ISOTROPIC AND KÄHLER IMMERSIONS

BARRETT O’NEILL

1. Introduction. Let M^{d} and \bar{M}^{e} be Riemannian manifolds. We shall say that an isometric immersion $\phi: M^{d} \rightarrow \bar{M}^{e}$ is isotropic provided that all its normal curvature vectors have the same length. The class of such immersions is closed under compositions and Cartesian products. Umbilic immersions (e.g. $S^{d} \subset R^{d+1}$) are isotropic, but the converse does not hold. If M and \bar{M} are Kähler manifolds of constant holomorphic curvature, then any Kähler immersion of M in \bar{M} is automatically isotropic (Lemma 6). We shall find the smallest co-dimension for which there exist non-trivial immersions of this type, and obtain similar results in the real constant-curvature case.

If T is the second fundamental form tensor ($\mathbf{1 ; 2}$) of an isometric immersion $\phi: M \rightarrow \bar{M}$, then for each unit vector x tangent to $M, T_{x}(x)$ is the normal curvature vector of ϕ in the x-direction.
2. Isotropy at one point. As in (2), we abstract the second fundamental form at one point to a symmetric bilinear function $(x, y) \rightarrow T_{x}(y)$ on R^{d} to R^{k}. We adopt for T the usual terminology of isometric immersions; in particular, we say that T is λ-isotropic provided that $\left\|T_{x}(x)\right\|=\lambda$ for all unit vectors x in R^{d}. The main invariant of T is its discriminant Δ, the real-valued function on planes (through O) in R^{d} such that if x and y span Π, then

$$
\Delta_{x y}=\Delta(\pi)=\frac{\left\langle T_{x}(x), T_{y}(y)\right\rangle-\left\|T_{x}(y)\right\|^{2}}{\|x \wedge y\|^{2}}
$$

(For an isometric immersion $\phi: M \rightarrow \bar{M}$, the Gauss equation asserts that $K(\Pi)=\Delta(\Pi)+\bar{K}(d \phi(\Pi))$, where K and \bar{K} are the sectional curvatures of M and \bar{M}, and Π is any plane tangent to M.)

Lemma 1. T is isotropic if and only if $\left\langle T_{x}(x), T_{x}(y)\right\rangle=0$ for all orthogonal vectors x, y in R^{d}.

Proof. Let f be the (differentiable) real-valued function on the unit sphere Σ in R^{d} such that $f(x)=\left\|T_{x}(x)\right\|^{2}$. Thus T is isotropic if and only if f is constant. But if y is a vector tangent to Σ at x (hence $x \perp y$),

$$
y(f)=4\left\langle T_{x}(x), T_{x}(y)\right\rangle .
$$

Lemma 2. Suppose that T is λ-isotropic on R^{d}, and let x, y, u, v be orthogonal vectors in R^{d}. Then
(1) $\left\langle T_{x}(x), T_{y}(y)\right\rangle+2\left\|T_{x}(y)\right\|^{2}=\lambda^{2}$ if $\|x\|=\|y\|=1$,

[^0](2) $\left\langle T_{x}(x), T_{u}(v)\right\rangle+2\left\langle T_{x}(u), T_{x}(v)\right\rangle=0$,
(3) $\left\langle T_{x}(y), T_{u}(v)\right\rangle+\left\langle T_{x}(u), T_{y}(v)\right\rangle+\left\langle T_{x}(v), T_{y}(u)\right\rangle=0$.

Proof. Let F be the quadrilinear function on R^{d} to R such that

$$
F(x, y, u, v)=\left\langle T_{x}(y), T_{u}(v)\right\rangle-\lambda^{2}\langle x, y\rangle\langle u, v\rangle
$$

for any four vectors x, y, u, v in R^{d}. Because T is symmetric, $F(x, y, u, v)$ is symmetric in x and y, and also in u and v. Also F is symmetric by pairs: $F(x, y, u, v)=F(u, v, x, y)$. Since T is λ-isotropic $B(x)=F(x, x, x, x)=0$ for all x in R^{d}. Expansion of $B(x+y)+B(x-y)=0$ leads to the result

$$
\begin{equation*}
F(x, x, y, y)+2 F(x, y, x, y)=0 . \tag{a}
\end{equation*}
$$

If we replace y by $x+y$ in (a), we obtain

$$
\begin{equation*}
F(x, y, y, y)=0 \tag{b}
\end{equation*}
$$

If we replace y by $u+v$ in (a), we obtain

$$
\begin{equation*}
F(x, x, u, v)+2 F(x, u, x, v)=0 . \tag{c}
\end{equation*}
$$

Finally, replacing x by $x+y$ in (c) yields

$$
\begin{equation*}
F(x, y, u, v)+F(x, u, y, v)+F(y, u, x, v)=0 . \tag{d}
\end{equation*}
$$

Now assuming that the vectors x, y, u, v are orthogonal, the identities $(a),(c)$, (d) imply the assertions in the lemma.

If the vectors x, y in R^{d} are orthonormal, the formula for $\Delta_{x y}$ reduces to

$$
\Delta_{x y}=\left\langle T_{x}(x), T_{y}(y)\right\rangle-\left\|T_{x}(y)\right\|^{2}
$$

Thus assertion (1) in the preceding lemma yields the following result.
Lemma 3. If T is λ-isotropic, then for orthonormal vectors x, y in R^{d}
(1) $\Delta_{x y}+3\left\|T_{x}(y)\right\|^{2}=\lambda^{2}$,
(2) $2 \Delta_{x y}+\lambda^{2}=3\left\langle T_{x}(x), T_{y}(y)\right\rangle$.

We deduce some consequences of this lemma. First, the following three conditions are equivalent:

$$
\Delta_{x y}=\lambda^{2}, \quad T_{x}(y)=0, \quad T_{x}(x)=T_{y}(y)
$$

This means that T is umbilic on the plane II spanned by x and y, that is, $T_{u}(u)$ is the same for all unit vectors u in Π. Similarly, the following are equivalent:

$$
\Delta_{x y}=-2 \lambda^{2}, \quad\left\|T_{x}(y)\right\|=\lambda, \quad T_{x}(x)+T_{y}(y)=0
$$

(hypotheses as in the lemma). In this case, we say that T is minimal on the plane spanned by x and y. Because T is λ-isotropic, $\left|\left\langle T_{x}(x), T_{y}(y)\right\rangle\right| \leqslant \lambda^{2}$. Therefore we obtain the following corollary.

Corollary. If T is λ-isotropic, then the discriminant Δ of T satisfies $-2 \lambda^{2} \leqslant \Delta \leqslant \lambda^{2}$. Furthermore, if Π is a plane in R^{d}, then $\Delta(\Pi)=\lambda^{2}$ if and only if T is umbilic on $\Pi ; \Delta(\Pi)=-2 \lambda^{2}$ if and only if T is minimal on Π.

Remark 1. Let e_{1}, \ldots, e_{d} be an orthonormal basis for R^{d}. Let $A_{i j}$ $(1 \leqslant i \leqslant j \leqslant d)$ be any $d(d+1) / 2$ vectors in R^{k}. Then:

1. There is a unique symmetric bilinear function T on R^{d} to R^{k} such that $T_{e i}\left(e_{j}\right)=A_{i j}$,
2. If the vectors $A_{i j}$ satisfy (in an obvious sense) the identities in Lemmas 1 and 2 , then T is λ-isotropic,
3. The discriminant Δ of T is constant if and only if Δ is constant on the planes spanned by e_{i}, e_{j}, and, for i, j, k, l all different, $\left\langle A_{i j}, A_{k l}\right\rangle=\left\langle A_{i l}, A_{k j}\right\rangle$ and $\left\langle A_{i i}, A_{j k}\right\rangle=\left\langle A_{i j}, A_{i k}\right\rangle$.

The first normal space \mathfrak{R} of T (on R^{d} to R^{k}) is the subspace of R^{k} spanned by all vectors $T_{x}(y)\left(x, y \in R^{d}\right)$. Much of the scant information available about isometric immersions depends on knowledge of the effect on the dimension of \mathfrak{R} produced by conditions on Δ. Our aim is to investigate this matter when T is isotropic.
3. The constant-discriminant case. In this section we assume that T is λ-isotropic and its discriminant Δ is constant. We shall show that the dimension of the first normal space is determined by the ratio $\Delta: \lambda^{2}$.

In general, T is minimal provided that for one, hence every, frame e_{1}, \ldots, e_{d} in R^{d} we have $\sum_{i=1}^{d} T_{e i}\left(e_{i}\right)=0$. Also T is umbilic provided $T_{u}(u)$ has the same value for every unit vector u in R^{d}.

Theorem 1. Let T be a symmetric bilinear function on R^{d} to $R^{k}(d \geqslant 2)$. Assume that T is λ-isotropic $(\lambda>0)$ and that its discriminant Δ is constant. Let $m_{d}=d(d+1) / 2$, and $h_{d}=(d+2) / 2(d-1)$. Then

$$
-h_{d} \lambda^{2} \leqslant \Delta \leqslant \lambda^{2} .
$$

Furthermore, if $\mathfrak{\Re}$ is the first normal space of T, then
(1) $\Delta=\lambda^{2} \Leftrightarrow$ T is umbilic $\Leftrightarrow \operatorname{dim} \mathfrak{N}=1$,
(2) $\Delta=-h_{d} \lambda^{2} \Leftrightarrow T$ is minimal $\Leftrightarrow \operatorname{dim} \mathfrak{\Re}=m_{d}-1$,
(3) $-h_{d} \lambda^{2}<\Delta<\lambda^{2} \Leftrightarrow \operatorname{dim} \mathfrak{N}=m_{d}$.

Proof. The principal effect on T of the constancy of Δ is given in (2, Lemma 4), which implies that if x, y, u, v are orthogonal vectors in R^{d}, then both $\left\langle T_{x}(y), T_{u}(v)\right\rangle$ and $\left\langle T_{x}(x), T_{u}(v)\right\rangle$ are unchanged by permutations of x, y, u, v. Thus Lemma 2 implies that $\left\langle T_{x}(y), T_{u}(v)\right\rangle,\left\langle T_{x}(x), T_{u}(v)\right\rangle$, and $\left\langle T_{x}(u), T_{x}(v)\right\rangle$ are zero when the arguments are orthogonal.

Fix an orthonormal basis e_{1}, \ldots, e_{d} for R^{d}, and let $z_{i}=T_{e_{i}}\left(e_{i}\right)$ for $1 \leqslant i \leqslant d$. Now the $d(d-1) / 2$ vectors $T_{e i}\left(e_{j}\right)(i<j)$ are orthogonal, and each is orthogonal to the subspace Z spanned by z_{1}, \ldots, z_{d}. Assertion 1 follows
immediately from the remarks in the preceding section. Henceforth we exclude the minimal case $\Delta=\lambda^{2}$. Then Lemma 3 shows that the vectors $T_{e i}\left(e_{j}\right)(i<j)$ all have the same non-zero length. Thus we have

$$
\operatorname{dim} \mathfrak{M}=d(d-1) / 2+\operatorname{dim} Z
$$

Lemma 3 further shows that the inner products $\left\langle z_{i}, z_{j}\right\rangle(i \neq j)$ are all equal; we write

$$
\left\langle z_{i}, z_{j}\right\rangle=\lambda^{2} \cos \theta
$$

By Euclidean geometry $\cos \theta \leqslant-1 /(d-1)$, and equality holds if and only if the vectors z_{1}, \ldots, z_{d} are linearly dependent. The vectors z_{1}, \ldots, z_{d} then describe the vertices of an equilateral Euclidean simplex centred at the origin of the subspace Z. From Lemma 3, Formula (2), we obtain $\lambda^{2}(3 \cos \theta-1)=2 \Delta$. Thus it is easy to see that, for m_{d} and h_{d} as defined above, the following assertions are equivalent:

$$
\begin{gathered}
\Delta=-h_{d} \lambda^{2}, \quad \cos \theta=-1 /(d-1), \quad \operatorname{dim} Z=d-1 \\
\operatorname{dim} \Re=m_{d}-1, \quad z_{1}+\ldots+z_{d}=0, \quad T \text { is minimal } .
\end{gathered}
$$

Similarly, the following are equivalent:

$$
\Delta>-h_{d} \lambda^{2}, \quad \cos \theta<-1 /(d-1), \quad \operatorname{dim} Z=d, \quad \operatorname{dim} \Re=m_{d} .
$$

But, by Lemma 3, $\Delta \leqslant \lambda^{2}$ always holds, so, since the case $\Delta=\lambda^{2}$ was excluded earlier, the proof is complete.

Remark 2. Given an integer $d \geqslant 2$, and numbers $\Delta, \lambda \geqslant 0$ such that $-h_{d} \lambda^{2} \leqslant \Delta \leqslant \lambda^{2}$, there exists a λ-isotropic T on R^{d} to $R^{m_{d}}$ whose discriminant has the constant value Δ. To construct T, use Remark 1 , arranging the vectors $A_{i j}$ as dictated by the preceding proof.
4. Isotropic immersions. Theorem 1 has the following basic consequence, which shows that, in the case of constant Δ, large co-dimensions are required if an isotropic immersion is not umbilic.

Corollary. Let $\phi: M^{d} \rightarrow \bar{M}^{e}$ be an isotropic immersion with $\Delta=K-\bar{K} \circ d \phi$ constant. If $e<e_{d}-1$, where $e_{d}=d(d+3) / 2$, then ϕ is umbilic.

In the case of constant curvature we get
Theorem 2. Let $\phi: M^{d} \rightarrow \bar{M}^{e}$ be an isotropic immersion of manifolds of constant curvature C and \bar{C}. Let $e_{d}=d(d+3) / 2$.
(1) If $C>\bar{C}$ and $e<e_{d}$, then ϕ is umbilic.
(2) If $C=\bar{C}$ and $e<e_{d}$, then ϕ is totally geodesic.
(3) If $C<\bar{C}$, then $e \geqslant e_{d}-1$. Furthermore, if $e=e_{d}-1$, then ϕ is minimal.

An isometric immersion is minimal provided its second fundamental form tensor is minimal at each point. Evidently this generalizes the classical definition of minimal surface in R^{3}.

Proof. If $e<e_{d}-1$, then the co-dimension $e-d$ is strictly less than $e_{d}-d-1=m_{d}-1$. Hence, by Theorem $1, \phi$ is umbilic. But this is impossible if $C<\bar{C}$, and implies that ϕ is totally geodesic if $C=\bar{C}$. Now suppose that $e=e_{d}-1$, so the co-dimension is $m_{d}-1$. If $C>\bar{C}$, so $\Delta>0$, then by Theorem 1, ϕ cannot be minimal, and hence it is again umbilic. If $C=\bar{C}$, we similarly deduce that ϕ is totally geodesic.

We now obtain examples of isotropic, non-umbilic immersions which show that the above dimensional restrictions cannot be improved. It is noteworthy that global examples can be obtained from a second fundamental form tensor T at one point. In fact, suppose that T is symmetric, bilinear on R^{d+1} to R^{k+1}. For each element x of the unit sphere Σ in R^{d+1}, let $\phi(x)=T_{x}(x)$. Since $\phi(-x)=\phi(x)$, we obtain a differentiable map ϕ of real projective space P^{d} into R^{k+1}. Now suppose that T is λ-isotropic and has constant discriminant. Then if x and u are orthonormal in $R^{d+1}, T_{x}(u)$ has the constant value μ such that $\mu^{2}=\left(\lambda^{2}-\Delta\right) / 3$. Excluding the umbilic case $(\mu=0)$, we alter ϕ by a scalar and define the associated mapping ψ of T to be the differentiable function

$$
\psi: P^{d}(1) \rightarrow S^{k}(\lambda / 2 \mu)
$$

such that $\psi(\{x,-x\})=T_{x}(x) / 2 \mu$. (Here P^{d} and S^{k} have the canonical Riemannian structures appropriate to their radii.)

Lemma 4. Let T be a symmetric bilinear function on R^{d+1} to $R^{k+1}(d \geqslant 2)$. Suppose that T is λ-isotropic and has constant discriminant $\Delta \neq \lambda^{2}$. Then the associated mapping $\psi: P^{d}(1) \rightarrow S^{k}(\lambda / 2 \mu)$ is an isotropic imbedding with

$$
\lambda_{*}^{2}=\frac{4}{3}\left(\frac{\Delta}{\lambda^{2}}+2\right) \quad \text { and } \quad \Delta_{*}=\frac{1}{3}\left(4 \frac{\Delta}{\lambda^{2}}-1\right) .
$$

Proof. If u is a unit tangent vector to the unit sphere $\Sigma \subset R^{d+1}$ at the point x, then let σ be the geodesic

$$
\sigma(t)=(\cos t) x+(\sin t) u
$$

Then $\psi \circ \sigma=T_{\sigma}(\sigma) / 2 \mu$. But $(\psi \circ \sigma)^{\prime}(0)=T_{x}(u) / \mu$, so $\|d \psi(u)\|=1$, and thus ψ is an isometric immersion. By Lemma $3, \Delta+3 \mu^{2}=\lambda^{2}$. The manifolds involved have curvatures $C=1$ and $\bar{C}=4 \mu^{2} / \lambda^{2}$. Hence we obtain the required result for $\Delta_{*}=C-\bar{C}$.

We briefly outline the proof that ψ is λ_{*}-isotropic. Now the Euclidean acceleration of the curve $\psi \circ \sigma$ is given by

$$
(\psi \circ \sigma)^{\prime \prime}(0)=\left(T_{u}(u)-T_{x}(x)\right) / \mu
$$

The unit normal to $S^{k}(\lambda / 2 \mu)$ at $\psi(x)$ is $T_{x}(x) / \lambda$. Let τ be the second fundamental form tensor of the immersion ψ. Subtracting from ($\psi \circ \sigma)^{\prime \prime}(0)$ its component orthogonal to $S^{k}(\lambda / 2 \mu)$, we obtain

$$
\tau_{u}(u)=T_{u}(u) / \mu-\left(\frac{\Delta}{\mu}+\mu\right) T_{x}(x) / \lambda^{2}
$$

A straightforward computation yields

$$
\lambda_{*}^{2}=\left\|\tau_{u}(u)\right\|^{2}=\frac{4}{3}\left(\frac{\Delta}{\lambda^{2}}+2\right) .
$$

To show that ψ is one-one, we observe that, by Lemma $3, T_{u}(v)$ is never zero if u and v are non-zero and orthogonal. Suppose that x and y are unit vectors in R^{d} such that $y \neq \pm x$. Then

$$
0 \neq T_{x-y}(x+y)=T_{x}(x)-T_{y}(y) ;
$$

hence $\psi(\{x,-x\}) \neq \psi(\{y,-y\})$.
Corollary 1. For each $d \geqslant 2$, there exists a non-umbilic isotropic imbedding $\psi: P^{d}(1) \rightarrow S^{e_{d}-1}\left(r_{d}\right)$ where $e_{d}=d(d+3) / 2$ and $\left(r_{d}\right)^{2}=d / 2(d+1)$. Furthermore ψ is minimal.

Corollary 2. Let $M(C)$ denote a complete Riemannian manifold of constant curvature C. If $C \leqslant 2(d+1) / d$, then there exists a non-umbilic isotropic immersion $\psi: P^{d}(1) \rightarrow M^{e}{ }_{d}(C)$, where $e_{d}=d(d+3) / 2$.

Proof. For Corollary 1, choose T (by Remark 2) so that $\lambda=1$ and $\Delta=-h_{d+1}$. The associated map ψ is isotropic by the preceding Lemma, and since $\Delta_{*} / \lambda_{*}{ }^{2}$ turns out to be $-h_{d}$, Theorem 1 asserts that ψ is minimal. Also

$$
\left(r_{d}\right)^{2}=(\lambda / 2 \mu)^{2}=3 / 4\left(1+h_{d+1}\right)=d / 2(d+1)
$$

If \mathfrak{N} is the first normal space of T, then the values of ψ actually lie in the great sphere $\mathfrak{N} \cap S^{k}\left(r_{d}\right)$. By Theorem 1, $\operatorname{dim} \mathfrak{M}=m_{d+1}-1$; hence the values of ψ are in the sphere $S^{e}{ }_{d}{ }^{-1}$, where $e_{d}=m_{d+1}-1=d(d+3) / 2$.

To prove Corollary 2 , recall that any simply connected, constant-curvature manifold $X^{d}(K)$ may be imbedded as an umbilic Riemannian submanifold in $X^{d+1}(\bar{K})$ if $K \geqslant \bar{K}$. Since $C \leqslant 2(d+1) / d$, the sphere $S^{e}{ }_{d}{ }^{-1}\left(r_{d}\right)$ may be imbedded as an umbilic hypersurface in the simply connected covering manifold of $M^{e}{ }_{d}(C)$. Then we derive the required immersion from the imbedding in Corollary 1.

Evidently these corollaries show that the dimensional restrictions in Theorem 2 cannot be improved.
5. Kähler immersions. We use the definition of Kähler manifold M under which M is a Riemannian manifold furnished with an almost complex structure J such that $\langle J X, J Y\rangle=\langle X, Y\rangle$ and $\nabla_{X}(J Y)=J\left(\nabla_{X} Y\right)$ for all vector fields X, Y on M. A Kähler immersion $\phi: M \rightarrow \bar{M}$ (of Kähler manifolds) is an isometric immersion which is almost complex, that is, the differential map of ϕ commutes with the almost complex structures on M and \bar{M}.

Lemma 5. If $\phi: M \rightarrow \bar{M}$ is a Kähler immersion, then its second fundamental form tensor T is almost complex, that is, $T_{x}(J y)=J\left(T_{x} y\right)$ for x, y tangent to M.

Proof. If Y is a vector field on M, then (locally) there is a ϕ-related vector field \bar{Y} on \bar{M} and $J \bar{Y}$ is ϕ-related to $J Y$. If x is tangent to M, then

$$
\nabla_{d \phi(x)}(\bar{Y})=d \phi\left(\nabla_{x} Y\right)+T_{x}(Y) .
$$

Hence
$J\left(T_{x} Y\right)=J\left(\nabla_{a \phi(x)} \bar{Y}\right)-J\left(d \phi\left(\nabla_{x} Y\right)\right.$

$$
=\nabla_{d \phi(x)}(J \bar{Y})-d \phi\left(\nabla_{x}(J Y)\right)=T_{x}(J Y)
$$

The holomorphic curvature $K_{\text {nol }}$ of a Kähler manifold M is the function on unit tangent vectors x such that $K_{\text {hol }}(x)$ is the sectional curvature $K\left(\Pi_{x}, J_{x}\right)$ of the holomorphic section through x. A Kähler immersion preserves holomorphic planes, and, corresponding to the function $\Delta=K-\bar{K} \circ d \phi$ on all tangent planes to M, we have the holomorphic difference

$$
\Delta_{\mathrm{hol}}=K_{\mathrm{hol}}-\bar{K}_{\mathrm{hol}} \circ d \phi
$$

Lemma 6. If $\phi: M \rightarrow \bar{M}$ is a Kähler immersion, then $\Delta_{\mathrm{hol}} \leqslant 0$, and $\Delta_{\mathrm{hol}}=0$ if and only if ϕ is totally geodesic. Furthermore, ϕ is λ-isotropic if and only if Δ_{hol} has the constant value $-2 \lambda^{2}$.

Proof. The first assertion is well known. However, both assertions are proved by observing that the symmetry of T and the fact that T is almost complex imply $T_{J x}(J x)=-T_{x}(x)$. For then

$$
\Delta_{\mathrm{hol}}(x)=\Delta\left(\Pi_{x}, J x\right)=\left\langle T_{x}(x), T_{J x}(J x)\right\rangle-\left\|T_{x}(J x)\right\|^{2}=-2\left\|T_{x}(x)\right\|^{2} .
$$

In particular, a Kähler immersion of manifolds of constant holomorphic curvature is isotropic.
6. Constant holomorphic discriminant. We examine the second fundamental form (at one point) of a Kähler immersion with $\Delta_{\text {hol }}$ constant. Thus we assume that T is a symmetric bilinear form on $R^{2 d}$ to $R^{2 k}$ such that T is isotropic and almost complex (relative to natural almost complex operators J on $R^{2 d}$ and $R^{2 n}$).

Of course one gets a large number of identities by inserting J in Lemmas 1 and 2 . We shall need

Lemma 7. Let T be isotropic and almost complex.
(1) If $x, J x, u, v$ are orthogonal vectors in $R^{2 d}$, then

$$
\left\langle T_{x}(u), T_{x}(v)\right\rangle=\left\langle T_{x}(x), T_{u}(v)\right\rangle=\left\langle T_{x}(x), T_{u}(u)\right\rangle=0 .
$$

(2) If H and H^{\prime} are orthogonal holomorphic planes in $R^{2 d}$, then

$$
\left\langle T_{x}(y), T_{u}(v)\right\rangle=0
$$

for all $x, y \in H$ and $u, v \in H^{\prime}$.

Proof. We may suppose that x and u are unit vectors. Applying the first identity in Lemma 2 to $J x$ and u, we obtain

$$
-\left\langle T_{x}(x), T_{u}(u)\right\rangle+2\left\|T_{x}(u)\right\|^{2}=\lambda^{2} .
$$

It follows that $\left\langle T_{x}(x), T_{u}(u)\right\rangle=0$. Replacing x by $J x$ in the second identity yields the remaining assertions in (1).

For x, y, u, v as in (2), consider the orthogonal vectors $x+y, J(x+y)$, $u+v, J(u+v)$. Then (1) implies that $\left\langle T_{x+y}(x+y), T_{u+v}(u+v)\right\rangle=0$. Expansion of this inner product yields $\left\langle T_{x}(y), T_{u}(v)\right\rangle=0$.

It is now easy to give a complete description of T.
Lemma 8. Let T be λ-isotropic and almost complex on $R^{2 d}$ to $R^{2 k}$. If e_{1}, \ldots, e_{d}, $J e_{1}, \ldots, J e_{d}$ is an orthnormal basis for $R^{2 d}$, then
(1) $\left\|T_{e i}\left(e_{j}\right)\right\|^{2}= \begin{cases}\lambda^{2} & i=j, \\ \lambda^{2} / 2 & i f=j .\end{cases}$
(2) The $d(d+1)$ vectors $T_{e_{i}}\left(e_{j}\right), J T_{e_{i}}\left(e_{j}\right)(1 \leqslant i \leqslant j \leqslant d)$ are orthogonal.

Proof. The norm in the case $i \neq j$ follows from the first two sentences in the proof of Lemma 7 . To prove the orthogonality assertion, let $H_{i j}(1 \leqslant i \leqslant j \leqslant d)$ be the (holomorphic) plane in $R^{2 k}$ spanned by $T_{e_{i}}\left(e_{j}\right)$ and $J T_{e_{i}}\left(e_{j}\right)$. There are now three cases: $H_{i i} \perp H_{i j}(i \neq j), H_{i j} \perp H_{i k}\left(i, j, k\right.$ mutally distinct), $H_{i j} \perp$ $H_{k l}(\{i, j\}$ and $\{k, l\}$ disjoint $)$. All three follow immediately from Lemmas 1,2 , and 7.
7. Dimensions for Kähler immersions. We now obtain the Kähler analogues of the results in Section 4.

Theorem 3. Let $\phi: M^{2 d} \rightarrow \bar{M}^{2 e}$ be a Kähler immersion with Δ_{hol} constant. If $e<d(d+3) / 2$, then ϕ is totally geodesic.

Proof. If ϕ is not totally geodesic, then the second fundamental form tensor T of ϕ is λ-isotropic with $\lambda>0$. Then by Lemma 8 , the first normal space of T (at each point) has dimension at least $d(d+1)$. Hence $2 e \geqslant 2 d+d(d+1)$, so $e \geqslant d(d+3) / 2$.

In the constant holomorphic case, the results (1) and (2) (below) are well known.

Corollary. Let M and \bar{M} be Kähler manifolds of constant holomorphic curvature C_{h} and \bar{C}_{h}.
(1) For $C_{h}>\bar{C}_{h}$, there exist no Kähler immersions of M in \bar{M}.
(2) For $C_{h}=\bar{C}_{h}$, every Kähler immersion of M in \bar{M} is totally geodesic.
(3) For $C_{h}<\bar{C}_{h}$, there exist no Kähler immersions of $M^{2 d}$ in $\bar{M}^{2 e}$ if $e<d(d+3) / 2$.

We now construct an example to show that this last dimensional restriction
(hence that of Theorem 3) cannot be improved. Using Remark 1 and the proof of Lemma 8 , it is easy to show that there exists, for each $\lambda>0$, a λ-isotropic, almost complex T on $R^{2 d+2}$ to $R^{2 k}$, where $k=(d+1)(d+2) / 2$. As in Section 4 , let Σ be the unit sphere in $R^{2 d+2}$, and let $\phi: \Sigma \rightarrow R^{2 k}$ be the map such that $\phi(x)=T_{x}(x) / \lambda \sqrt{ } 2$.

If $x \in \Sigma$, the holomorphic circle $C(x)$ through x is the intersection of Σ and the holomorphic plane $H(x)$ through x. By the usual Euclidean identifications, the orthogonal complement of $H(x)$ corresponds to $C(x) \perp$, the subspace of the tangent space Σ_{x} consisting of vectors normal to $C(x)$. Thus the natural almost complex structure of $R^{2 d+2}$ induces on Σ a partial almost complex structure, defined only on the spaces $C(x) \perp$. From previous identities, it follows that the differential map $d \phi$ of ϕ preserves both inner products and almost complex structure on the spaces $C(x) \perp$.

Denote by $\mathbf{P}^{d}(1)$ the complex projective d-space obtained by identifying holomorphic circles in $\Sigma \subset R^{2 d+2}$. Explicitly, the Kähler structure of $\mathbf{P}^{d}(1)$ is such that if $\pi: \Sigma \rightarrow \mathbf{P}^{d}(1)$ is the natural projection, then $d \pi$ preserves inner products and J-operators on each space $C(x) \perp$.

Theorem 4. For each $d \geqslant 1$, there exists a Kähler imbedding

$$
\psi: \mathbf{P}^{d}(1) \rightarrow \mathbf{P}^{e}(1 / \sqrt{ } 2)
$$

where $e=d(d+3) / 2$.
Proof (notation as above). The values of ϕ lie in the sphere $S^{2 k-1}(1 / \sqrt{ } 2)$. Since $k=(d+1)(d+2) / 2$, we have $k-1=d(d+3) / 2$. A holomorphic circle in Σ may be parametrized by a curve σ such that $\sigma(t)=\mathrm{c} x+\mathrm{s} J x$, where $\mathrm{c}=\cos t, \mathrm{~s}=\sin t$. But

$$
T_{\mathrm{c} x+\mathrm{s} J x}(\mathrm{c} x+\mathrm{s} J x)=\left(\mathrm{c}^{2}-\mathrm{s}^{2}\right) T_{x}(x)+2 \mathrm{sc} J\left(T_{x}(x)\right)
$$

Thus ϕ carries holomorphic circles in Σ to holomorphic circles in $S^{2 e+1}(1 / \sqrt{ } 2)$, where $e=d(d+3) / 2$. Hence ϕ determines a differentiable map

$$
\psi: \mathbf{P}^{d}(1) \rightarrow \mathbf{P}^{e}(1 / \sqrt{ } 2)
$$

which commutes with the natural projections π. It follows immediately that ψ is actually a Kähler immersion. Since ϕ carries holomorphic circles onto holomorphic circles, we can show that ψ is one-one by essentially the same argument as in Lemma 4.

Note that for $\psi, \Delta_{\text {hol }}=1-2=-1$. This sequence of imbeddings is reproductive in the sense that ψ_{d} is precisely the imbedding induced by the second fundamental form tensor (at any point) of ψ_{d+1}.

References

1. W. Ambrose, The Cartan structural equations in classical Riemannian geometry, J. Indian Math. Soc., 24 (1960), 23-76.
2. B. O'Neill, Umbilics of constant curvature immersions, Duke Math. J., S2 (1965), 149-160.

University of California, Los Angeles

[^0]: Received June 19, 1964. This research was supported in part by National Science Foundation Grant GP-1605.

