-complex, then the natural homomorphism Aut(X) →
Aut(XN ) is bijective for N � n. Let AutΩ,N (X) denote the subgroup of Aut(X) con-
sisting of classes represented by maps f : X → X, such that fN ∈ AutΩ(XN ). Clearly,
AutΩ,N (X) ∼= AutΩ(XN ), so we get the following result analogous to Theorem 0.1 of [8].

Corollary 3.4. If X is an n-dimensional CW-complex, then for any set of primes
P and for N � dim(X) the natural homomorphism AutΩ,N (X) → AutΩ,N (XP ) is a
P -localization.

A similar restriction is required for the following result, which compares the groups
Aut�(X) and AutΩ(X).

Corollary 3.5. If the natural homomorphism AutΩ(X) → AutΩ(X(0)) is a rational-
ization, then Aut�(X)/ AutΩ(X) is a finite group.

Proof. By the universal property, the group (Aut�(X))(0) can be identified with a
subgroup of Aut�(X(0)). It follows that the group (Aut�(X)/ AutΩ(X))(0) is smaller than
Aut�(X(0))/ AutΩ(X(0)), which is trivial, by Corollary 3.2. �

We now give some simple computational examples.

Theorem 3.6. AutΩ(Sm × Sn) ∼= Aut�(Sn × Sm).
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Proof. It is sufficient to show that the Ep,−p
1 terms of the spectral sequence for

AutΩ(Sm × Sn) coincide with the corresponding terms of the spectral sequence for
Aut�(Sm × Sn). In the second case, a straightforward computation shows that the only
non-trivial term is

Em+n−1,−m−n+1
1 = πm+n(Sm) ⊕ πm+n(Sn),

so we only need to show that

Ω : Hm+n(Sm × Sn, πm+n) → Hm+n−1(ΩSm × ΩSn, πm+n)

(where πm+n = πm+n(Sm × Sn)) is trivial. In order to do so, observe that every map
f : Sm × Sn → K(πm+n, m + n) can be factored up to homotopy as

Sm × Sn
f ��

q

��

K(πm+n, m + n)

Sm+n = Sm ∧ Sn

f̄

����������������

and that Ωq = 0, since q represents a product in Hm+n(Sm × Sn). It follows that

Em+n−1,−m−n+1
1 = Hm+n(Sm × Sn; πm+n) = πm+n(Sm × Sn).

�

The groups Aut�(Sm × Sn) are computed in Proposition 5.5 of [10], so we obtain

AutΩ(Sm × Sn) ∼= Coker([ım,−]) ⊕ Coker([ın,−]),

where [ım,−] : πn+1(Sm) → πn+m(Sm) and [ın,−] : πm+1(Sn) → πm+n(Sn) are White-
head products with fundamental classes of Sm and Sn, respectively. By standard com-
putation,

AutΩ(S3 × Sn) ∼= πn+3(S3) ⊕ πn+3(Sn) for n > 4

and
AutΩ(S3 × S4) ∼= π7(S3) ⊕ π8(S5).

Finally, putting together the above theorem with the previous results on localization
yields the following corollary.

Corollary 3.7. Assume that X is a simply connected space, which is p-equivalent,
with respect to some prime p, to a product of two spheres. Then (AutΩ(X))(p) =
(Aut�(X))(p).

Proof. First observe that AutΩ(Sm ×Sn) is finite, hence there exists an N such that
AutΩ(X(p)) = AutΩ((XN )(p)). Then apply Theorems 3.3 and 3.6. �
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Note that the group Aut� has been computed for many spaces satisfying the assump-
tions of the last corollary (see, for example, [7]).

More complicated examples can be treated by combining the localization with some
special techniques for the computation of AutΩ for products or wedges of simpler spaces.
Details will appear elsewhere.

We conclude the paper with two open problems. Felix and Murillo [5] showed that
AutΩ(X) �= Aut�(X) in general, but their example is an infinite-dimensional space.
It is still unknown if there exists a finite complex X such that AutΩ(X) �= Aut�(X).
Moreover, in view of Corollary 3.1 we have the following related question: is Aut�(X)
trivial for every finite co-H-space X?
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