ISOTROPIC AND KÄHLER IMMERSIONS

BARRETT O'NEILL

1. Introduction. Let M^d and \overline{M}^e be Riemannian manifolds. We shall say that an isometric immersion $\phi: M^d \to \overline{M}^e$ is *isotropic* provided that all its normal curvature vectors have the same length. The class of such immersions is closed under compositions and Cartesian products. Umbilic immersions (e.g. $S^d \subset \mathbb{R}^{d+1}$) are isotropic, but the converse does not hold. If M and \overline{M} are Kähler manifolds of constant holomorphic curvature, then any Kähler immersion of M in \overline{M} is automatically isotropic (Lemma 6). We shall find the smallest co-dimension for which there exist non-trivial immersions of this type, and obtain similar results in the real constant-curvature case.

If T is the second fundamental form tensor (1; 2) of an isometric immersion $\phi: M \to \overline{M}$, then for each unit vector x tangent to M, $T_x(x)$ is the normal curvature vector of ϕ in the x-direction.

2. Isotropy at one point. As in (2), we abstract the second fundamental form at one point to a symmetric bilinear function $(x, y) \to T_x(y)$ on \mathbb{R}^d to \mathbb{R}^k . We adopt for T the usual terminology of isometric immersions; in particular, we say that T is λ -isotropic provided that $||T_x(x)|| = \lambda$ for all unit vectors x in \mathbb{R}^d . The main invariant of T is its discriminant Δ , the real-valued function on planes (through O) in \mathbb{R}^d such that if x and y span Π , then

$$\Delta_{xy} = \Delta(\pi) = \frac{\langle T_x(x), T_y(y) \rangle - \|T_x(y)\|^2}{\|x \wedge y\|^2}.$$

(For an isometric immersion $\phi: M \to \overline{M}$, the Gauss equation asserts that $K(\Pi) = \Delta(\Pi) + \overline{K}(d\phi(\Pi))$, where K and \overline{K} are the sectional curvatures of M and \overline{M} , and Π is any plane tangent to M.)

LEMMA 1. T is isotropic if and only if $\langle T_x(x), T_x(y) \rangle = 0$ for all orthogonal vectors x, y in \mathbb{R}^d .

Proof. Let f be the (differentiable) real-valued function on the unit sphere Σ in \mathbb{R}^d such that $f(x) = ||T_x(x)||^2$. Thus T is isotropic if and only if f is constant. But if y is a vector tangent to Σ at x (hence $x \perp y$),

$$y(f) = 4\langle T_x(x), T_x(y) \rangle.$$

LEMMA 2. Suppose that T is λ -isotropic on \mathbb{R}^d , and let x, y, u, v be orthogonal vectors in \mathbb{R}^d . Then

(1)
$$\langle T_x(x), T_y(y) \rangle + 2||T_x(y)||^2 = \lambda^2 \text{ if } ||x|| = ||y|| = 1$$

Received June 19, 1964. This research was supported in part by National Science Foundation Grant GP-1605.

BARRETT O'NEILL

(2) $\langle T_x(x), T_u(v) \rangle + 2 \langle T_x(u), T_x(v) \rangle = 0,$ (3) $\langle T_x(y), T_u(v) \rangle + \langle T_x(u), T_y(v) \rangle + \langle T_x(v), T_y(u) \rangle = 0.$

Proof. Let F be the quadrilinear function on \mathbb{R}^d to \mathbb{R} such that

$$F(x, y, u, v) = \langle T_x(y), T_u(v) \rangle - \lambda^2 \langle x, y \rangle \langle u, v \rangle$$

for any four vectors x, y, u, v in \mathbb{R}^d . Because T is symmetric, F(x, y, u, v) is symmetric in x and y, and also in u and v. Also F is symmetric by pairs: F(x, y, u, v) = F(u, v, x, y). Since T is λ -isotropic B(x) = F(x, x, x, x) = 0for all x in \mathbb{R}^d . Expansion of B(x + y) + B(x - y) = 0 leads to the result

(a)
$$F(x, x, y, y) + 2F(x, y, x, y) = 0.$$

If we replace y by x + y in (a), we obtain

(b)
$$F(x, y, y, y) = 0.$$

If we replace y by u + v in (a), we obtain

(c)
$$F(x, x, u, v) + 2F(x, u, x, v) = 0.$$

Finally, replacing x by x + y in (c) yields

(d)
$$F(x, y, u, v) + F(x, u, y, v) + F(y, u, x, v) = 0.$$

Now assuming that the vectors x, y, u, v are orthogonal, the identities (a), (c), (d) imply the assertions in the lemma.

If the vectors x, y in \mathbb{R}^d are orthonormal, the formula for Δ_{xy} reduces to

$$\Delta_{xy} = \langle T_x(x), T_y(y) \rangle - ||T_x(y)||^2.$$

Thus assertion (1) in the preceding lemma yields the following result.

LEMMA 3. If T is λ -isotropic, then for orthonormal vectors x, y in \mathbb{R}^d (1) $\Delta_{xy} + 3||T_x(y)||^2 = \lambda^2$, (2) $2\Delta_{xy} + \lambda^2 = 3\langle T_x(x), T_y(y) \rangle$.

We deduce some consequences of this lemma. First, the following three conditions are equivalent:

$$\Delta_{xy} = \lambda^2, \qquad T_x(y) = 0, \qquad T_x(x) = T_y(y).$$

This means that T is *umbilic* on the plane II spanned by x and y, that is, $T_u(u)$ is the same for all unit vectors u in II. Similarly, the following are equivalent:

$$\Delta_{xy} = -2\lambda^2, \qquad ||T_x(y)|| = \lambda, \qquad T_x(x) + T_y(y) = 0$$

(hypotheses as in the lemma). In this case, we say that T is *minimal* on the plane spanned by x and y. Because T is λ -isotropic, $|\langle T_x(x), T_y(y) \rangle| \leq \lambda^2$. Therefore we obtain the following corollary.

https://doi.org/10.4153/CJM-1965-086-7 Published online by Cambridge University Press

COROLLARY. If T is λ -isotropic, then the discriminant Δ of T satisfies $-2\lambda^2 \leq \Delta \leq \lambda^2$. Furthermore, if Π is a plane in \mathbb{R}^d , then $\Delta(\Pi) = \lambda^2$ if and only if T is umbilic on Π ; $\Delta(\Pi) = -2\lambda^2$ if and only if T is minimal on Π .

Remark 1. Let e_1, \ldots, e_d be an orthonormal basis for \mathbb{R}^d . Let A_{ij} $(1 \leq i \leq j \leq d)$ be any d(d+1)/2 vectors in \mathbb{R}^k . Then:

1. There is a unique symmetric bilinear function T on \mathbb{R}^d to \mathbb{R}^k such that $T_{ei}(e_j) = A_{ij}$,

2. If the vectors A_{ij} satisfy (in an obvious sense) the identities in Lemmas 1 and 2, then T is λ -isotropic,

3. The discriminant Δ of T is constant if and only if Δ is constant on the planes spanned by e_i , e_j , and, for i, j, k, l all different, $\langle A_{ij}, A_{kl} \rangle = \langle A_{il}, A_{kj} \rangle$ and $\langle A_{ii}, A_{jk} \rangle = \langle A_{il}, A_{ik} \rangle$.

The first normal space \mathfrak{N} of T (on \mathbb{R}^d to \mathbb{R}^k) is the subspace of \mathbb{R}^k spanned by all vectors $T_x(y)$ ($x, y \in \mathbb{R}^d$). Much of the scant information available about isometric immersions depends on knowledge of the effect on the dimension of \mathfrak{N} produced by conditions on Δ . Our aim is to investigate this matter when Tis isotropic.

3. The constant-discriminant case. In this section we assume that *T* is λ -isotropic and its discriminant Δ is constant. We shall show that the dimension of the first normal space is determined by the ratio $\Delta : \lambda^2$.

In general, *T* is *minimal* provided that for one, hence every, frame e_1, \ldots, e_d in \mathbb{R}^d we have $\sum_{i=1}^d T_{e_i}(e_i) = 0$. Also *T* is *umbilic* provided $T_u(u)$ has the same value for every unit vector *u* in \mathbb{R}^d .

THEOREM 1. Let T be a symmetric bilinear function on \mathbb{R}^d to \mathbb{R}^k $(d \ge 2)$. Assume that T is λ -isotropic $(\lambda > 0)$ and that its discriminant Δ is constant. Let $m_d = d(d + 1)/2$, and $h_d = (d + 2)/2(d - 1)$. Then

$$-h_d \lambda^2 \leqslant \Delta \leqslant \lambda^2$$
.

Furthermore, if \mathfrak{N} is the first normal space of T, then

- (1) $\Delta = \lambda^2 \Leftrightarrow T \text{ is umbilic} \Leftrightarrow \dim \mathfrak{N} = 1$,
- (2) $\Delta = -h_d \lambda^2 \Leftrightarrow T \text{ is minimal} \Leftrightarrow \dim \mathfrak{N} = m_d 1$,
- (3) $-h_d \lambda^2 < \Delta < \lambda^2 \Leftrightarrow \dim \mathfrak{N} = m_d.$

Proof. The principal effect on T of the constancy of Δ is given in (2, Lemma 4), which implies that if x, y, u, v are orthogonal vectors in \mathbb{R}^d , then both $\langle T_x(y), T_u(v) \rangle$ and $\langle T_x(x), T_u(v) \rangle$ are unchanged by permutations of x, y, u, v. Thus Lemma 2 implies that $\langle T_x(y), T_u(v) \rangle$, $\langle T_x(x), T_u(v) \rangle$, and $\langle T_x(u), T_x(v) \rangle$ are zero when the arguments are orthogonal.

Fix an orthonormal basis e_1, \ldots, e_d for \mathbb{R}^d , and let $z_i = T_{e_i}(e_i)$ for $1 \leq i \leq d$. Now the d(d-1)/2 vectors $T_{e_i}(e_j)$ (i < j) are orthogonal, and each is orthogonal to the subspace Z spanned by z_1, \ldots, z_d . Assertion 1 follows

BARRETT O'NEILL

immediately from the remarks in the preceding section. Henceforth we exclude the minimal case $\Delta = \lambda^2$. Then Lemma 3 shows that the vectors $T_{ei}(e_j)$ (i < j) all have the same non-zero length. Thus we have

$$\dim \mathfrak{N} = d(d-1)/2 + \dim Z.$$

Lemma 3 further shows that the inner products $\langle z_i, z_j \rangle$ $(i \neq j)$ are all equal; we write

$$\langle z_i, z_j \rangle = \lambda^2 \cos \theta.$$

By Euclidean geometry $\cos \theta \leq -1/(d-1)$, and equality holds if and only if the vectors z_1, \ldots, z_d are linearly dependent. The vectors z_1, \ldots, z_d then describe the vertices of an equilateral Euclidean simplex centred at the origin of the subspace Z. From Lemma 3, Formula (2), we obtain $\lambda^2(3\cos\theta - 1) = 2\Delta$. Thus it is easy to see that, for m_d and h_d as defined above, the following assertions are equivalent:

$$\Delta = -h_d \lambda^2, \qquad \cos \theta = -1/(d-1), \qquad \dim Z = d-1,$$

dim
$$\mathfrak{N} = m_d - 1$$
, $z_1 + \ldots + z_d = 0$, T is minimal.

Similarly, the following are equivalent:

 $\Delta > -h_d \lambda^2$, $\cos \theta < -1/(d-1)$, $\dim Z = d$, $\dim \mathfrak{N} = m_d$.

But, by Lemma 3, $\Delta \leq \lambda^2$ always holds, so, since the case $\Delta = \lambda^2$ was excluded earlier, the proof is complete.

Remark 2. Given an integer $d \ge 2$, and numbers $\Delta, \lambda \ge 0$ such that $-h_d \lambda^2 \le \Delta \le \lambda^2$, there exists a λ -isotropic T on \mathbb{R}^d to \mathbb{R}^{m_d} whose discriminant has the constant value Δ . To construct T, use Remark 1, arranging the vectors A_{ij} as dictated by the preceding proof.

4. Isotropic immersions. Theorem 1 has the following basic consequence, which shows that, in the case of constant Δ , large co-dimensions are required if an isotropic immersion is not umbilic.

COROLLARY. Let $\phi: M^d \to \overline{M}^e$ be an isotropic immersion with $\Delta = K - \overline{K} \circ d\phi$ constant. If $e < e_d - 1$, where $e_d = d(d + 3)/2$, then ϕ is umbilic.

In the case of constant curvature we get

THEOREM 2. Let $\phi: M^d \to \overline{M}^e$ be an isotropic immersion of manifolds of constant curvature C and \overline{C} . Let $e_d = d(d+3)/2$.

(1) If $C > \overline{C}$ and $e < e_d$, then ϕ is umbilic.

(2) If $C = \overline{C}$ and $e < e_d$, then ϕ is totally geodesic.

(3) If $C < \overline{C}$, then $e \ge e_d - 1$. Furthermore, if $e = e_d - 1$, then ϕ is minimal.

An isometric immersion is *minimal* provided its second fundamental form tensor is minimal at each point. Evidently this generalizes the classical definition of minimal surface in R^3 .

Proof. If $e < e_d - 1$, then the co-dimension e - d is strictly less than $e_d - d - 1 = m_d - 1$. Hence, by Theorem 1, ϕ is umbilic. But this is impossible if $C < \overline{C}$, and implies that ϕ is totally geodesic if $C = \overline{C}$. Now suppose that $e = e_d - 1$, so the co-dimension is $m_d - 1$. If $C > \overline{C}$, so $\Delta > 0$, then by Theorem 1, ϕ cannot be minimal, and hence it is again umbilic. If $C = \overline{C}$, we similarly deduce that ϕ is totally geodesic.

We now obtain examples of isotropic, non-umbilic immersions which show that the above dimensional restrictions cannot be improved. It is noteworthy that global examples can be obtained from a second fundamental form tensor Tat one point. In fact, suppose that T is symmetric, bilinear on \mathbb{R}^{d+1} to \mathbb{R}^{k+1} . For each element x of the unit sphere Σ in \mathbb{R}^{d+1} , let $\phi(x) = T_x(x)$. Since $\phi(-x) = \phi(x)$, we obtain a differentiable map ϕ of real projective space \mathbb{P}^d into \mathbb{R}^{k+1} . Now suppose that T is λ -isotropic and has constant discriminant. Then if x and u are orthonormal in \mathbb{R}^{d+1} , $T_x(u)$ has the constant value μ such that $\mu^2 = (\lambda^2 - \Delta)/3$. Excluding the umbilic case $(\mu = 0)$, we alter ϕ by a scalar and define the *associated mapping* ψ of T to be the differentiable function

$$\psi: P^d(1) \to S^k(\lambda/2\mu)$$

such that $\psi(\{x, -x\}) = T_x(x)/2\mu$. (Here P^d and S^k have the canonical Riemannian structures appropriate to their radii.)

LEMMA 4. Let T be a symmetric bilinear function on \mathbb{R}^{d+1} to \mathbb{R}^{k+1} $(d \ge 2)$. Suppose that T is λ -isotropic and has constant discriminant $\Delta \neq \lambda^2$. Then the associated mapping $\psi: \mathbb{P}^d(1) \to S^k(\lambda/2\mu)$ is an isotropic imbedding with

$$\lambda_{*}^{2} = \frac{4}{3} \left(\frac{\Delta}{\lambda^{2}} + 2 \right) \quad and \quad \Delta_{*} = \frac{1}{3} \left(4 \frac{\Delta}{\lambda^{2}} - 1 \right).$$

Proof. If u is a unit tangent vector to the unit sphere $\Sigma \subset \mathbb{R}^{d+1}$ at the point x, then let σ be the geodesic

$$\sigma(t) = (\cos t)x + (\sin t)u.$$

Then $\psi \circ \sigma = T_{\sigma}(\sigma)/2\mu$. But $(\psi \circ \sigma)'(0) = T_x(u)/\mu$, so $||d\psi(u)|| = 1$, and thus ψ is an isometric immersion. By Lemma 3, $\Delta + 3\mu^2 = \lambda^2$. The manifolds involved have curvatures C = 1 and $\bar{C} = 4\mu^2/\lambda^2$. Hence we obtain the required result for $\Delta_* = C - \bar{C}$.

We briefly outline the proof that ψ is λ_* -isotropic. Now the *Euclidean* acceleration of the curve $\psi \circ \sigma$ is given by

$$(\psi \circ \sigma)^{\prime\prime}(0) = (T_u(u) - T_x(x))/\mu.$$

The unit normal to $S^k(\lambda/2\mu)$ at $\psi(x)$ is $T_x(x)/\lambda$. Let τ be the second fundamental form tensor of the immersion ψ . Subtracting from $(\psi \circ \sigma)''(0)$ its component orthogonal to $S^k(\lambda/2\mu)$, we obtain

$$\tau_u(u) = T_u(u)/\mu - \left(\frac{\Delta}{\mu} + \mu\right)T_x(x)/\lambda^2.$$

A straightforward computation yields

$$\lambda_{*}^{2} = \|\tau_{u}(u)\|^{2} = \frac{4}{3}\left(\frac{\Delta}{\lambda^{2}} + 2\right).$$

To show that ψ is one-one, we observe that, by Lemma 3, $T_u(v)$ is never zero if u and v are non-zero and orthogonal. Suppose that x and y are unit vectors in \mathbb{R}^d such that $y \neq \pm x$. Then

$$0 \neq T_{x-y}(x+y) = T_x(x) - T_y(y);$$

hence $\psi(\{x, -x\}) \neq \psi(\{y, -y\})$.

COROLLARY 1. For each $d \ge 2$, there exists a non-umbilic isotropic imbedding $\psi: P^d(1) \to S^{e_d-1}(r_d)$ where $e_d = d(d+3)/2$ and $(r_d)^2 = d/2(d+1)$. Furthermore ψ is minimal.

COROLLARY 2. Let M(C) denote a complete Riemannian manifold of constant curvature C. If $C \leq 2(d + 1)/d$, then there exists a non-umbilic isotropic immersion $\psi: P^d(1) \to M^{e_d}(C)$, where $e_d = d(d + 3)/2$.

Proof. For Corollary 1, choose T (by Remark 2) so that $\lambda = 1$ and $\Delta = -h_{d+1}$. The associated map ψ is isotropic by the preceding Lemma, and since Δ_*/λ_*^2 turns out to be $-h_d$, Theorem 1 asserts that ψ is minimal. Also

$$(r_d)^2 = (\lambda/2\mu)^2 = 3/4(1+h_{d+1}) = d/2(d+1).$$

If \mathfrak{N} is the first normal space of T, then the values of ψ actually lie in the great sphere $\mathfrak{N} \cap S^k(r_d)$. By Theorem 1, dim $\mathfrak{N} = m_{d+1} - 1$; hence the values of ψ are in the sphere S^{e_d-1} , where $e_d = m_{d+1} - 1 = d(d+3)/2$.

To prove Corollary 2, recall that any simply connected, constant-curvature manifold $X^{d}(K)$ may be imbedded as an *umbilic* Riemannian submanifold in $X^{d+1}(\bar{K})$ if $K \ge \bar{K}$. Since $C \le 2(d+1)/d$, the sphere $S^{e_d-1}(r_d)$ may be imbedded as an umbilic hypersurface in the simply connected covering manifold of $M^{e_d}(C)$. Then we derive the required immersion from the imbedding in Corollary 1.

Evidently these corollaries show that the dimensional restrictions in Theorem 2 cannot be improved.

5. Kähler immersions. We use the definition of Kähler manifold M under which M is a Riemannian manifold furnished with an almost complex structure J such that $\langle JX, JY \rangle = \langle X, Y \rangle$ and $\nabla_X (JY) = J(\nabla_X Y)$ for all vector fields X, Y on M. A Kähler immersion $\phi: M \to \overline{M}$ (of Kähler manifolds) is an isometric immersion which is almost complex, that is, the differential map of ϕ commutes with the almost complex structures on M and \overline{M} .

LEMMA 5. If $\phi: M \to \overline{M}$ is a Kähler immersion, then its second fundamental form tensor T is almost complex, that is, $T_x(Jy) = J(T_x y)$ for x, y tangent to M.

Proof. If Y is a vector field on M, then (locally) there is a ϕ -related vector field \overline{Y} on \overline{M} and $J\overline{Y}$ is ϕ -related to JY. If x is tangent to M, then

$$\nabla_{d\phi(x)}(\bar{Y}) = d\phi(\nabla_x Y) + T_x(Y).$$

Hence

$$J(T_x Y) = J(\nabla_{d\phi(x)}\bar{Y}) - J(d\phi(\nabla_x Y))$$

= $\nabla_{d\phi(x)}(J\bar{Y}) - d\phi(\nabla_x(JY)) = T_x(JY).$

The holomorphic curvature K_{hol} of a Kähler manifold M is the function on unit tangent vectors x such that $K_{hol}(x)$ is the sectional curvature $K(\Pi_{x,Jx})$ of the holomorphic section through x. A Kähler immersion preserves holomorphic planes, and, corresponding to the function $\Delta = K - \bar{K} \circ d\phi$ on all tangent planes to M, we have the holomorphic difference

$$\Delta_{\rm hol} = K_{\rm hol} - \tilde{K}_{\rm hol} \circ d\phi.$$

LEMMA 6. If $\phi: M \to \overline{M}$ is a Kähler immersion, then $\Delta_{hol} \leq 0$, and $\Delta_{hol} = 0$ if and only if ϕ is totally geodesic. Furthermore, ϕ is λ -isotropic if and only if Δ_{hol} has the constant value $-2\lambda^2$.

Proof. The first assertion is well known. However, both assertions are proved by observing that the symmetry of T and the fact that T is almost complex imply $T_{Jx}(Jx) = -T_x(x)$. For then

$$\Delta_{\text{hol}}(x) = \Delta(\Pi_{x, Jx}) = \langle T_x(x), T_{Jx}(Jx) \rangle - ||T_x(Jx)||^2 = -2||T_x(x)||^2.$$

In particular, a Kähler immersion of manifolds of constant holomorphic curvature is isotropic.

6. Constant holomorphic discriminant. We examine the second fundamental form (at one point) of a Kähler immersion with Δ_{hol} constant. Thus we assume that T is a symmetric bilinear form on R^{2d} to R^{2k} such that T is isotropic and almost complex (relative to natural almost complex operators J on R^{2d} and R^{2n}).

Of course one gets a large number of identities by inserting J in Lemmas 1 and 2. We shall need

LEMMA 7. Let T be isotropic and almost complex. (1) If x, Jx, u, v are orthogonal vectors in \mathbb{R}^{2d} , then

$$\langle T_x(u), T_x(v) \rangle = \langle T_x(x), T_u(v) \rangle = \langle T_x(x), T_u(u) \rangle = 0.$$

(2) If H and H' are orthogonal holomorphic planes in \mathbb{R}^{2d} , then

$$\langle T_x(y), T_u(v) \rangle = 0$$

for all $x, y \in H$ and $u, v \in H'$.

https://doi.org/10.4153/CJM-1965-086-7 Published online by Cambridge University Press

BARRETT O'NEILL

Proof. We may suppose that x and u are unit vectors. Applying the first identity in Lemma 2 to Jx and u, we obtain

$$-\langle T_x(x), T_u(u) \rangle + 2||T_x(u)||^2 = \lambda^2.$$

It follows that $\langle T_x(x), T_u(u) \rangle = 0$. Replacing x by Jx in the second identity yields the remaining assertions in (1).

For x, y, u, v as in (2), consider the orthogonal vectors x + y, J(x + y), u + v, J(u + v). Then (1) implies that $\langle T_{x+y}(x + y), T_{u+v}(u + v) \rangle = 0$. Expansion of this inner product yields $\langle T_x(y), T_u(v) \rangle = 0$.

It is now easy to give a complete description of T.

LEMMA 8. Let T be λ -isotropic and almost complex on \mathbb{R}^{2d} to \mathbb{R}^{2k} . If e_1, \ldots, e_d , Je_1, \ldots, Je_d is an orthnormal basis for \mathbb{R}^{2d} , then

(1)
$$||T_{e_i}(e_j)||^2 = \begin{cases} \lambda^2 & i = j, \\ & if \\ \lambda^2/2 & i \neq j. \end{cases}$$

(2) The d(d + 1) vectors $T_{e_i}(e_j)$, $JT_{e_i}(e_j)$ $(1 \le i \le j \le d)$ are orthogonal.

Proof. The norm in the case $i \neq j$ follows from the first two sentences in the proof of Lemma 7. To prove the orthogonality assertion, let $H_{ij}(1 \leq i \leq j \leq d)$ be the (holomorphic) plane in R^{2k} spanned by $T_{ei}(e_j)$ and $JT_{ei}(e_j)$. There are now three cases: $H_{ii} \perp H_{ij}(i \neq j)$, $H_{ij} \perp H_{ik}(i, j, k$ mutally distinct), $H_{ij} \perp H_{kl}(\{i, j\} \text{ and } \{k, l\} \text{ disjoint})$. All three follow immediately from Lemmas 1, 2, and 7.

7. Dimensions for Kähler immersions. We now obtain the Kähler analogues of the results in Section 4.

THEOREM 3. Let $\phi: M^{2d} \to \overline{M}^{2e}$ be a Kähler immersion with Δ_{hol} constant. If e < d(d+3)/2, then ϕ is totally geodesic.

Proof. If ϕ is not totally geodesic, then the second fundamental form tensor T of ϕ is λ -isotropic with $\lambda > 0$. Then by Lemma 8, the first normal space of T (at each point) has dimension at least d(d + 1). Hence $2e \ge 2d + d(d + 1)$, so $e \ge d(d + 3)/2$.

In the constant holomorphic case, the results (1) and (2) (below) are well known.

COROLLARY. Let M and \overline{M} be Kähler manifolds of constant holomorphic curvature C_h and \overline{C}_h .

(1) For $C_h > \overline{C}_h$, there exist no Kähler immersions of M in \overline{M} .

(2) For $C_h = \overline{C}_h$, every Kähler immersion of M in \overline{M} is totally geodesic.

(3) For $C_h < \bar{C}_h$, there exist no Kähler immersions of M^{2d} in \bar{M}^{2e} if e < d(d+3)/2.

We now construct an example to show that this last dimensional restriction

(hence that of Theorem 3) cannot be improved. Using Remark 1 and the proof of Lemma 8, it is easy to show that there exists, for each $\lambda > 0$, a λ -isotropic, almost complex T on \mathbb{R}^{2d+2} to \mathbb{R}^{2k} , where k = (d+1)(d+2)/2. As in Section 4, let Σ be the unit sphere in \mathbb{R}^{2d+2} , and let $\phi: \Sigma \to \mathbb{R}^{2k}$ be the map such that $\phi(x) = T_x(x)/\lambda\sqrt{2}$.

If $x \in \Sigma$, the holomorphic circle C(x) through x is the intersection of Σ and the holomorphic plane H(x) through x. By the usual Euclidean identifications, the orthogonal complement of H(x) corresponds to C(x), the subspace of the tangent space Σ_x consisting of vectors normal to C(x). Thus the natural almost complex structure of R^{2d+2} induces on Σ a partial almost complex structure, defined only on the spaces C(x). From previous identities, it follows that the differential map $d\phi$ of ϕ preserves both inner products and almost complex structure on the spaces C(x).

Denote by $\mathbf{P}^{d}(1)$ the complex projective *d*-space obtained by identifying holomorphic circles in $\Sigma \subset \mathbb{R}^{2d+2}$. Explicitly, the Kähler structure of $\mathbf{P}^{d}(1)$ is such that if $\pi: \Sigma \to \mathbf{P}^{d}(1)$ is the natural projection, then $d\pi$ preserves inner products and *J*-operators on each space C(x).

THEOREM 4. For each $d \ge 1$, there exists a Kähler imbedding

$$\psi \colon \mathbf{P}^{d}(1) \to \mathbf{P}^{e}(1/\sqrt{2}),$$

where e = d(d + 3)/2.

Proof (notation as above). The values of ϕ lie in the sphere $S^{2k-1}(1/\sqrt{2})$. Since k = (d + 1)(d + 2)/2, we have k - 1 = d(d + 3)/2. A holomorphic circle in Σ may be parametrized by a curve σ such that $\sigma(t) = cx + sJx$, where $c = \cos t$, $s = \sin t$. But

$$T_{cx+sJx}(cx + sJx) = (c^2 - s^2)T_x(x) + 2scJ(T_x(x)).$$

Thus ϕ carries holomorphic circles in Σ to holomorphic circles in $S^{2e+1}(1/\sqrt{2})$, where e = d(d+3)/2. Hence ϕ determines a differentiable map

$$\psi \colon \mathbf{P}^{d}(1) \longrightarrow \mathbf{P}^{e}(1/\sqrt{2})$$

which commutes with the natural projections π . It follows immediately that ψ is actually a Kähler immersion. Since ϕ carries holomorphic circles *onto* holomorphic circles, we can show that ψ is one-one by essentially the same argument as in Lemma 4.

Note that for ψ , $\Delta_{\text{hol}} = 1 - 2 = -1$. This sequence of imbeddings is *reproductive* in the sense that ψ_d is precisely the imbedding induced by the second fundamental form tensor (at any point) of ψ_{d+1} .

References

- 1. W. Ambrose, The Cartan structural equations in classical Riemannian geometry, J. Indian Math. Soc., 24 (1960), 23–76.
- 2. B. O'Neill, Umbilics of constant curvature immersions, Duke Math. J., 32 (1965), 149-160.

University of California, Los Angeles