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Abstract
Human activity recognition (HAR) is an emerging challenge among researchers. HAR has many possible uses
in various fields, including healthcare, sports, and security. Furthermore, there are only a few publicly accessi-
ble datasets for classifying and recognizing physical activity in the literature, and these datasets comprise fewer
activities. We created and compared our dataset with available datasets, that is, NTU-RGBD, UP-FALL, UR-Fall,
WISDM, and UCI HAR. The proposed dataset consists of seven activities: eating, exercise, handshake, situps, vom-
iting, headache, and walking. The activities were collected from 20 people between the ages of 25 and 40 years using
Kinect V2 sensor at 30 FPS. For classification, we use deep learning architectures based on convolutional neural
network (CNN) and long short-term memory (LSTM). Additionally, we developed a novel hybrid deep learning
model by combining a CNN, a bidirectional LSTM unit, and a fully connected layer for activity identification. The
suggested model builds unique guided features using the preprocessed skeleton coordinates and their distinctive
geometrical and kinematic aspects. Results from the experiment are contrasted with the performance of stand-
alone CNNs, LSTMs, and ConvLSTM. The proposed model’s accuracy of 99.5% surpasses that of CNN, LSTM,
and ConvLSTM, which have accuracy rates of 95.76%, 97%, and 98.89%, respectively. Our proposed technique is
invariant of stance, speed, individual, clothes, etc. The proposed dataset sample is accessible to the general public.

1. Introduction
Human activity recognition (HAR) is a process of automatically recognizing the activity of an individual
or group. HAR is an emerging challenge among researchers. HAR has many possible uses in a variety
of fields, including healthcare [1], sports [1], and security [1]. The area is widely used in various appli-
cations such as video surveillance in the military, human–computer interaction, sports, etc. [2]. There
are two methods for identifying human activity: one relies on wearable sensors and visual sensors. A
sensor that can record the body’s acceleration, angular velocity, gravity, etc., is attached to the body in
the wearable-based system. In the vision-based system, an RGB camera captures the subject’s activities.
Various joint information is gathered from each frame with depth-based sensors [3]. An ensemble model
is proposed for local correlation that makes use of intra-class variability and class center reliability. The
suggested pedestrian attention module aids in focusing on certain features, while the proposed priority-
distance graph convolutional network (PDGCN) module predicts class center nodes and determines
distances [4]. AFCDL, an adaptive fusion, and category-level dictionary learning paradigm, has been
proposed to solve drawbacks such as shifting angles of view, background clutter, and movement pat-
terns. AFCDL enhances sample reconstruction for action recognition by learning adaptive weights for
each camera. With a 3% to 10% gain in recognition accuracy across four multiview action benchmarks,
it trumps cutting-edge techniques.
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Microsoft Kinect and other low-cost, high-mobility sensors are widely used for recognizing human
motion [1]. Several techniques have been developed that use the information from the skeleton joint to
identify human indications. Computer vision researchers have paid particular attention to Kinect’s abil-
ity to monitor skeleton joints. Elements are independent of a person’s size, look, and changing camera
angles that can be extracted using the skeleton join feature of the Kinect [2]. Recognition of activity with
conventional cameras may be complex due to illumination variations, stance variations, and cluttered
backgrounds. Kinect can record motion information even in changing illumination, poses, and complex
environments.

If we talk about the skeleton joint’s features, it cannot identify human activities. Some modifica-
tions or adding more features are required for efficient activity classification. The gain in momentum in
center of mass coordinates, velocity, and acceleration, as well as other derived features like a person’s
height and the different joints angles, and distance between joints, can be calculated for identification
during actions like walking, vomiting, situps, or differentiate between similar motion activities, etc.
Such features are programmatically engineered because they cannot be directly calculated by convolu-
tion neural network and long short-term memory (LSTM) architecture [5] approaches. In this study, the
Kinect-generated features are inputted into a deep learning network and a collection of hand-engineered
kinematic features. Using a Kinect V2 sensor, we first applied skeletal tracking algorithms and gathered
3D joint locations for each frame. To improve the model’s performance, a new set of features, that is,
distance feature, different joints angle, etc., have been created with the help of Kinect-generated fea-
tures. Natural body coordinates have been utilized to calculate velocity, acceleration, and joint angle
properties. The dataset is preprocessed once the features are extracted and fed into the deep learning
models. The proposed model is a fusion model of CNN and bidirectional long short-term memory
(BiLSTM). In the proposed model, the output of each convolutional block is added to the following
convolutional block output to prevent the network from vanishing gradient and to improve the feature
quality. In the proposed model, input feature vector passes through two feature extraction branches:
on one side, features are inputted to the CNN and BiLSTM layer series and generate new feature vec-
tors. Conversely, the input feature vector passes through the BiLSTM layer to generate a new feature
vector. Finally, these spatial and temporal features are concatenated and inputted into a fully con-
nected network for a probabilistic classification score. The manuscript’s significant contributions are as
follows:

1. A dataset named “LNMIIT-KHAD (LNMIIT-Kinect Human Activity Dataset)” has been devel-
oped from 20 individuals and has seven indoor activities such as eating, walking, headache,
handshake, situps, exercise, and vomiting with all possible variations.

2. A hybrid deep learning classification model comprising CNNs and BiLSTM Layers has been
proposed. The model can extract spatiotemporal features from the input feature sets to classify
human activities efficiently and precisely. The model also consists of a dropout and regularizing
layer to improve the model performance and prevent the model from overfitting.

3. A comparative analysis has been done for different deep learning models with the LNMIIT-
KHAD dataset. The model has been evaluated on publicly available datasets to check the model
performance.

4. To protect user privacy, a set of auto-generated features and hand-engineered kinematic features
has been used as an input feature vector for the proposed hybrid deep learning model instead of
the visual input.

The paper consists of five sections. Section 2 is related to the literature survey. Section 3 is associ-
ated with the dataset description. Section 4 describes the proposed methodology, which includes data
collection and preprocessing, data normalization and scaling, feature selection, windowing and seg-
mentation, and the proposed classification model. Section 5 describes experimental results followed by
references.
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2. Related Works
Existing literature [6, 7] used inertial measurement unit (IMU)-enabled devices on their waists, wrists,
and feet to capture human activity data in the form of acceleration, angular velocity, and other metrics.
Before further processing, several prepossessing steps, such as noise reduction and normalization, have
been applied to raw data. The human behavior is then classified using a feature extraction and model
training procedure. Several methods for simulating and recognizing human actions have been presented.
Early researchers mainly employed decision trees, support vector machines (SVMs), naive Bayes, and
other machine learning methods to identify the data gathered by IMU sensors. Researchers have devel-
oped classification models for recognizing human activity using various methods. For instance, Wang
et al. [8] presented a DF network, a profoundly fully connected network to attain an exemplary data struc-
ture collated with a synthetic neural network. The original skeleton graphs were converted by Ke et al.
[9] into pseudo-frames in four human body areas, and CNN was used to extract spatial attributes from the
pseudo-structures. Additionally, Liu et al. [10] proposed that by encoding skeletal joints into spatial and
temporal volumes, a three-dimensional convolutional neural network (CNN) was used to collect spatial
and time sequence information at a local timescale. By considering the three-dimensional geometric
relationship between the human parts that used body part rotations and its translations in 3-dimensional
space, Vemulapalli et al. [11] proposed that new skeleton representation has been presented. The authors
classified human activities using Lie algebra and described human actions as curves in the Lie group.
Scana et al. [12] development of an automated system for motor assessment of individuals with neuro-
logical disorders used the Kinect sensor. They assessed the reaching performance scale score derived
from the Kinect data, and the results were comparable to the visual score derived in a clinical setting.
Vishwanath et al. [13] have proposed a methodology for recognizing human activity using human gait
patterns. They used an IMU sensor with three degrees of freedom to capture seven different activities.
They also introduced kinematic features and Kinect-generated features for classifying activities. Rahul
Jain et al. [14] proposed a methodology to achieve the walking pattern classification. For that, human
lower extremity activities are considered to understand walking behavior. An IMU has been used as a
wearable device to capture the walking movement of different lower limb joints. For activity classifica-
tion, two different deep learning models, namely CNN and LSTM, have been used. Vishwanath et al.
[15] proposed a hybrid deep learning approach for post-stroke rehabilitation. Microsoft Kinect V2 has
been used to capture the targeted activities. Different combinations of deep learning models have been
used for classification; CNN-Gated recurrent unit (GRU) achieved the highest accuracy. Vijay Bhaskar
Semwal et al. [16] proposed multitasking human walking activity recognition using human gait patterns.
IMU sensor has been used to capture different walking patterns of the candidates. Various combinations
of deep learning models have been used for activity classification; GRU-CNN achieved the highest
accuracy. Nidhi Dua et al. [17] proposed a multi-input hybrid deep learning model for HAR. Wearable
sensors like gyroscopes and accelerometers have been used to collect human activity data. The model
achieved a classification accuracy of 95%. Santosh et al. [18] proposed a deep architecture fusion of
CNN and LSTM. The final model achieved an accuracy of 98% for a self-collected dataset.

The author uses principal component analysis to reduce feature dimensions by extracting Euclidean
distance and spherical coordinates between normalized joints. HAR is carried out using statistical char-
acteristics and principal component analysis, proposed in ref. [19], and globally contextualized attention
LSTM [20]. To tackle the sensor-based HAR challenges, ref. [21] presented a multilayer ResGCNN
(graph convolutional neural network) residual structure. The deep transfer learning tests utilizing the
ResGCNN model demonstrate excellent transferability and few-shot learning performance. Table I lists
the dataset utilized in this study. Some of the works related to HAR have been listed in Table I.

3. Proposed methodology
To track and identify human activity in the interior environment, we conducted extensive ablation
research, created a new dataset, and created a novel hybrid model based on deep learning. In the first
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Table I. Related work-based human action recognition system.

Related work Sensor used Datase used Classifier Accuracy
M. Zeng et al.

[6]
Wearable Opportunity CNN 88.19%

X. Jiang et al.
[22]

Mobile
(Smart)
Phone

UCI Convolutional
Neural
Network

97.5%

M.
Gholamrezaii
et al. [23]

Mobile
(Smart)
Phone

UCI CNN 95.69%

S. Dhanraj
et al. [7]

Mobile
(Smart)
Phone

UCI CNN 93.93%

A. Adedin
et al. [24]

Mobile
(Smart)
Phone
Wearable

a. Wireless
Sensor-Data
Mining
(WISDM);

b. OPPORTUNITY

CONVAE 94%;
84.9%

S. Yu and L.
Qin [25]

Mobile
(Smart)
Phone

UCI BiLSTM 93.79

Y. Zaho et al.
[26]

Mobile
(Smart)
Phone
Wearable

1. UCI; 2.
OPPORTUNITY

Residual
BiLSTM

93.6%

S. Deep et al.
[27]

Smartphone UCI CNN-LSTM 93.40%

K. Xia et al.
[28]

Mobile
(Smart)
Phone
Body-Worn

a. UCI; b. WISDM;
c.
OPPORTUNITY

LSTM-CNN 95.78%;
95.85%;
92.63%

Y. Yan et al.
[21]

9-D right waist;
9-D
left ankle;
9-D back

a. PAMAP2;
b. mHealth;
c. TNDA

HAR-ResGCNN 97.86%;
96.95%;
99.10%

step, the activity is recorded with the help of the Kinect V2 sensor at 30 FPS. There is a possibility of null
value detection due to no activity recorded for that time. As per our algorithm for a null value, it shows
no activity. The recorded data may also contain some outliers. The linear interpolation method has been
used to remove outliers. The feature set has been normalized to reduce duplication using the 3D joints
method indicated in Eq. (1). Table II shows details about Kinect V2 sensor specifications. In addition
to Kinect-generated information, certain valuable features have been retrieved for recognizing various
activities, such as velocity, acceleration, the angle between joints, a person’s height, and the distance
between joints. Next, a set of selected features is made out of Kinect-generated and kinematic features.
Finally, the modified input feature sets are shaped according to the deep learning classification models
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Table II. Kinect motion sensor V2 specification.

S. No. Parameter Value
1 Device name Microsoft Kinect V2
2 Sampling rate 30Hz
3 Type RGBD
4 Frame size 1920 × 1080 pixels
5 Connectivity 3.0 USB
6 Field of view 70 deg. × 60 deg.
7 Skeleton joints defined 25
8 Minimum skeletal tracking 6
9 Operating measuring range 0.5 m to 4.5 m

Figure 1. Proposed methodology.

and input to the state-of-the-art deep learning models for classification score generation. Figure 1 shows
the proposed methodology:

Xnorm = x − xmin

xmax − xmin

(1)

Xnorm = normalized value of a feature value
xmin = minimum value of a feature vector
xmax = maximum value of a feature vector
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Figure 2. Dataset recording setup.

3.1. Dataset collection and preprocessing
An in-depth examination of the data gathering and improvement process is provided in this section. We
created our own dataset and presented it in this publication. A set for dataset collection has been shown
in Fig. 2. The proposed dataset consists of seven activities, that is, walking, situp, eating, handshaking,
headache, exercise, and vomiting, collected from 20 people (13 males and 7 females) between the ages
of 25 and 40 years. Microsoft Kinect sensor V2 can identify 25 distinct joints in the human body. We
extract camera and orientation coordinate values from every joint in the human body and save them in
comma separated values (CSV) files. We gathered data from 20 distinct volunteers, each completing a
task for 20 s, as shown in Table III. Each task has 400 samples, with each participant doing it 10 times
(70 samples per participant). The files for each activity are concatenated.

After assembling all the necessary data, the raw data are subjected to different preprocessing tech-
niques. Only a few of the skeleton’s joints are instructive for a given task, as ref. [29] noted, so not all
skeletal joints are useful. In our situation, we omitted joints such as the Spine Base. Head, Shoulder
Left, Elbow Left, Hand Left, Shoulder Right, Elbow Right, Hand Right, Hip Left, Knee Left, Ankle
Left, Foot Left, Hip Right, Knee Right, Ankle Right, and Foot Right as shown in Fig. 3 that are not cru-
cial for identifying the intended activity. Table IV describes the list of tracked skeleton joints, a set of
Kinect-generated features, derived features, and activity class labels. Some evaluated images of State of
the art (SOTA) datasets, that is, WISDM, UCI-HAR, and NTU-RGBD datasets, are shown in Fig. 4. For
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Table III. Dataset description.

Labels Activity name Participants Time/activity (s) FPS Sample/activity
1 Eating 20 20 30 400
2 Exercise 20 20 30 400
3 Handshake 20 20 30 400
4 Headache 20 20 30 400
5 Situps 20 20 30 400
6 Vomiting 20 20 30 400
7 Walking 20 20 30 400

model evaluation on SOTA datasets, MediaPipe framework has been used to extract the joint’s motion
information as shown in Fig. 5.

3.1.1 Windowing and segmentation
Windowing and segmentation are used in many HAR applications [30]. Segmentation is typically used
during the preprocessing stage to facilitate data analysis. Windowing is a frequent segmentation tech-
nique. The sampling frequency used in Kinect V2 activity recording is 30 Hz (30 samples per second).
Figure 6 depicts data splitting into an allotted frame (Window) of 2.57 s (80 attributes set) with a 0.5
intersection.

3.2. Geometric and Kinematic feature calculation
The coordinates of the joints in the 3D human skeleton are utilized to evaluate various features and build
feature vectors. Feature vectors are programmatically calculated by using Kinect V2 features generated
for each frame. These are the unique features that easily distinguishe each activity with one another. As
per the dataset, only 16 joints are selected for activity classification as mentioned in Fig. 3.

3.2.1 Angle between skeleton joints
An illustrated skeleton is created by connecting the 3D coordinates of the various body joints with a
line. As per our dataset, six relevant joints, namely elbow right, elbow left, knee left, knee right, hip
left, and hip right, are utilized for the angle feature calculation. Figure 7 presents a distance and angle
calculation method. The average difference between the hip-to-knee and ankle-to-knee values is used
for calculating the angle value. If joint1 is the hip joint, joint2 is the knee joint, and joint3 is the ankle
joint, and then the angle between skeletons is as follows:

� = joint1joint2joint3
joint1joint2 * joint2joint3

(2)

joint1joint2joint3 = joint11 ∗ joint12 + joint21 ∗ joint22 + joint31 ∗ joint32 (3)

joint11 = x1 − y1, joint21 = x2 − y2, joint31 = x3 − y3 (4)

joint1joint2 =
√

joint12
1 + joint22

1 + joint32
1 (5)

joint2joint3 =
√

joint12
2 + joint22

2 + joint32
2 (6)

Angle = cos−1 θ ∗ 180

π
(7)
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Figure 3. Joints details as per activity.
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Table IV. Set of features specifications.

S. No. Label Elucidation
1 Microsoft Kinect V2

skeleton joints
attributes

Elbow (L-R), head, hands (L-R), shoulder (L-R), spine base, hip
(L-R), knee (L-R), ankle (L-R), and foot (L-R)

2 Features Orientation Y, orientation X, orientation Z, camera X, camera Y,
and camera Z

3 Derived features Velocity in X, Y, and Z directions, angle at elbows, angle at
knees, angle at hips, height of the person, distance between
joints, average velocity, acceleration in X, Y, and Z directions

4 Class labels Eating, exercise, handshake, headache, situps, vomiting, and
walking

Figure 4. Samples from WISDM, UCI-HAR, and NTU-RGBD datasets.

3.2.2 Velocity prediction
The velocities of the X, Y, and Z axes are calculated using the difference between the human skeleton’s
coordinates at time t and time t + 1. Along with measuring velocity, the differences between succeeding
frames are also utilized to detect acceleration in the X, Y, and Z axes. We included average acceleration
and average velocity as a characteristic as well. In a HAR application that detects human gestures or body
movements, velocity can be utilized to distinguish between slow and fast motions and recognize certain
movement patterns. Analyzing velocity patterns allows users to distinguish between different activities
or gestures, detect irregularities or sudden changes in motion, and characterize movement speed. It can
be calculated as:

Velocity(t) = distance between joints/time Elapsed (8)
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Figure 5. Classification process for NTU-RGBD, UP-FALL, and UR-Fall datasets.

Figure 6. Windowing and segmentaion.
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Figure 7. Geometric and kinematic features.

υ(t) =
√

(Jointx(t + 1) − Jointx(t))2 + (Jointy(t + 1) − Jointy(t))2

(t + 1) − t
(9)

where Jointx(t + 1) is value of position x of respective joint at t + 1;
Jointy(t + 1) is value of position y of respective joint at t + 1;
jointx(t) is value of position x of respective joint at t;
Jointy(t) is value of position t of respective joint at t.

3.2.3 Distance prediction
Through the dataset, we also included a displacement feature vector that included the distances between
the hands, between the hand and the head, and the distance between the hand and the spine base:

Distance(t) =√
(Jointx(t + 1) − Jointx(t))2 + (Jointy(t + 1) − Jointy(t))2 (10)

3.2.4 Height prediction
The distance between the extreme joints at the top and bottom of the body determines the height. Because
every person’s height varies, this factor normalizes other feature vectors.

3.3. Classification models
The completed dataset and its derived features are fed into the deep learning network in this stage for clas-
sification. Different classification techniques have been employed, including CNN, LSTM, ConvLSTMs,
and the proposed hybrid deep neural network.
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1. Convolutional Neural Network Architecture [22]: First, the activity recognition has been
implemented using the CNN [22]. Let Xt be the 1D feature vector consisting of Kinect-generated
and derived features. The convolutional layers output can be given as:

Outl,j
i = σ

(
Bij +

M∑
m=1

wtj
m ∗ X0,j

i+m−1

)
(11)

where l is the layer index and σ is the sigmoid activation function. Bij is the bias associated
with the jth feature, and M is the filter size. wt is the weight for the jA normalization and the mth to
normalize the input values and lead to more accurate activation. Kernel regularizer and dropout
layers are used to minimize the overfitting of the model.

2. Long Short-Term Memory Architecture [31]: Second, we have implemented activity recog-
nition using LSTM, an improved version of recurrent neural network (RNN), which avoids
the vanishing gradient problem and consists of memory cells. A single-cell, three-gate LSTM
module can selectively learn, unlearn, or retain knowledge from each entity. LSTM’s cell state
facilitates an uninterrupted flow of information between units by allowing a few linear exchanges.
Each component has inputs, outputs, and forget gates that can add or remove data from the cell
state. The forget gate uses a sigmoid function to choose whether to ignore information from pre-
vious cell states. The input gate regulates the flow of information about the current cell state
by performing point-wise multiplication of “sigmoid” and “tanh.” The output gate determines
which data have to be sent at the conclusion.
Studies have been done on the impact of different batch sizes, hidden layers, and learning rates.
Two stacked LSTM layers with 100 neurons each for 7 classes, a learning rate of 0.0025, and a
batch size of 128 yielded the best results. The Adam optimizer was used to calculate losses using
the softmax loss function.

3. ConvLSTM Architecture [32]: Next, we applied ConvLSTM [32] to classify our dataset. CNN
and LSTM were combined to create ConvLSTM. Here, CNN was used to extract spatial char-
acteristics, LSTM to predict sequences, and dense layers to map the features to create a more
separable space. The hyperparameters had been optimized for the size, number of layers, steps,
batch size, and learning rate (0.0001). The shape of the feature vector is first set to a 3D tensor,
including batch shape, steps, and input feature dimension. Then after the convolution opera-
tion, features again reshape to the 3D array as (batch size, time steps, and sequence length).
We used Adam for optimization. The model got the precision and F1 score of 97.89% and
97.75%.

4. Proposed Hybrid Deep Learning Architecture: We proposed the hybrid approach in which
parallel feature learning methodology has been used. The input features vector has been applied
to the 1D convolution and BiLSTM layers. The architecture shown in Fig. 8 has two parallel
paths. One path has layers of 1D convolution layer, 1D max-pooling layers, and a BiLSTM
layer. The path extracts both spatial and temporal features. In this path, input features are
also added to the spatial features extracted from convolution layers. The path extracts spa-
tial and temporal features without losing any input characteristic. The second path extracts
only temporal features. These features are concatenated into a single feature vector. The com-
bined feature has been passed through a BiLSTM layer. They were finally flattening the
features. Two dense classification layers and the softmax activation function generate a prob-
abilistic classification of activities. Table V shows the proposed hybrid deep learning model
summary:

yt = wy ∗ ht (12)
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Figure 8. Proposed classification model.
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Table V. Proposed hybrid deep learning model summary.

Layer number Layer name Layer type Layer shape
0 Input Layer Input Layer (None None, 40, 13)
1 1D Convolution Layer Convolution (None, None, 39, 32)
2 1D_Convolution_Layer_2 Conv1D (None, None, 39, 32)
3 Add_layer1 Add (None, None, 39, 32)
4 1D_Convolution_Layer_3 Conv1D (None, None, 38, 32)
5 1D_Convolution_Layer_4 Conv1D (None, None, 38, 32)
6 time_distributed_24 TimeDistributed (None, None, 19, 32)
7 time_distributed_25 TimeDistributed (None, None, 19, 32)
8 Add_layer2 Add (None, None, 19, 32)
9 1D_Convolution_Layer_5 Conv1D (None, None, 18, 32)
10 Reshape_Layer_2 Reshape (None, None, 520)
11 Reshape_Layer_1 Reshape (None, None, 576)
12 BiLSTM_Layer_1 Bidirectional (None, None, 200)
13 BiLSTM_Layer_2 Bidirectional (None, None, 200)
14 Concatenation_Layer Concatenate (None, None, 400)
15 BiLSTM_Layer_3 Bidirectional (None, 200)
16 Flatten_Layer Flatten (None, 200)
17 Dense_Layer_1 Dense (None, 64)
18 Dense_Layer_2 Dense (None, 7

4. Experimental results
The experimental findings employing CNNs, LSTMs, ConvLSTM, and the suggested hybrid deep
learning model are presented in this section. The proposed model has been tested using cutting-
edge datasets, that is, NTU-RGBD, UP-FALL, UR-Fall, WISDM dataset, UCI-HAR, and the recently
gathered LNMIIT-KHAD dataset (samples are shown in Fig. 9) captured by the Kinect V2 sensor.
Dataset development and preprocessing are the main steps described in Section 4. After different vari-
ation in the hyperparameters, final values of the hyperparameters for the proposed model are shown in
Table VI.

4.1. Model evaluation
In this section, we performed different experiments using deep learning approaches such as CNNs,
LSTMs, ConvLSTM, and the suggested hybrid deep learning model. The proposed hybrid model com-
bines the characteristics of CNNs, BiLSTM, and residual connections to efficiently capture spatial and
temporal data in HAR. The architecture intends to manage sequential data and exploit local and global
dependencies within input sequences. The CNN component, which is at the core of the architecture, is
responsible for extracting spatial characteristics from the input skeleton data to represent joint positions
over time. To downsample the feature maps and decrease spatial dimensions while preserving critical
data, max-pooling layers and ReLU activation layers are added.

The sequence of joint features extraced by the CNN is then processed using the BiLSTM compo-
nent. Bidirectional LSTMs enable the model to take into account both past and future information for
each time step, facilitating the capture of temporal dependencies in both directions. The model’s capac-
ity to identify long-range dependencies within the sequences is improved by stacking LSTM layers.
The hybrid model includes residual connections to effectively handle the difficulties of deep network
training. By introducing skip connections provided by these connections, the network can learn resid-
ual functions and achieve a smoother gradient flow during training. The residual connections improve
gradient propagation by reducing the degradation problem in very deep networks.
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Algorithm 1. Proposed HAR algorithm.

The characteristics from the CNN and BiLSTM routes are combined during the fusion and clas-
sification stage. Fully connected layers are utilized to do classification and predict the label for human
activity using the fused characteristics. In order to successfully combine local and global properties, this
comprehensive strategy makes use of the spatial awareness of CNNs, the sequential information han-
dling of BiLSTMs, and the skip connections of residual connections. The proposed hybrid model has
exceptional performance in HAR, correctly categorizing a wide variety of behaviors beyond the training
set. It offers a potential option for HAR applications in the real world, where accurate and dependable
activity recognition is crucial.

We evaluate the performance of these models on our proposed dataset and states-of-the-art datasets,
that is, Wisdom Dataset [33], and UCI-HAR dataset [34], NTU- [35], UP-FALL [36], and UR-Fall [37]
which are shown in Fig. 10.

A ratio of 60:20 was used to divide the dataset into train and validation sets, leaving 20% for testing.
The validation dataset assessed the trained model’s performance and accuracy, whereas the training set
was utilized for training the classifier. Due to categorical cross-usefulness entropy for evaluating the
performance of the last layer with softmax activation, the model loss is calculated using this metric. All
of the models underwent 120 epochs of training. Precision, recall, F1-score, and accuracy are metrics
used to assess the system’s performance.
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Table VI. Hyperparameter used for model training.

S. No Parameter Value
1 Optimizer Adam
2 Learning rate 0.0025
3 Ragularizer l2 0.0001
4 Epochs 100
5 Batch size 128
6 Loss function Categorical cross-entropy

Figure 9. Human activity samples from LNMIIT-KHAD dataset.
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Figure 10. Model accuracy variation w.r.t batch size variation during training.

The accuracy and loss curves using LSTM, CNN, ConvLSTM, and proposed are shown in Fig. 11.
We assess the performance of the various deep learning models outlined above on our suggested

dataset and two other cutting-edge datasets. When compared to other models, our proposed model had
the best accuracy. Table VII displays the experimental outcomes of SOTA and proposed deep learning
models. Table VIII presents the precision, recall, and F1-score values for different algorithms performed
with ±1 percentage change.

All the accuracy and plot are calculated for 120 epochs and a batch size of 128. The accuracy is also
varied concerning frame size and batch size. For that, we performed various models on our proposed
dataset with different batch sizes and found that the proposed model performed well for a batch size of
128 and frame size of 80, which is shown in Figs. 10 and 12.

4.2. Prominent features of proposed hybrid architecture
The proposed model has been performing well on state-of-the-art datasets, proposed dataset, and also
outperforms state-of-the-art deep learning models. The following are the key aspects of the proposed
hybrid architecture for HAR:

1. Robust Handling of Illumination Variation : The model mitigates the influence of shifting
illumination conditions by effectively gathering and weighting essential joint angle information,
ensuring consistent and accurate activity classification. Extensive testing on a variety of datasets
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Figure 11. Accuracy and loss versus epochs graphs for different deep learning models.
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Table VII. Comparison table for different datasets for different deep learning models.

WISDM UCI-HAR LNMIIT-KHAD
dataset [33] dataset [34] dataset

Classification Training Testing Training Testing Training Testing
models accuracy accuracy accuracy accuracy accuracy accuracy
CNN [22] 93.04 90.53 97.5 95 95.76 94.57
LSTM [31, 38] 94.63 91.56 92.62 90.12 97 96.80
ConvLSTM [34, 38] 97.12 95.45 93.11 92 98.89 98.32
Proposed 98.56 97.12 98.32 97.23 99.67 99.43

confirms the model’s exceptional performance, demonstrating its robustness in real-world cir-
cumstances. This breakthrough holds potential for applications such as health monitoring,
surveillance, and interactive systems, where lighting variance is a typical issue.

2. Hand-Engineered Kinematic Features: The model includes novel hand-engineered kinematic
elements in addition to joint positioning and orientation data. These characteristics capture the
kinematic qualities of human motion, improving the model’s capacity to distinguish various
activities.

3. Cluttered Background Resilience: The proposed model displays robustness to cluttered back-
grounds without relying on depth-based data by using Kinect features and kinematic features. The
Kinect features extract spatial information from skeleton joint data, allowing the model to focus
on important body angles while ignoring background noise. Furthermore, the incorporation of
hand-engineered kinematic features provides vital insights into motion dynamics, assisting in
the differentiation of activities among clutter. This technology guarantees accurate HAR even in
difficult circumstances where cluttered backdrops may interfere with conventional depth-based
methods.

4. Real-Time Data Performance: The proposed architecture performs well in real-time data sce-
narios, suggesting its viability for practical deployment in real-world applications. Figure 13
shows the comparison between different classification models on real-time implementation.

5. Temporal Information Learning: The inclusion of bidirectional LSTM (BiLSTM) layers
allows the model to capture temporal dependencies in motion sequences well. By bidirectionally
analyzing joint angle data, the model acquires a thorough grasp of activity dynamics, improv-
ing its capacity to make accurate conclusions. This temporal information learning is critical
for robust human activity detection, guaranteeing that the model can handle complicated and
dynamic motion patterns across several activities.

6. State-of-The-Art Performance: The proposed hybrid architecture for HAR achieves state-of-
the-art performance in terms of accuracy and robustness. The model effectively captures both
spatial and temporal characteristics from joint motion and kinematic data by fusing CNNs and
BiLSTM with residual connections. It is clearly stated from Fig. 14 percentage improvement of
2.97% in walking, 2.02% in eating, 1.85% in exercise, 3.3% in situps, and 2.94% in headache
activity.

7. Robust Generalization across Activity Categories: The proposed model exhibits outstanding
generalization capabilities, accurately identifying a varied range of activities that extend outside
the training set. This demonstrates its outstanding adaptability and versatility to many activity
categories, making it a powerful tool for real-world human activity identification applications.
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Table VIII. F1-score, recall, and precision for different deep learning models and proposed model.

CNN architecture LSTM architecture ConLSTM architecture Proposed architecture
Activity name Precision Recall F1-score Precision Recall F1-score Precision Recall F1-score Precision Recall F1-score
Eating 0.95 0.93 0.94 0.94 0.94 0.94 0.95 0.94 0.94 0.97 0.96 0.96
Exercise 0.95 0.96 0.96 0.96 0.95 0.95 0.96 0.95 0.95 0.98 0.97 0.97
Handshake 1 0.99 0.99 1 1 1 1 0.98 0.99 1 0.99 0.99
Headache 0.93 0.95 0.94 0.93 0.94 0.93 0.94 0.96 0.95 0.97 0.97 0.97
Situps 0.94 0.93 0.94 0.95 0.94 0.94 0.95 0.95 0.95 0.98 0.97 0.97
Vomiting 0.97 0.97 0.97 0.95 0.95 0.95 0.98 0.98 0.98 0.98 0.98 0.98
Walking 0.97 0.98 0.98 0.96 0.98 0.97 0.97 0.97 0.97 0.99 0.98 0.98
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Figure 12. Model accuracy variation w.r.t feature frame size.

Figure 13. Real-time accuracy comparison of different classification models.
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Figure 14. Confusion matrices for proposed and state-of-the-art architectures.

https://doi.org/10.1017/S0263574723001327 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574723001327


3810 Manoj Kumar Sain et al.

Figure 15. Classification error for different deep learning models.

As the proposed model has a fusion of the CNN and BiLSTM layers, BiLSTM networks process input
sequences simultaneously in the forward and backward directions. This enables the network to gather
contextual data from both previous and upcoming time steps. It facilitates a deeper comprehension of
the sequence’s components’ connections and dependencies and handles long-term dependencies. Due
to that, the proposed model has less misclassification error as a comparison to state-of-the-art models,
as shown in Fig. 15.

In the proposed methodology, the complete video has been converted into video frames. Trained
model has been predicted the activity based on the video frame set of 80. Figures 16 and 17 show the
prediction accuracies for walking and vomiting activity. The accuracy of our proposed model outper-
forms existing state-of-the-art deep learning models. Precision, recall, and F1-score are also better than
state-of-the-art deep learning models, which is shown in Tables VIII and IX. The Precision, recall, and
F1-score curve for LSTM, CNN, convLSTM, and the proposed approach are shown in Fig. 18.

https://doi.org/10.1017/S0263574723001327 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574723001327


Robotica 3811

Figure 16. Accuracy calculation for walking activity using different classification models.
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Figure 17. Accuracy calculation for vomiting activity using different classification models.
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Table IX. Performance comparison table for LNMIIT-KHAD and NTU-RGBD dataset.

Classification models Dataset Testing accuracy (%) mAP (%) F1-score (%)
CNN [22] LNMIIT-KHAD 94.20 93.10 92.89

NTU RGBD 94.75 92.45 92.40

LSTM [31, 38] LNMIIT-KHAD 92.62 92.15 92.05
NTU RGBD 93.90 92.50 92.15

ConvLSTM [38, 39] LNMIIT-KHAD 93.11 92.56 92.50
NTU RGBD 92.05 91.10 990.95

GRU-INC [40] LNMIIT-KHAD 95.85 92.40 92.40
NTU RGBD 94.12 91.15 91.00

Inception CNN-GRU [40] LNMIIT-KHAD 96.45 92.60 92.00
NTU RGBD 93.45 91.02 90.80

Deep RNN [41] LNMIIT-KHAD 92.15 89.55 89.10
NTU RGBD 93.50 90.05 90.00

AFCDL [4] LNMIIT-KHAD 98.12 97.50 97.25
NTU RGBD 97.59 96.10 96.00

Proposed (ours) LNMIIT-KHAD 98.32 97.60 97.515
NTU RGBD 96.52 94.60 94.25

5. Conclusion and future scope
A hybrid deep learning model and a single Kinect V2 sensor have been used as an activity identifi-
cation system that protects user privacy. Primary skeleton coordinates and geometrical and kinematic
information are inputted into the proposed deep learning network. The user’s privacy is safeguarded
since the system only uses derived features and basic skeleton joint coordinates, not the user’s real
photographs. On the LNMIIT-KHAD dataset and leading datasets, the performance of the deep learning-
based classification algorithms such as CNN, LSTM, ConvLSTM, and the suggested model has been
compared. The recommended approach correctly identifies human behaviors, including eating, exercis-
ing, situps, headache, vomiting, shaking hands, and walking. The proposed model’s accuracy of 99.5
% surpasses that of CNN, LSTM, and ConvLSTM, which have accuracy rates of 95.76 %, 97 %, and
98.89 %, respectively. To evaluate the performance of the proposed model, it has been tested on other
additional datasets, that is, NTU-RGBD [35], UP-FALL [36], and UR-Fall [37]. The testing accuracies
are shown in Table X. The suggested method has been tested in real time and discovered to be inde-
pendent of the stance, individual, clothes, etc. The dataset sample is accessible to the general public.
In the future, we want to include more complicated physical activities and develop a model that can
detect the activity of several people at once. We will also investigate advanced deep learning-based
approaches such as reinforcement, lifetime, incremental, and active learning for activity recognition.
We also have plans to create a sizable HAR dataset, including a variety of daily activities and physical
activities.
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Figure 18. Precision, recall, and F1-score variation for different deep learning models.
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Table X. Model testing accuracy on different SOTA datasets and proposed dataset.

SOTA datasets “Testing Accuracy”
Classification methods NTU-RGBD [35] UP-FALL [36] UR-Fall [37] LNMIIT-KHAD dataset
CNN [22] Eat meal = 88%

Vomiting = 90.12%
Headache = 91.04%
Shaking Hands = 93.45%
Walking = 94.75%

Walking = 90%
Standing = 94.40%
Sitting = 95.14%
eating an apple = 92%
Falling Forward = 93.12%

Walking = 89.10%
Eating = 85.65%
Falling Forward = 90%
Drinking Water==90%
Standing = 95%
Sitting = 94.12%

Eating = 95%
Exercise = 95.19%
Handshake = 100%
Headache = 92.56%
Situps = 93.77%
Vomiting = 96.51%
Walking = 97.33%

LSTM [31, 38] Eat meal = 92.34%
Vomiting = 90.56%
Headache = 93%
Shaking Hands = 93.12%
Walking = 94.90%

Walking = 89.45%
Standing = 95.25%
Sitting = 98%
eating an apple = 92.14%
Falling Forward = 93%

Walking = 90.30%
Eating = 88.10%
Falling Forward = 91%
Drinking Water = 93%
Standing = 95.10%
Sitting = 95%

Eating = 94.17%
Exercise = 96.30%
Handshake = 100%
Headache = 92.98%
Situps = 94.87%
Vomiting = 95.35%
Walking = 96.18%

ConvLSTM [34, 38] Eat meal = 91.25%
Vomiting = 93.50%
Headache = 92.05%
Shaking Hands = 93%
Walking = 96.78%

Walking = 92.78%
Standing = 95.45%
Sitting = 98.12%
eating an apple = 93.34%
Falling Forward = 96.80%

Walking = 90.48%
Eating = 90.25%
Falling Forward = 92.10%
Drinking Water = 92.16%
Standing = 96.45%
Sitting = 96.20%

Eating = 95%
Exercise = 96.30%
Handshake = 100%
Headache = 94.21%
Situps = 94.87%
Vomiting = 98.06%
Walking = 96.95%

Proposed-ours Eat meal = 94.45%
Vomiting = 95.32%
Headache = 96.75%
Shaking Hands = 96.52%
Walking = 97.80%

Walking = 95.90%
Standing = 96.35%
Sitting = 98.50%
eating an apple = 97%
Falling Forward = 98.12%

Walking = 93%
Eating = 92.10%
Falling Forward = 92%
Drinking Water = 94%%
Standing = 97.12%
Sitting = 97.80%

Eating = 97.08%
Exercise = 98.15%
Handshake = 100%
Headache = 97.51%
Situps = 98.17%
Vomiting = 98.03%
Walking = 99.62%
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