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Integral mean estimates for univalent and
locally univalent harmonic mappings

Suman Das and Anbareeswaran Sairam Kaliraj

Abstract. We verify a long-standing conjecture on the membership of univalent harmonic mappings
in the Hardy space, whenever the functions have a “nice” analytic part. We also produce a coefficient
estimate for these functions, which is in a sense best possible. The problem is then explored in a new
direction, without the additional hypothesis. Interestingly, our ideas extend to certain classes of locally
univalent harmonic mappings. Finally, we prove a Baernstein-type extremal result for the function
log(h′ + cg′), when f = h + g is a close-to-convex harmonic function, and c is a constant. This leads
to a sharp coefficient inequality for these functions.

1 Introduction

A central problem pertaining to the growth of univalent harmonic mappings is to
determine the exact range of p > 0 so that these functions belong to the harmonic
Hardy space hp . The early developments in this direction were due to Abu-Muhanna
and Lyzzaik [1], which were later improved by Nowak [17]. She proved sharp results
for the classes of convex and close-to-convex harmonic functions, and conjectured
an analogous range of p for the whole class SH of normalized univalent harmonic
functions. The aim of this paper is to verify this conjecture for functions f ∈ SH with
an additional property. The main theorems and their implications are presented in
Section 2, while the proofs are given in Section 4. Section 3 contains results from the
literature that are useful for our purpose.

A function f analytic in the open unit disk D = {z ∶ ∣z∣ < 1} is of class H p

(0 < p ≤ ∞) if the integral means

Mp(r, f ) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

( 1
2π ∫

2π

0
∣ f (re iθ)∣pdθ)

1
p

, 0 < p < ∞,
sup
∣z∣=r

∣ f (z)∣, p = ∞

remain bounded as r → 1−. The norm of a function f ∈ H p is defined as
∥ f ∥p = limr→1− Mp(r, f ). Integral means and H p spaces play a fundamental role
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in studies concerning the growth of functions; we refer to the books [9, 14, 18] for a
detailed survey.

A harmonic function f in the unit disk has a unique representation f = h + g,
where h, g are analytic functions inDwith g(0) = 0. The function f is locally univalent
and sense-preserving if, and only if, the Jacobian J f (z) = ∣h′(z)∣2 − ∣g′(z)∣2 is positive
for all z ∈ D. Let SH be the class of all sense-preserving univalent harmonic functions
f in D, normalized by the conditions h(0) = g(0) = h′(0) − 1 = 0. Denote by KH and
CH the subclasses of SH consisting of harmonic mappings onto convex and close-to-
convex regions, respectively. Let S0

H = { f = h + g ∈ SH ∶ g′(0) = 0}, K0
H = KH ∩ S0

H ,
and C0

H = CH ∩ S0
H . Two leading examples of univalent harmonic functions are the

harmonic Koebe function

K(z) = H(z) + G(z) = (
z − 1

2 z2 + 1
6 z3

(1 − z)3 ) + (
1
2 z2 + 1

6 z3

(1 − z)3 )

which maps D onto C/(−∞,−1/6], and the function

L(z) = H1(z) + G1(z) = (
z − 1

2 z2

(1 − z)2 ) + (
− 1

2 z2

(1 − z)2 )

which maps D onto the half-plane Re{w} > −1/2. It is obvious that K ∈ C0
H and

L ∈ K0
H . More details on univalent harmonic functions can be found in [6, 10].

A harmonic function f is said to be of class hp (0 < p ≤ ∞) if ∥ f ∥p < ∞. Let us give
an account of the problem considered in this paper. Every function f = h + g ∈ SH
admits the representation

h(z) = z +
∞

∑
n=2

anzn and g(z) =
∞

∑
n=1

bnzn .(1.1)

Let us define α = sup f ∈SH
∣a2∣. Then α has crucial influence in the growth of functions

in SH (see [21] for an exposition). Interest in the boundary behavior of functions
f ∈ SH was initiated by Abu-Muhanna and Lyzzaik [1], who proved that f ∈ hp for
p < 1/(2α + 2)2. Bshouty and Hengartner [5] proposed to find the exact range of
p > 0 for which f ∈ hp . In [17], Nowak improved the range to p < 1/α2, and obtained
the sharp results that f ∈ hp for p < 1/2 (resp. p < 1/3) whenever f is a convex (resp.
close-to-convex) harmonic function. These observations led her to conjecture that if
f ∈ SH , then f ∈ hp for p < 1/α. The conjecture seems challenging, and in the relatively
recent development [20], the authors verified it by confining interest to harmonic
quasiconformal mappings.

In this paper, we first give a relation between Mp(r, f ) and Mp(r, h′), which
naturally allows us to check the boundedness of ∥ f ∥p whenever h′ behaves “nicely.”
As it turns out, this can be achieved by placing the simple restriction that h′ takes no
value infinitely often. An analytic function φ in D has valency m if φ takes no value
more than m times. More generally, let for a function φ analytic in D, W(R) denote
the area (regions covered multiply being counted multiply) of the image of D under
φ that lies in the disk ∣w∣ ≤ R. If W(R) ≤ mπR2 for all R > 0, where m is a positive
number, then we say that φ has mean valency m. This notion is due to Spencer, who
proved the following inequality on the integral means of such functions.
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Theorem A [22] If f has mean valency m ≥ 1, f (0) = 0, and p > 0, then

M p
p(r, f ) ≤ K ∫

r

0

M p
∞(s, f )

s
ds,

where K = K(m, p) is independent of f.

This result was initially proved by Prawitz (see [19, Theorem 5.1]) for univalent
functions.

Over the years, extremal problems on the growth of univalent functions have been
widely studied. Let S denote the class of univalent analytic functions f in D with
f (0) = f ′(0) − 1 = 0. A seminal result in this direction is the following inequality of
Baernstein.

Theorem B [2] If f ∈ S and 0 < p < ∞, then

Mp(r, f ) ≤ Mp(r, k),

where k(z) = z/(1 − z)2 is the Koebe function.

Baernstein’s theorem was extended to derivatives by Leung [15] and Brown [4] for
certain subclasses of S. We refer to [3, 12, 13, 16] for more problems of this type. In [12],
Girela obtained similar results for the functions log( f (z)/z). These functions appear
in the definition of logarithmic coefficients γn of a function f ∈ S:

log f (z)
z

= 2
∞

∑
n=1

γnzn .

The logarithmic coefficients were instrumental in de Branges’ proof of the Bieberbach
conjecture (see [8]). Girela’s work readily led to the sharp inequality

∞

∑
n=1

∣γn ∣2 ≤ π2

6
,

an important estimate earlier obtained by Duren and Leung [11]. Interestingly, Girela
proved the following extremal result for close-to-convex functions.

Theorem C [12] Let f ∈ S be close-to-convex, and let 0 < p ≤ 2. Then

Mp(r, log f ′) ≤ Mp(r, log k′),

where k is the Koebe function.

On the other hand, similar problems for harmonic functions remained unexplored
until very recently, when the present authors initiated the study of Baernstein-type
inequalities for harmonic functions.
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Theorem D [7] Let 0 < p < ∞. If f = h + g ∈ C0
H , then

Mp(r, h′) ≤ Mp(r, H′) and Mp(r, g′) ≤ Mp(r, G′).

For f = h + g ∈ K0
H , we have

Mp(r, h′) ≤ Mp(r, H′1) and Mp(r, g′) ≤ Mp(r, G′1).

The functions H, G and H1 , G1 come from the harmonic functions K and L, respectively.

To explore the logarithmic coefficients in the setting of a harmonic mapping
f = h + g, it is not feasible to consider f (z)/z, as this function need not be harmonic,
neither is the logarithm of a harmonic function defined in the literature. One cannot
consider the functions (h(z) + cg(z))/z (c constant) either, since h(z) + cg(z) may
have zeros at points other than the origin. Therefore, proceeding along the line of
Theorem C, the functions log(h′ + cg′) seem to be the most natural choice.

Thus, we conclude the paper with a harmonic analogue of Girela’s result: we prove
that Theorem C remains true for the functions log(h′ + cg′), whenever f = h + g is a
close-to-convex harmonic function and c is a constant. This takes forward the authors’
earlier line of work in [7].

2 Main theorems and auxiliary results

As discussed, we start with the following simple but useful lemma, the proof of which
is just a slight modification of standard techniques.

Lemma 1 Let 0 < p ≤ 1. Suppose f = h + g is a locally univalent, sense-preserving
harmonic function in D with f (0) = 0. Then

M p
p(r, f ) ≤ C ∫

r

0
(r − s)p−1 M p

p(s, h′)ds,

where C is a constant independent of f.

This, together with Theorem D, immediately give integral mean estimates for
convex and close-to-convex harmonic functions.

Corollary 1 Let 0 < p ≤ 1, then we have the inequalities

Mp(r, f ) ≤ C ∫
r

0
(r − s)p−1 M p

p(s, H′)ds, whenever f ∈ C0
H ,

Mp(r, f ) ≤ C ∫
r

0
(r − s)p−1 M p

p(s, H′1)ds, whenever f ∈ K0
H .

Remark 1 The estimates for p > 1 for these classes are already obtained in [7]. It is
pertinent to mention that an elementary upper bound can be easily given in the case
of convex harmonic functions. If f = h + g is convex, it is well known [6, Theorem 5.7]
that h is close-to-convex, and ∣g(z)∣ ≤ ∣h(z)∣, z ∈ D. Therefore, from [19, Theorem 5.1],
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we have

M p
p(r, f ) ≤ 2p M p

p(r, h) ≤ 2p p∫
r

0

M p
∞(s, h)

s
ds ≤ 2p p∫

r

0
sp−1(1 − s)−2pds.

The last integral is the incomplete beta function B(r; p, 1 − 2p).

As a consequence of Lemma 1, we verify Nowak’s conjecture for certain functions
in SH . Indeed, the result is true for a more general class of functions. Let us recall that
a family L of harmonic functions in D is said to be linear invariant (see [21]) if for
every f = h + g ∈ L, the functions

Tφ( f (z)) = f (φ(z)) − f (φ(0))
φ′(0)h′(φ(0)) , φ ∈ Aut(D),

belong to L, where Aut(D) denotes the set of analytic automorphisms of D. Our
result does not require univalence, and holds for any linear invariant classH of locally
univalent and sense-preserving harmonic functions (with usual normalizations), for
which α(H) = sup f ∈H ∣a2∣ is finite. For the remainder of this paper, we preserve the
notation H to mean any such class of locally univalent harmonic functions.

Theorem 1 Let f = h + g ∈ SH be such that h′ has finite mean valency. Then f ∈ hp

for p < 1/α. If f ∈ H and h′ has finite mean valency, then f ∈ hp for p < 1/α(H).

Lemma 1 also leads us to the following coefficient bound for these functions.

Theorem 2 Suppose f = h + g ∈ SH has series representation (1.1), and h′ has finite
mean valency. Then ∣an ∣ and ∣bn ∣ are O(nα−1), n = 2, 3, 4, . . .. For f ∈ H with h′ having
finite mean valency, ∣an ∣ and ∣bn ∣ are O(nα(H)−1).

Remark 2 This coefficient estimate for f ∈ SH is in a sense best possible. The
conjectured value of α is 3. Given this, Theorem 2 asserts that ∣an ∣ and ∣bn ∣ are O(n2),
which is the same order as in the harmonic analogue of the Bieberbach conjecture [6].

The problem, even without the assumption of finite mean valency, can be explored
in another direction to produce a very interesting result. Since SH is known to be
linear invariant, for f = h + g ∈ SH and any ζ ∈ D, the function

T(z) =
f ( z+ζ

1+ζz
) − f (ζ)

(1 − ∣ζ ∣2)h′(ζ) = A(z) + B(z) (z ∈ D)

again lies in SH . Let us write

A(z) = z + a2(ζ)z2 + a3(ζ)z3 +⋯.

A customary computation gives

a2(ζ) = 1
2
{(1 − ∣ζ ∣2)h′′(ζ)

h′(ζ) − 2ζ} .
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Since ∣a2(ζ)∣ ≤ α, we find that

∣h′′(ζ)
h′(ζ) ∣ ≤

C
1 − ∣ζ ∣ (ζ ∈ D),

for some positive constant C. However, this is the extreme bound on h′′/h′ that a
function f = h + g ∈ SH can possess. In general, it is reasonable to expect a large
subclass of SH to have slightly restricted growth, or more precisely, to exhibit the
bound

∣h′′(ζ)
h′(ζ) ∣ ≤

C
(1 − ∣ζ ∣)β (0 ≤ β < 1).

The expression h′′/h′ is of special interest in the theory of univalent functions.
For example, it appears in the definition of the Schwarzian derivative, as well as
in characterization results for certain geometric subclasses (e.g., convex and close-
to-convex). The growth condition on h′′/h′ leads us to the following result on the
membership of univalent and locally univalent harmonic functions in the Hardy
space.

Theorem 3 Let f = h + g ∈ SH be such that

∣h′′(z)
h′(z) ∣ ≤

C
(1 − ∣z∣)β ,(2.1)

for some β with 0 ≤ β < 1. Then f ∈ hp for p < 2(1 − β)/α. Analogously, if f = h + g ∈ H
satisfies the growth estimate (2.1), then f ∈ hp for p < 2(1 − β)/α(H).

Finally, we prove Girela’s result (Theorem C) in the setting of harmonic functions.

Theorem 4 Suppose 0 < p ≤ 2 and f = h + g ∈ C0
H . Then, for any constant c ∈ D, we

have

Mp(r, log(h′ + cg′)) ≤ Mp(r, log(H′ + G′)).

The bound is sharp.

Like logarithmic coefficients in the case of analytic functions, it is interesting
to study the power series coefficients of log(h′(z) + cg′(z)). Suppose log(h′(z) +
cg′(z)) = ∑∞n=1 λnzn . Then Theorem 4 has the following implication.

Corollary 2 For f = h + g ∈ C0
H , we have the sharp inequality

∞

∑
n=1

∣λn ∣2 ≤ 14π2

3
.
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3 Preliminaries

Definition 1 [2] For a real-valued function g(x) integrable over [−π, π], the Baern-
stein star-function is defined as

g∗(θ) = sup
∣E∣=2θ

∫
E

g(x)dx (0 ≤ θ ≤ π),

where ∣E∣ is the Lebesgue measure of the set E ⊆ [−π, π].

The following properties of the star-function are due to Leung [15].

Lemma A For g , h ∈ L1[−π, π],

[g(θ) + h(θ)]∗ ≤ g∗(θ) + h∗(θ).

Equality holds if g, h are both symmetric in [−π, π] and nonincreasing in [0, π].

Lemma B If g, h are subharmonic functions in D and g is subordinate to h, then for
each r in (0, 1),

g∗(re iθ) ≤ h∗(re iθ), 0 ≤ θ ≤ π.

Lemma C If p(z) = e i β + p1z +⋯ is analytic and of positive real part in D, then

(log ∣p(re iθ)∣)∗ ≤ (log ∣ 1 + re iθ

1 − re iθ ∣)
∗

, 0 ≤ θ ≤ π.

An important feature in the proof of Lemma C is that a rotation factor does not
affect the star-function. This observation will be suitably deployed in our work.

Definition 2 [12] A domain D in C is said to be Steiner symmetric if its intersection
with each vertical line is either empty or a segment placed symmetrically with respect
to the real axis.

The next result by Girela is crucial in the proof of Theorem 4.

Lemma D [12] Let F and F be analytic in D and satisfy:
(i) F(0) = F(0) = 0,
(ii) (Re F)∗ ≤ (ReF)∗ in D

+ = {z ∈ D ∶ Im z > 0},
(iii) min

z∈D
ReF(z) ≤ min

z∈D
Re F(z) ≤ max

z∈D
Re F(z) ≤ max

z∈D
ReF(z),

(iv) F is univalent and F(D) is a Steiner symmetric domain.
Then, for 0 < p ≤ 2,

∫
π

−π
∣F(e iθ)∣pdθ ≤ ∫

π

−π
∣F(e iθ)∣pdθ .
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4 Proofs

4.1 Proof of Lemma 1

In what follows, C will denote a positive constant that is not necessarily the same at
each occurrence. Let ∣∇ f ∣ = (∣h′∣2 + ∣g′∣2)1/2. For 0 ≤ r1 < r2 < 1, we have

∣ f (r2e iθ) − f (r1e iθ)∣ = ∣∫
r2

r1

d
dt

f (te iθ)dt∣

≤ ∫
r2

r1
∣e iθ h′(te iθ) + e iθ g′(te iθ)∣ dt

≤
√

2∫
r2

r1
(∣h′(te iθ)∣2 + ∣g′(te iθ)∣2)1/2

dt

=
√

2∫
r2

r1
∣∇ f (te iθ)∣dt

≤
√

2 (r2 − r1) sup
r1≤t≤r2

∣∇ f (te iθ)∣.

Since f is sense-preserving, i.e., ∣g′(z)∣ < ∣h′(z)∣ for every z ∈ D, we find that

∣∇ f (te iθ)∣ ≤ ∣h′(te iθ)∣ + ∣g′(te iθ)∣ < 2∣h′(te iθ)∣.

Therefore,

M p
p(r2 , f ) − M p

p(r1 , f ) ≤ 1
2π ∫

2π

0
∣ f (r2e iθ) − f (r1e iθ)∣pdθ

≤ 23p/2 (r2 − r1)p 1
2π ∫

2π

0
( sup

r1≤t≤r2

∣h′(te iθ)∣)
p

dθ .

An appeal to the Hardy–Littlewood maximal theorem gives

1
2π ∫

2π

0
( sup

r1≤t≤r2

∣h′(te iθ)∣)
p

dθ ≤ CM p
p(r2 , h′),

so that

M p
p(r2 , f ) − M p

p(r1 , f ) ≤ C (r2 − r1)p M p
p(r2 , h′).(4.1)

Let 0 < r < 1 be arbitrary, and let rn = r(1 − 2−n), n = 0, 1, 2, . . .. Clearly, Mp(0, f ) = 0
as f (0) = 0. Using (4.1), we find that

M p
p(rn+1 , f ) =

n+1
∑
k=1

[M p
p(rk , f ) − M p

p(rk−1 , f )]

≤ C
n+1
∑
k=1

(rk − rk−1)p M p
p(rk , h′)

= C
n+1
∑
k=1

(rk − rk−1)(r − rk)p−1 M p
p(rk , h′),
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since rk − rk−1 = 2−k r = r − rk . We now let n → ∞ and obtain

M p
p(r, f ) ≤ C ∫

r

0
(r − s)p−1 M p

p(s, h′)ds

by means of Riemann integration.

4.2 Proof of Theorem 1

Let 1/(α + 1) < p ≤ 1 and f ∈ SH . We may choose rn = 1 − 2−n in the proof of Lemma
1 to obtain

∥ f ∥p
p ≤ C ∫

1

0
(1 − s)p−1 M p

p(s, h′)ds,(4.2)

whenever the integral is finite. We break the integral in two parts, to separately deal
with possible complications around 0 and 1. For example, let us write

∥ f ∥p
p ≤ C [∫

1/4

0
(1 − s)p−1 M p

p(s, h′)ds + ∫
1

1/4
(1 − s)p−1 M p

p(s, h′)ds] .(4.3)

Throughout our computations, the constants will be denoted by C, K, etc., and they
need not be the same at each occurrence. We do this for convenience, as constants do
not affect our purpose.

We appeal to Theorem A for an estimate of M p
p(s, h′). Since h′ is finitely mean

valent, so is zh′. Therefore, we have

M p
p(s, zh′) ≤ K ∫

s

0

M p
∞(r, zh′)

r
dr.(4.4)

It is known (see [10, p. 98]) that

M∞(r, h′) ≤ (1 + r)α−1

(1 − r)α+1 .(4.5)

This, together with (4.4), implies

M p
p(s, h′) ≤ K

sp ∫
s

0

r p−1

(1 − r)(α+1)p dr.(4.6)

For s ≤ 1/4,

M p
p(s, h′) ≤ K

sp ∫
1/4

0

r p−1

(1 − r)(α+1)p dr ≤ K1

sp ∫
1/4

0
r p−1dr ≤ K2

sp (as p ≤ 1).

For s > 1/4,

M p
p(s, h′) ≤ K

sp ∫
1/4

0

r p−1

(1 − r)(α+1)p dr + K
sp ∫

s

1/4

r p−1

(1 − r)(α+1)p dr

≤ K2

sp + K3 ∫
s

1/4

dr
(1 − r)(α+1)p
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= K2

sp + K3

(α + 1)p − 1
[ 1
(1 − s)(α+1)p−1 − K4] (as p > 1/(α + 1))

≤ K2

sp + K5

(1 − s)(α+1)p−1 .

Substituting these bounds in (4.3), we see that

∥ f ∥p
p ≤ C1 ∫

1/4

0
s−p(1 − s)p−1ds + C1 ∫

1

1/4
s−p(1 − s)p−1ds + C2 ∫

1

1/4

ds
(1 − s)pα

= C1 ∫
1

0
s−p(1 − s)p−1ds + C2 ∫

1

1/4

ds
(1 − s)pα .

The first integral is the beta function B(1 − p, p) and converges for every p ∈ (0, 1).
The second integral is finite for p < 1/α. Therefore, f ∈ hp for p < 1/α.

To prove the result for f ∈ H, we just need to establish the bound

M∞(r, h′) ≤ (1 + r)α(H)−1

(1 − r)α(H)+1 .

The argument presented here is well known (see, for example, [10, p. 98]), and will be
useful in the later results. Since H is linear invariant, for any ζ ∈ D, the function

T(z) =
f ( z+ζ

1+ζz
) − f (ζ)

(1 − ∣ζ ∣2)h′(ζ) = A(z) + B(z) (z ∈ D)

is in H. We write

A(z) = z + a2(ζ)z2 + a3(ζ)z3 +⋯,

so that

a2(ζ) = 1
2
{(1 − ∣ζ ∣2)h′′(ζ)

h′(ζ) − 2ζ} .

Since ∣a2(ζ)∣ ≤ α(H), we find that

2r2 − 2rα(H)
1 − r2 ≤ Re { zh′′(z)

h′(z) } ≤ 2r2 + 2rα(H)
1 − r2 (∣z∣ = r),

which is equivalent to

2r − 2α(H)
1 − r2 ≤ ∂

∂r
{log ∣h′(re iθ)∣} ≤ 2r + 2α(H)

1 − r2 .

Now we integrate from 0 to r to reach the estimate

(1 − r)α(H)−1

(1 + r)α(H)+1 ≤ ∣h′(z)∣ ≤ (1 + r)α(H)−1

(1 − r)α(H)+1 .(4.7)

The rest of the proof follows through an identical argument, and the details are
omitted.
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4.3 Proof of Theorem 2

We see that

(n + 1)∣an+1∣ = ∣ 1
2πi ∫∣z∣=r

h′(z)
zn+1 dz∣ ≤ r−n M1(r, h′).

We see from (4.6), for p = 1, that

M1(r, h′) ≤ K
r ∫

r

0

ds
(1 − s)α+1 ≤ K

r(1 − r)α ,

for some absolute constant K which varies through occurrences. Therefore,

(n + 1)∣an+1∣ ≤
K

rn+1(1 − r)α .

The function on the right-hand side attains a minimum at r = (n + 1)/(n + 1 + α).
With this choice of r, we obtain

(n + 1)∣an+1∣ ≤ K (1 + α
n + 1

)
n+1

(n + 1 + α)α ≤ K(n + 1)α .

Therefore, replacing n + 1 by n,

∣an ∣ ≤ Knα−1 .

Using a similar argument, one can show that ∣bn ∣ ≤ Knα−1. The proof for the second
part of the theorem is identical, except for α suitably replaced by α(H).

4.4 Proof of Theorem 3

The Hardy–Stein identity (see [19, p. 126]) for the function h′ implies that

d
dr

[r d
dr

M p
p(r, h′)] = p2r

2π ∫
2π

0
∣h′(re iθ)∣p−2∣h′′(re iθ)∣2dθ .

Since M p
p(r, h′) is a (strictly) increasing function of r, we have

d
dr

M p
p(r, h′) > 0.

Therefore,

d2

dr2 M p
p(r, h′) ≤ p2

2π ∫
2π

0
∣h′(re iθ)∣p−2∣h′′(re iθ)∣2dθ

= p2

2π ∫
2π

0
∣h′(re iθ)∣p ∣h′′(re iθ)

h′(re iθ) ∣
2dθ

≤ p2

2π ∫
2π

0

(1 + r)(α−1)p

(1 − r)(α+1)p ⋅ C2

(1 − r)2β dθ (by (4.5))

≤ K
(1 − r)(α+1)p+2β ,
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for some positive constant K, which is not the same in subsequent occurrences.
Integrating twice from 0 to s (s < 1), we arrive at the estimate

M p
p(s, h′) ≤ K

(1 − s)(α+1)p+2β−2 .

Thus, an appeal to (4.2) gives

∥ f ∥p
p ≤ C ∫

1

0
(1 − s)p−1 M p

p(s, h′)ds ≤ C ∫
1

0

ds
(1 − s)α p+2β−1 .

The last integral converges for αp + 2β − 1 < 1, or equivalently, p < 2(1 − β)/α. There-
fore, f ∈ hp for p < 2(1 − β)/α.

The proof for f ∈ H is similar, one only needs to replace α by α(H), wherever
applicable.

4.5 Proof of Theorem 4

Let 0 < r < 1 and write

F(z) = log(h′(rz) + cg′(rz)), F(z) = log(H′(rz) + G′(rz)).

Clearly, F(0) = F(0) = 0. Lemma 4 of [23] implies that there exist real numbers μ, θ0
and an analytic function Q(z) with positive real part, such that

Re {Q(z) [ie iθ0 (1 − z2) (e−i μ h′(e iθ0 z) + e i μ g′(e iθ0 z))]} > 0, z ∈ D.

Let

P(z) = Q(z) [ie iθ0 (1 − z2) (e−i μ h′(e iθ0 z) + e i μ g′(e iθ0 z))] .

Without any loss of generality, we may assume ∣Q(0)∣ = 1, so that ∣P(0)∣ = 1. Since
Q(z) has positive real part, so does 1/Q(z). The dilatation w(z) = g′(z)/h′(z)
satisfies w(0) = 0 and ∣w(z)∣ < 1 for all z ∈ D. We see that

log ∣h′(e iθ0 z) + cg′(e iθ0 z)∣ = log ∣P(z)∣ + log ∣ 1
Q(z) ∣ + log ∣ 1

1 − z2 ∣

+ log ∣ 1
1 + e2i μw(e iθ0 z) ∣ + log ∣1 + cw(e iθ0 z)∣.

In view of Lemmas A–C, we have for z ∈ D+,

(log ∣h′(z) + cg′(z)∣)∗ ≤ (log ∣ 1 + z
1 − z

∣)
∗

+ (log ∣ 1 + z
1 − z

∣)
∗

+ (log ∣ 1
1 − z2 ∣)

∗

+ (log ∣ 1
1 − z

∣)
∗

+ (log ∣1 + z∣)∗ ,

which implies

(log ∣h′(z) + cg′(z)∣)∗ ≤ (log ∣ (1 + z)2

(1 − z)4 ∣)
∗

= (log ∣H′(z) + G′(z)∣)∗ ,

Downloaded from https://www.cambridge.org/core. 29 Sep 2024 at 00:16:08, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core


Integral mean estimates for univalent and locally univalent harmonic mappings 667

i.e., (Re F)∗ ≤ (ReF)∗. For f = h + g ∈ C0
H , the function f + c f ∈ CH for every con-

stant c ∈ D. Also, it is known that CH is linear invariant and α(CH) = 3. Therefore,
(4.7) leads to the inequalities

(1 − r)2

(1 + r)4 ≤ ∣h′(re iθ) + cg′(re iθ)∣ ≤ (1 + r)2

(1 − r)4 ,

so that

min
z∈D

ReF(z) ≤ min
z∈D

Re F(z) ≤ max
z∈D

Re F(z) ≤ max
z∈D

ReF(z).

That F is univalent and F(D) is a Steiner symmetric domain can be proved using an
argument similar to the one presented in [12, Lemma 1], we include the details below
for the convenience of the reader. Therefore, the proof of the theorem is completed
through an appeal to Lemma D. Since the harmonic Koebe function K = H + G ∈ C0

H ,
the sharpness can be seen by letting c → 1−.

Proposition 1 Let G(z) = log(H′(z) + G′(z)). Then G is univalent and G(D) is a
Steiner symmetric domain.

Proof For 0 < r < 1, we see that

ReG(re iθ) = log 1
∣1 − re iθ ∣ 2 + 2 log ∣ 1 + re iθ

1 − re iθ ∣ .

Thus, ReG(re iθ) is symmetric with respect to θ on [−π, π], and strictly decreases
on [0, π]. It is easy to see that ImG(re iθ) > 0 in 0 < θ < π, because the same holds
for log (1/(1 − z)2) and log((1 + z)/(1 − z)). Also, G(re−iθ) = G(re iθ). Therefore, G
is injective on ∣z∣ = r and hence the argument principle implies that G is univalent
in ∣z∣ ≤ r. Finally, G maps {∣z∣ = r} onto a simple closed curve, which is symmetric
with respect to the real axis, with decreasing real part for θ increasing from 0 to π.
This shows that G(∣z∣ < r) is a Steiner symmetric domain. As this is true for every
r ∈ (0, 1), the desired conclusion follows. ∎

Remark 3 The restriction 0 < p ≤ 2 in Theorem 4 is imposed by Lemma D. In other
words, we do not know if Theorem 4 remains valid for p > 2.

4.6 Proof of Corollary 2

Let log(H′(z) + G′(z)) = ∑∞n=1 cnzn . Through a routine computation, we see that

cn = 2(2 − (−1)n)
n

.

For p = 2, Theorem 4 gives
∞

∑
n=1

∣λn ∣2r2n ≤
∞

∑
n=1

∣cn ∣2r2n .
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Letting r → 1, we obtain
∞

∑
n=1

∣λn ∣2 ≤
∞

∑
n=1

∣cn ∣2 = 14π2

3
.

The sharpness follows from Theorem 4.
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